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Abstract
In this paper we study a generalized case of best-of-n model, which considers three kind 
of agents: zealots, individuals who remain stubborn and do not change their opinion; 
informed agents, individuals that can change their opinion, are able to assess the quality of 
the different options; and uninformed agents, individuals that can change their opinion but 
are not able to assess the quality of the different opinions. We study the consensus in differ-
ent regimes: we vary the quality of the options, the percentage of zealots and the percent-
age of informed versus uninformed agents. We also consider two decision mechanisms: 
the voter and majority rule. We study this problem using numerical simulations and math-
ematical models, and we validate our findings on physical kilobot experiments. We find 
that (1) if the number of zealots for the lowest quality option is not too high, the decision-
making process is driven toward the highest quality option; (2) this effect can be improved 
increasing the number of informed agents that can counteract the effect of adverse zealots; 
(3) when the two options have very similar qualities, in order to keep high consensus to the 
best quality it is necessary to have higher proportions of informed agents.

Keywords  Collective decision-making · Swarm intelligence · Swarm robotics · Stubborn 
agents

1  Introduction

Collective decision-making is a collective behavior where a group of agents (or swarm) 
makes a joint decision using only local perception and communication, without any cen-
tralized leadership  (Valentini et al., 2017). The distinctive feature of any collective deci-
sion-making process is that once the decision is made, it is no longer attributable to any 
of the individual agents participating to the process. The mechanisms underlying this type 
of processes are widely studied in behavioral biology (Camazine et al. 2001), in statistical 
physics (Bialek et al., 2012; Vicsek et al., 1995; Cavagna et al., 2018), social sciences (Kok 
et  al., 2016), and more recently in behavioral economics  (Bose et  al., 2017). Collective 
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decision-making is also studied in artificial systems such as robotic swarms, in which rel-
atively simple autonomous robots interact to generate collective responses through self-
organization processes  (Hamann, 2018). In swarm robotics, examples of contexts where 
collective decision-making is studied are the following: (1) aggregation behavior, where 
a swarm has to aggregate either on a site among those available in the environment (Firat 
et  al., 2020), or in any location of environments that do not offer specific aggregation 
sites (Gauci et al., 2014); (2) collective motion, where the group has to choose, among a 
virtually infinite number of options, a direction of motion (Couzin et al., 2005); (3) collec-
tive perception, where the relative abundance of certain environmental features is assessed 
by local measurements and communication among the agents (Valentini et al., 2016a).

A specific case of collective decision-making is represented by the best-of-n problem, 
where n is the number of the different available options, that can vary with respect to their 
qualities. Choosing the best quality option among the n available is a challenging task for a 
group of agents since it is assumed that none of the group members can evaluate the quality 
of all the n options (Reina et al., 2014, 2015; Valentini et al., 2016b). The best quality is the 
one associated to the lowest exploitation cost and/or highest benefit. Various studies have 
shown that the mechanism referred to as “modulation of positive feedback” can generate 
consensus among interacting agents engaged with the selection of the best option among 
the n available (see Font Llenas et al., 2018; Valentini et al., 2014, 2016b). This mecha-
nism is based on the following: (1) each agent advertises its currently selected option for 
a time proportional to the option’s quality; (2) each agent can change its currently selected 
option if influenced by its neighbors. Repeated local interactions among the agents, under 
the above-mentioned conditions, generate a consensus with all agents achieving a common 
decision on which option to choose.

In the best-of-n problem, it is normally given for granted that agents are either all able to 
measure the quality or all unable to do so. In the latter case, the best-of-n problem reduces 
itself to a symmetry breaking scenario, whereby in the absence of environmental hetero-
geneities the swarm converges to a random option rather than to the best one  (Valentini 
et al., 2017). Recently, few studies have pointed to the relevance of the individual ability to 
evaluate the option quality with respect to the collective decision dynamics (Khaluf et al., 
2019; Berekméri and Zafeiris 2020). We referred to this ability as “quality awareness”. 
These studies have called for further investigations to go beyond the “all or nothing” sce-
narios with respect to quality awareness, and for a deeper understanding of how the vari-
ability among the agents in quality awareness bears upon the collective decision-making 
process. Indeed, this is an issue that may affect the group dynamics in multiple biological 
and artificial collective systems. Thus, there is an interdisciplinary interest in developing a 
principled understanding of how this variability affects the collective dynamics in different 
decision-making contexts. For example, from a social science perspective, the variability in 
quality awareness may be caused by individual differences in perceiving and assessing the 
qualities of different options, due to differences in level of education, restricted access to 
information, etc. From a swarm robotics perspective, variability in quality awareness is not 
exclusively left to the designer’s decision on how to assemble the robotic swarm. Indeed, it 
can be an ineluctable consequence of the inherent functional differences that are generally 
observed in seemingly identical hardware components such as sensors. For example, the 
same type of sensors on different robots may respond differently to the same stimulation. 
This can prevent some but not other robots from correctly evaluating and disseminating the 
quality of a specific option.

In this paper, we contribute to develop a principled understanding of how the vari-
ability in individual quality awareness in the best-of-n problem with n = 2 changes the 
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decision-making dynamics. We study a group of simulated agents required to collec-
tively choose one of two options which differ in their quality. In brief, each agent in 
the swarm goes through two sequential phases that periodically repeat: the exploration 
phase and the dissemination phase. During the exploration phase, the agents explore 
the environment and evaluate the options quality. During the dissemination phase, the 
agents interact with each other, an interaction that consists of two steps. First, each 
agent advertises (i.e. communicates via local broadcast) the individually selected 
option. We call an option opinion when it is the currently selected option by a focal 
agent. Then, the focal agent may change its current opinion under the influence of the 
other agents according to the rules of the specific decision mechanism (or voting sys-
tem). The above phases are executed by all agents in an asynchronous manner. This type 
of scenario has already been studied in the literature (refer to Prasetyo et al., 2019, for a 
recent model). Differently from previous work, in this study, groups are made of agents 
that differ with respect to either their capability to directly evaluate the quality of each 
option, or their flexibility in changing option through interactions with group mates dur-
ing the dissemination phases. The original contribution of this research resides in an 
in-depth analysis of the decision-making dynamics developed by systematically vary-
ing the model parameters, and carried out with a large methodological toolkit made of 
simulation models, mathematical models, and physical robots experiments. Consistently 
with the literature (Valentini et al., 2017), we consider the two most commonly studied 
decision mechanisms: the voter model and the majority rule.

We consider swarms made of three different types of agents. First, we have zealots 
which are characterized by the fact that their chosen option is attributed to them by the 
designer—rather than through the dynamics of the simulation scenario—and by defini-
tion they never change their opinion. In other words, neither the discovery of a better 
quality option nor the influence of group mates makes them change option. During dis-
semination, zealots disseminate the option attributed to them for a time proportional to 
its quality. Second, we have informed agents which are not associated to any specific 
option. They explore the environment, choose an option, and disseminate their chosen 
option for a time proportional to its quality. During dissemination, informed agents can 
eventually change their mind under the influence of group mates. Third, we have unin-
formed agents which, like informed agents, select their option either through explora-
tion or during dissemination through the influence of other agents. Contrary to informed 
agents, uninformed agents are not able to properly evaluate the options quality. Thus, 
during dissemination time, they disseminate their current opinion for a fixed amount of 
time that does not depend on the quality of the chosen option. As for informed agents, 
also uninformed agents can eventually change their mind under the influence of group 
mates. With this experimental design, we generate interesting results that contribute 
to shed light on the effects of the variability of quality awareness on the dynamics of 
collective decision-making in best-of-n type of scenarios. For example, we illustrate 
and discuss the dynamics resulting from scenarios in which the options have different 
qualities, and the relative proportion of zealots for each option and the proportion of 
informed versus uninformed agents within the group play a fundamental role in shifting 
the group consensus to one or the other option.

The paper is organized as follows. The methodologies are described in Sect.  3 with 
details of the mathematical model illustrated in Sect.  3.1. The results are reported in 
Sect. 4. The methodology used and the results obtained with physical robots are illustrated 
in Sect. 5. Finally, in Sect. 6 we draw our conclusions and we illustrate a research agenda 
for the future.
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2 � Related work

The two central concepts explored in this article are those of informed agency and zealotry. 
In this section, we will review the related work, across different fields, performed around 
these two concepts.

The attention to the role of different level of information among the agents is being 
studied in different fields since at least two decades. One of the pioneering works is the one 
of Couzin et al. (2005) in the context of modeling collective motion of biological systems: 
they studied the effect of implicit leaders, individuals that have a preferred direction of 
motion, but are not seen as leaders by their co-specifics. This seminal study has motivated 
a body of experimental work in biology with real animals, including fish schools (Leblond 
& Reebs, 2006) and sheep herds (Pillot et al., 2010). The role of informed agents has been 
highlighted in the context of multi-agent systems by Yu et al. (2010), who shows that one 
or a few informed agents allow all agents to agree on a decision, acting in this sense as 
“leaders” of the swarm: the consensus process is essentially determined by the number of 
informed agents and their condence levels.

Inspired by  Couzin et  al. (2005), researchers in robotics have studied the effect of 
implicit leaders in the collective motion of self-organized robot swarms. One of the earliest 
studies is the one of Celikkanat and Şahin (2010), who introduced implicit leaders within 
the collective motion model designed by Turgut et  al. (2008), which in turn was one of 
the earliest faithful implementations of Reynold’s boids (Reynolds, 1987) model in swarm 
robotics. Subsequent studies have extended the study of informed individuals to robot 
swarms able to communicate and influenced by more than one subgroups of informed 
individuals with different goals  (Ferrante et  al., 2014), and to robot swarms with more 
minimalist individual capability that self-organize without exchanging orientation infor-
mation (Ferrante et al., 2012). More recently, the notion of informed individuals has been 
ported to a different collective behavior than collective motion, namely to self-organized 
aggregation (Firat et al., 2020). In this paper, we port the notion of informed individuals for 
the first time to the best-of-n problem.

There are additional recent studies that analyzed the role of informed robots in an 
interdisciplinary context. Mann (2020) studies how the differences in information and 
differences in preferences among the agents affect the use and efficacy of social informa-
tion, analyzing the collective behavior generated by rational agents with differing prefer-
ences. Another very recent paper   (van Veen et al., 2020) studies the impact of overload 
of information on the accuracy and precision in collective decision-making. Berekméri 
and Zafeiris (2020) focus their attention to the role of the topology of interactions among 
agents in a collective decision-making process, finding that a fully connected topology pro-
motes consensus, while a hierarchical structure favor accuracy, more than consensus.

The effect of zealots on collective decision-making is of interest in different commu-
nities. While zealots are sometimes called by different names, like “committed agents” 
or “stubborns” or “stubborn individuals”, their impact has been investigated from a bio-
logical perspective, in social physics models, as well as in robotic swarms. In the latter 
field, zealots have recently been introduced as a mechanism that allows the swarm to cope 
with changes in the environments (Prasetyo et al., 2019), a setting that is recently gaining 
momentum (Wahby et al., 2019).

In the context of physics, Colaiori and Castellano (2016) introduced zealots in a model 
of pairwise social influence for opinion dynamics, showing a rich phase diagram of the pos-
sible dynamics in presence of a small percentage of zealots. In the context of Internet social 
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networks,  Hunter and Zaman (2018) studied the best placement of zealots that maximizes the 
impact on the consensus dynamics of the population, showing that a small number of zealots 
can significantly influence the overall opinion dynamics and influence the consensus of the 
population over disputed issues, such as Brexit. Mistry et al. (2015), using the naming game as 
a decision mechanism, showed that even a very small minority can drive the opinion of a large 
population, if committed agents are more active than the others. However, this effect can be 
hindered if nodes with the same opinion are more connected with each other than with nodes 
with different opinion, producing a polarization inside the network.

Ghaderi and Srikant (2014) and Mukhopadhyay (2016) studied the impact of zealots in a 
social network, considering different degrees of zealotry. The focus of Ghaderi and Srikant 
(2014) is studying the effect of zealotry on the convergence time of the system. Mukhopad-
hyay (2016), despite having used the majority rule instead of the voter, was able to find similar 
results as in Prasetyo et al. (2019) and De Masi et al. (2020), in which introducing equal num-
ber of zealots on both option sides prevents the network from reaching a consensus state. Sim-
ilarly, Yildiz et al. (2013) proved that the presence of zealots is able to prevent the formation of 
consensus, introducing instabilities and fluctuations in a binary voter model of a small-world 
network. A recent study by  Bhat and Redner (2019) aimed at studying the influence of zealots 
on “politically polarized” state vs. consensus state and found that higher “influence of zealots” 
produces more polarization, shorter time to polarization, and conversely less consensus and 
longer to impossible time to consensus.

 Xie et al. (2011) showed the presence of a tipping point at which a minority of zealots is 
able to swing the initial majority opinion in a network. The study described by Masuda (2015) 
focused on zealots with the voter model to perform peer-to-peer opinion influence; however, 
differently from our work, zealots were nodes of a complex network.   Galam and Jacobs 
(2007), introducing zealots in a majority model, showed that the system has spontaneous sym-
metry breaking when zealots numbers are symmetrical for the two options, while consensus 
toward one option emerged even with minimal unbalance in the number of zealots. In these 
studies, options did not have an intrinsic quality.

In a biologically inspired model, Couzin et  al. (2011) show that strongly opinionated 
minorities (like groups of zealots) can drive the consensus of other individuals, but unin-
formed individuals spontaneously inhibit this process returning the consensus to the majority, 
favoring in this sense a democratic consensus. We found this work very inspiring and also 
found an interesting parallel between our and their results which we will explore.

Compared to the latest works in swarms (Canciani et al., 2019; Maître et al., 2020; Prasetyo 
et al., 2019; Primiero et al., 2018), to the best of our knowledge, in this paper we study for 
the first time the interplay between different option quality, zealot quantity and proportion of 
informed agents, by extending the preliminary studies in Prasetyo et al. (2020) and De Masi 
et al. (2020), in which either all agents or none of the agents were able to measure the quality 
of their opinion and disseminate differentially based on that. In particular, we introduce here 
the explicit distinction between informed and uninformed agents, and study for the first time 
the case in which these two types of agents co-exist in the swarm at the same time.

3 � Methods

We focus on a classic best-of-n with n = 2 scenario, in which a population of agents 
is required to collectively choose one between two foraging sites: site A and B. As 
mentioned above, the distinctive features of this scenario is the heterogeneity of the 
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population, with zealots, informed, and uninformed agents. The behavior of all agents is 
determined by the same finite state machine made of four possible states: two explora-
tion states referred to as EA and EB , and two dissemination states referred to as DA and 
DB (see Fig.  1). The agents behave asynchronously with respect to each other, mean-
ing that at a given time agents may be in any of the above states. This asynchronic-
ity is ensured by having stochastic switching times between states, as explained below. 
Thus, even if multiple agents start from the same state, they soon break this synchronic-
ity because they will switch states at different times. When in any of the two explora-
tion states, an agent moves randomly within a square arena for a time that is randomly 
extracted from an exponential distribution. Agents in state EA are those holding opinion 
A, while agents in EB are holding opinion B. In our minimalist simulation scenario, 
during exploration none of the agents can change opinion. At the end of the explora-
tion state, every agent enters into the dissemination state. Zealots and informed agents 
disseminate their currently held opinion for a time randomly extracted from another 
exponential distribution, where the time parameter depends on the quality of site A, 
for those agents in state DA , or on the quality of site B, for those agents in state DB . 
Contrarily to zealots and informed agents, uninformed agents disseminate their opinion 
for a time that is exponentially distributed with a parameter that is fixed to 1. Thus the 
agent disseminates always proportionally to a default quality value of 1 that represents 
the lack of information on the quality. At the end of the dissemination state, informed 
and uninformed agents can change their mind based on the logic of a voting system. In 
this research work, we compare the dynamics generated by two different voting systems: 
the majority and the voter model. When the majority is in place, an agent samples the 
opinion of G − 1 randomly chosen neighbors, where G is the group size in the majority 
model, including the focal agent. A single agent changes opinion when the majority of 
the sampled neighbors hold an opinion different from its opinion. In  situations where 
the agent has fewer than G − 1 agents, it skips the application of the decision rule and 
does not change its opinion. In this way, we are sure that the effect of the parameter G 
is well captured and studied. When the voter is in place, an agent samples the opinion 
of a randomly chosen neighbor. It changes opinion when the sampled neighbor holds an 
opinion different from its opinion. Contrary to informed and uniformed agents, zealots 
never undergo this opinion changing process. Thus, zealots never change their opinion.

Fig. 1   Probabilistic finite state machine. E
i
 with i ∈ A,B refers to the exploration state; D

i
 with i ∈ A,B 

refers to the dissemination state, with A and B being the two options. Solid lines denote deterministic transi-
tions between states, while dotted lines refers to stochastic transitions. The symbol V/M/Z indicates that an 
agent can move to an exploration state chosen accordingly to voter model (V), majority rule (M) or zealotry 
(Z)
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The proportion of zealots holding opinion A and those holding opinion B are set by 
the simulation designer at the beginning of each simulation. These proportions will be 
systematically varied to study how they affect the collective decision-making dynamics. 
Given that the population size is fixed, it follows that the proportions of informed and 
uninformed agents depend on the number of zealots in the population. Nevertheless, 
the relative proportion of informed with respect to uniformed agents is also systemati-
cally varied by the model designer to study how it affects the collective decision-making 
dynamics.

The scenario is modeled using the Netlogo  1 multi-agent simulation software. Agents 
world is a 2D squared arena divided into a grid of squared patches. Each patch is a piece 
of “ground”. Each agent occupies a patch and cartesian coordinates are used to indicate 
the position of each agent. Each agent can perceive the presence of other agents up to a 
distance of two patches in any direction. The size of the arena is 100 × 100 patches. A 
simulation run starts with the agents randomly placed within the arena. As for the termina-
tion condition, we do not base it on the reaching of consensus, as consensus is not always 
guaranteed in presence of zealots (De Masi & Ferrante, 2020). We also do not use time as 
a termination condition, because convergence times in presence of zealots present strong 
nonlinearities as a function of the proportion of zealots parameter, thus it would be tricky 
to select the same termination time for all runs. Instead, we decide to terminate a run if 
its dynamics have reached a steady state. We define the following protocol to determine 
whether a steady state has been reached: every 10,000 steps, a check-point is included; the 
last 10,000 results are split into two sets and then the average and standard deviation of the 
percentage of consensus to the option A of each set are compared; if the difference of the 
average value is very small (less than 0.004% ) and the difference of standard deviation is 
less than 0.5, we assume that a steady state has been reached, thus the run is terminated. 
The agents start the experiment in an exploration state. Regardless of the proportion of 
zealots, a run begins with 50% of the agents holding opinion A and 50% holding opinion 
B. Regardless of the state in which an agent finds itself (i.e., exploration or dissemination), 
the agent performs a pseudo-random motion by which, at each time step, it moves for a 
distance equal to half of a single patch in a randomly selected direction chosen within the 
range [−30◦, 30◦] with respect to its current heading. Collisions between agents are not 
considered, in line with previous work (Valentini et al., 2016b) that shows that best-of-n 
dynamics can be well predicted without collisions (real-robot validation performed in this 
paper will further reinforce this point). Only when colliding with the arena wall, the agents 
make a 180◦ turn.

3.1 � Mathematical model

We model the system using an Ordinary Differential Equation (ODE) model. We adapted 
the model proposed in De  Masi et  al. (2020) which extends the ones in Valentini et  al. 
(2014, 2016b). All the variables are normalized by the total number of agents N. Therefore, 
we consider only proportion of agents A ( xA ) and B ( xB ): the full population is represented 
by xA + xB = 1 . Agents are distinguished based on their opinion A and B and on their 
state (exploring, denoted by e or disseminating, denoted by d). Therefore informed agents 

1  https://​ccl.​north​weste​rn.​edu/​netlo​go/

https://ccl.northwestern.edu/netlogo/
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can be distinguished in eAi, eBi, dAi, dBi , while uninformed agents can be distinguished in 
eAu, eBu, dAu, dBu.

The variables modeling sub-populations of zealots are constant and denoted as �A and �B . 
They are divided in the two states (exploration and dissemination). Therefore �A = eAS + dAS 
and �B = eBS + dBS . The total proportion of agents with opinion A and B are, respectively, 
xA = eAi + dAi + eAu + dAu + eAS + dAS and xB = eBi + dBi + eBu + dBu + eBS + dBS.

The model includes a number of parameters which are explained in the following. In prin-
ciple, the model can be also defined with fewer parameters, if we allow for rescaling of time 
and space. However, we chose not to do this in order to have the model better matching the 
experiments, by letting each parameter of the model have a corresponding one with the same 
name in the simulations. Some parameters play a crucial role in the mathematical model: the 
quality of the options, called �A and �B , the proportion of zealots of the two options �A and �B , 
and the proportion factor of informed agents . This is defined as the ratio between informed 
agents over the total number of non-zealots agents: � =

Ni

Nnon-zealots

=
eAi+eBi+dAi+dBi

1−�A−�B
 . The remain-

ing two parameters used in the model are the following: g is a factor that is multiplied by the 
quality (or by 1 in the case of uniformed individuals) and represents the average dissemination 
time (thus the inverse is the average dissemination rate), while q represents the average explo-
ration time (thus the inverse is the average exploration rate). The terms pAA , pAB , pBA , and 
pBB are not parameters but represents the probabilities that an agents switches opinion or stays 
with its current opinion (depending on the specific subscripts), and their expressions contain 
only state variables and depend on the specific decision mechanism (the voter or the majority 
rule) as explained at the end of this section. In particular, pAA is the probability to remain with 
opinion A, while the probability to switch from A to B pAB is simply 1 − pAA . Similarly, pBA 
is the probability to switch from B to A and it is related to pBB by the relationship 
pBB = 1 − pBA.

The system consists of 12 ODEs with 12 state variables, given by:

(1)̇dAu = −
1

g
dAu +

1

q
eAu

(2)̇dBu = −
1

g
dBu +

1

q
eBu

(3)̇eAu = −
1

q
eAu +

pAA

g
dAu +

pBA

g
dBu

(4)̇eBu = −
1

q
eBu +

1 − pAA

g
dAu +

1 − pBA

g
dBu

(5)ḋAi = −
1

𝜌Ag
dAi +

1

q
eAi

(6)ḋBi = −
1

𝜌Bg
dBi +

1

q
eBi
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Equations  (1–8) describe the dynamics of uninformed agents (Eqs.  1–4) and informed 
agents (Eqs.  5–8), while Eqs.  (9–12) describe the dynamics of zealots. Informed/unin-
formed agents and zealots can never change their nature. In Eqs. (1) and (5), the proportion 
of agents disseminating opinion A increases because of agents returning from the explora-
tion of A at rate 1

q
 , and decreases because of agents terminating dissemination at rate 1

g
 in 

Eq.  (1) (for uninformed agents that have no dependency on quality) and at a rate 1

�Ag
 in 

Eq. (5) (for informed agents that have a dependency on quality). Similarly, Eq. (2) and (6) 
describe the rate of change in the proportion of agents disseminating opinion B. In Eqs. (3) 
and (7), the number of agents exploring site A decreases because of agents finishing the 
exploration at rate 1

q
 , and increases because of two contributions: (1) agents that had previ-

ously opinion A and kept the same opinion after the application of the voter/majority 
model and (2) agents that had previously opinion B but switched to A as a result of the 
voter/majority model. Similarly, Eqs. (4) and (8) describe how agents exploring site B vary. 
The rates pAA , pAB , pBA , and pBB describe the probabilistic outcome of the two decision 
mechanisms and are described next. The dynamic of zealots is described in a very similar 
way by Eqs.  (9)–(12). The only difference consists in the impossibility for a zealot to 
change its opinion after any interaction, thus the terms that depend on the decision mecha-
nisms are omitted. For the zealot case, the dissemination always takes place proportional to 
�A and �B.

Regarding the decision mechanism, for the voter model the probability that the outcome 
of the decision is A (resp. B) is the probability that, when observing a random agent dis-
seminating, that random agent is disseminating A (resp. B). This is given by the ratio of 
agents disseminating A with respect to the total number of disseminating agents 
pAA = pBA =

dA

dA+dB
 (resp. pBB = pAB =

dB

dA+dB
 ), where dA = dAu + dAi + dAS and 

dB = dBu + dBi + dBS.
For the majority model, where each agent switches its opinion to the one hold by the 

majority of its G − 1 neighbors, the two probabilities are simply given by the cumulative 

(7)ėAi = −
1

q
eAi +

pAA

𝜌Ag
dAi +

pBA

𝜌Bg
dBi

(8)ėBi = −
1

q
eBi +

1 − pAA

𝜌Ag
dAi +

1 − pBA

𝜌Bg
dBi

(9)ḋAS = −
1

𝜌Ag
dAS +

1

q
eAS

(10)ḋBS = −
1

𝜌Bg
dBS +

1

q
eBS

(11)ėAS = −
1

q
eAS +

1

𝜌Ag
dAS

(12)̇eBS = −
1

q
eBS +

1

𝜌Bg
dBS
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sum of probabilities distributed according to a hypergeometric distribution modeling how 
many neighbors have each of the two opinions (Valentini et  al., 2016b). We define: 
pAA =

∑G−1

r=
G−1

2

(G−1)!

r!(G−1−r)!
pr
A
(1 − pA)

G−1−r and pBA =
∑

(G−1)

2
−1

r=0

(G−1)!

r!(G−1−r)!
pG−1−r
A

(1 − pA)
r , 

where pA =
dA

dA+dB
.

4 � Results

In order to investigate the effect of heterogeneity in quality awareness in a population of 
agents engaged in the best-of-n with n = 2 scenario, we developed a simulation study 
based on an experimental design in which we systematically vary: (i) the population size 
N; (ii) the proportion of zealots disseminating for option A ( �A ); (iii) the relative propor-
tion of informed agents with respect to uninformed agents ( � ); for � = 1 , all non-zealots 
agents are informed, for � = 0 all non-zealots agents are uninformed; (iv) the relative value 
of the quality of option B ( �B ) with respect to option A; (v) the number of agents (G) con-
sidered during the running of the majority rule for changing opinion. We keep the size of 
the arena fixed to 100 × 100 patches, therefore while varying N we are effectively varying 
the agent density as well. However, in previous studies on a similar system (see Prasetyo 
et al., 2019), we have established experimentally that the density does not play a meaning-
ful role provided it is contained within certain large bounds, so that agents’ interactions are 
not significantly affected (we refer the reader to the original study for more details).

All parameters values explored in the simulation model are illustrated in Table 1. The 
parameters �B and �A do not vary, with the proportion of zealots disseminating option B set 
to �B = 0.01252, and the quality of option A set to �A = 1 . Recall that the option qualities 
�A and �B bear upon the agents’ dissemination time. With �A = 1 and �B defined as �B =

�B

�A
 , 

with �B varying as indicated in Table 1, we explore conditions in which the option B can be 
of equal or of higher quality than option A. With �B = 0.0125 , and �A varying as indicated 
in Table 1, we explore conditions in which the proportion of zealots disseminating option 

Table 1   Parameters set used in simulations

Parameter Description Values

N Swarm size 1000
�A Option A quality 1
�B Option B quality {1, 1.05, 1.10, .., 2}

� Relative proportion of informed agents {0, 0.05, 0.10, .., 1}

�A Proportion of zealots disseminating opinion A {0, 0.05, ..0.5}

�B Proportion of zealots disseminating opinion B 0.0125
G Group size in majority rule {3, 5, 7}

g Dissemination time scale 50
q Exploration time scale 6.072

2  As discussed in  (Prasetyo et  al. 2020), varying �
B
 does not influence the decision-making dynamics, 

hence we fixed this parameter to the same value used in (De Masi et al., 2020)
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A in the population can be smaller (i.e., with �A = 0.0 ) or bigger (i.e., with �A ≥ 0.05 ) than 
the proportion of zealots disseminating option B. With this parameters’ set, we investigate 
whether and for which values of �B a progressively higher number of zealots (i.e., �A ) for 
the less valuable option (i.e., �A ) generates a consensus to option A. With � varying as 
indicated in Table 1, we investigate whether the proportion of informed and uninformed 
agents within the population bears upon the decision-making dynamics. Note that the total 
proportion of informed and uniformed agents within the population is computed as 
1 − �A − �B

3. In the remaining of this section, we illustrate the results of the simulations in 
combination with the predictions of the ODE model.

4.1 � decision‑making dynamics with voter model

For each combination of all the different values of the simulation parameters illustrated in 
Table 1, we perform 50 runs. In this section, we discuss the results of the simulations and 
of the ODE model for the conditions in which the agents use the voter model as a voting 
system. These results are illustrated in Fig. 2, where the graphs indicate the average pro-
portion of agents with opinion A for different proportions of zealots disseminating option 
A (see x-axes, �A , in all graphs of Fig. 2), and for different ratio of the two options quality 
(see y-axes, �B for all graphs in Fig. 2). The average (over 50 runs) proportion of agents 
with opinion A is computed, in each run, by counting the proportion of agents disseminat-
ing opinion A on the last time step of the run. Figure 2a and b refer to the proportion of 
agents with opinion A when all non-zealots are uninformed agents (i.e., � = 0 ). Figure 2c 
and d refer to proportion of agents with opinion A when all non-zealots are informed agents 
(i.e., � = 1 ). Figure 2a and c refer to the results of the simulations, while Fig. 2b and d refer 
to the results of the ODE model. Looking at these graphs, first we notice that simulations 
and ODE model generate identical results, which are characterized by the emergence of 
a single stable solution for each combination of values of �A and �B . This holds for the 
two conditions with � = 0 (see Fig. 2a and b) and � = 1 (see Fig. 2c and d). In all graphs, 
the areas in blue refer to conditions in which all non-zealot agents choose option B, while 
red areas refer to conditions in which there is a consensus for option A. The white areas 
refer to conditions in which each run terminates with roughly half of the non-zealots agents 
disseminating option A and half of them disseminating option B. For intermediate values 
of � , the white line progressively shifts from vertical position as in � = 0 to the inclined 
position as in � = 1 . The message of these graphs can be summarized in the following: 
(1) when � = 0 , a proportion of zealots disseminating option A slightly higher than the 
proportion of zealots disseminating option B can generate a consensus to option A even in 
the extreme case in which the quality of option B is twice the quality of option A; (2) the 
nature of non-zealot agents does change the collective decision-making dynamics. In par-
ticular, when all non-zealots are uniformed agents, a sharp transition occurs when increas-
ing the amount of zealots disseminating option A ( �A ), independently from the value of �B 
(see Fig. 2a and b). When all non-zealot agents are informed, a progressively higher pro-
portion of zealots disseminating for option A is necessary to counterbalance the effect of a 
progressive increase of the quality of option B (see Fig. 2c and d).

3  Specific videos, for selected values of the parameters, are provided as Supplementary Material in http://​
swarm.​live/​robot-​swarm-​democ​racy-​the-​impor​tance-​of-​infor​med-​indiv​iduals-​again​st-​zealo​ts/

http://swarm.live/robot-swarm-democracy-the-importance-of-informed-individuals-against-zealots/
http://swarm.live/robot-swarm-democracy-the-importance-of-informed-individuals-against-zealots/
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4.2 � decision‑making dynamics with majority model

In this section, we discuss the results of the simulations and of the ODE model for the con-
ditions in which the agents use the voter model as voting system. As indicated in Table 1, 
we tested all combinations of parameters for three different values of the G parameter (i.e., 
G = 3, G = 5 and G = 7). In this section, we discuss only the results with G = 3 since for 
G = 5 and G = 7, we observed very similar collective decision-making dynamics, namely 
presenting the same number of equilibria each with the same stability.

When this best-of-n scenario with the majority rule is modeled with ODEs, the results 
suggest that a saddle point bifurcation can be observed in all tested conditions (see Fig. 3). 
Two different stable equilibria are observed for relatively low values of �A . The progressive 
increase of the number of zealots disseminating opinion A leads to a transition point after 

Fig. 2   Best-of-n scenario with the voter model as voting system. Graphs showing the proportion of agents 
with opinion A when all non-zealots are uninformed agents (i.e., � = 0 , see figures a and b), and when all 
non-zealots are informed agents (i.e., � = 1 , see figure c and d). Figures a and c refer to the results of the 
simulations, while figures b and d refer to the results of the ODE model. Each point in panel a and c is an 
average over 50 runs. A spline interpolation has been applied to the original plot
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which only one equilibrium is observed. Additionally, for � = 1 , the increase of the qual-
ity of option B ( �B ) moves the transition point toward progressively higher values of �A. 
The results of the simulations are shown in Fig. 4. The collective decision-making dynam-
ics are qualitatively similar to those observed and discussed in Sect. 4.1 when the agents 
employ the voter model as voting systems, with the only exception of the emergence of a 
bi-stability region, as predicted by the ODE model. The areas characterized by the emer-
gence of two equilibria is the one corresponding to low values of �A , where the popula-
tion of non-zealot agents converges with equal probability to consensus to option B (see 

Fig. 3   Bifurcation diagram for majority model with � = 0 (left column) and � = 1 (right column) for dif-
ferent values of �B : �B = 1 (first row), �B = 1.5 (second row), �B = 2 (third row). Stable equilibria are rep-
resented by a continuous line, while unstable equilibria are represented by dashed lines and indicated with 
an ̂
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Fig. 4a–c, blue areas of the graphs) and to consensus to option A (see Fig. 4d–f, red areas 
of the graphs). As for the results discussed in Sect.  4.1, the ODE model and simulation 
generate qualitatively and quantitatively similar results (data are not shown for the ODE 
model). The most important phenomena to observe is that variations in the nature of the 
non-zealot agents do change the collective decision dynamics. As discussed above, also for 
this scenario with the majority model, when non-zealots are all informed agents, a progres-
sively higher proportion of zealots disseminating for option A is necessary to counterbal-
ance the effect of a progressive increase of the quality of option B (see Fig. 4a–c). Addi-
tionally, we can also appreciate how the dynamics change with progressively lower values 
of � , the proportion of informed agents. When � = 0 , we observe that the dynamics no 
longer depend on �B . Furthermore, the degree of dependency from �B smoothly decreases 
for progressively lower values of � , as we observe from Fig. 4b/e, where the white line sep-
arating the two equilibria becomes progressively more vertical as the value of � decreases.

Figure 5 shows an in-depth analysis of the impact of the proportion of informed and 
uninformed agents on the collective decision-making dynamics in the best-of-n scenario 
with the majority model. In these graphs, we can observe how the proportion of agents 
with opinion A varies when � progressively increase from 0 (i.e., all non-zealots are unin-
formed agents) to 1 (i.e., all non-zealots are informed agents), for four different values of �A 

Fig. 4   Best-of-n scenario in simulation with the majority model as voting system. Graphs showing the pro-
portion of agents with opinion A when all non-zealots are uninformed agents (i.e., � = 0 , see figures a and 
d), and when half all non-zealots are informed agents (i.e., � = 0.5 , see figure b and e) and all non-zealots 
are informed agents (i.e., � = 1 , see figure c and f). Each point in these graphs is an average over 50 runs. 
A spline interpolation has been applied to the original plot. Graphs in the top row show the first attractor, 
while graphs in the bottom row show the second attractor, that only exists for certain regions of the param-
eter space. The regions in which the second attractor does not exist are indicated in figure d, e, and f, with 
white background and black diagonal lines
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(i.e., the proportion of zealots disseminating option A) and 11 values of �B (i.e., the quality 
of the option B). The graphs indicate that for very low values of �B , high levels of propor-
tion of agents favoring the worst quality option (i.e., option A) are maintained regardless of 
the nature of the non-zealots agents. For increasing values of �B , a phase transition occurs, 
characterized by a drop of the proportion of agents with opinion A that becomes steeper for 
increasing values of �B . Such transition corresponds to crossing the white area vertically in 
Fig. 4. The results of these tests indicate that the proportion of agents with opinion A pro-
gressively falls when the value of � increases for a given value of �B . This is clearly strik-
ing in Fig. 5a, b and c by observing the progression of the lines with the different colours. 
Figure 5a shows the results with the same proportion of zealots for the two options: sym-
metry breaking is observed in almost all the cases. Only for the specific case where also the 
quality of the two options is the same (blue continuous line), the symmetry is not broken. 
In the other figures instead, the quantity of zealots A is always larger than the amount of 
zealots B, which is kept fixed to the value �B = 0.0125 . Nevertheless, when the difference 
in quality between the two options is small (i.e., small value of �B ), informed agents tend 
to take the side of the zealots disseminating option A, while they tend to take the side 

Fig. 5   Best-of-n scenario in simulation with the majority model as voting system. Graphs showing the pro-
portion of agents with opinion A (y-axes) for different proportion of informed agents among the non-zealot 
agents � for: a �

A
= 0.0125 ; b �

A
= 0.05 ; c �

A
= 0.1 ; d �

A
= 0.2
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of zealots disseminating option B when the difference in quality between the two options 
tend to increase (i.e., for bigger value of �B ). In the graphs, this latter trend corresponds 
to the fall of the proportion of agents with opinion A when the value of �B increases for a 
given value of � . The drop of proportion of agents with opinion B tends to disappear for 
progressively higher value of �A (see Fig. 5d). For the remaining intermediate cases, unin-
formed agents facilitate the rise in the proportion of agents with opinion corresponding to 
the best option. This is shown in Fig. 5b and c. In this condition, the consensus to option 
B is achieved for a broad range of values of �B and whenever there is large enough propor-
tion of informed agents � , starting from a minimum reasonable difference of quality ratio 
�B = 1.2 (Fig. 5b) or �B = 1.4 (Fig. 5c).

This result is very relevant and confirms what has been previously observed in Couzin 
et  al. (2011) and Hartnett et  al. (2016). Using a biological collective motion model, the 
authors of  Couzin et al. (2011) found that uninformed agents (not aware of the quality) can 
help the establishment of the option held by the majority. The option held by the majority 
was considered in that study as the democratic one, but it was also the option associated 
with the lowest weight or strength, or quality as per the settings of our paper. Other words 
to describe the analogy between our work and the one in Couzin et al. (2011) are the fol-
lowing: when there were more informed agents and fewer uninformed agents, the “non-
democratic” choice preferred by a minority with stronger weight was prevailing. A com-
parison of the two papers shows similar results, even if the two collective decision model 
dramatically differs in their motivation.

5 � Experiments with physical robots

In order to validate the results obtained with simulation and the  ODE model, we run 
further tests with physical robots. For these tests, we use kilobots which are small-sized 
and low-cost robots that communicate using infrared transceivers positioned beneath the 
robot body (Rubenstein et al., 2012) (see Fig. 6a). We run two sets of experiments: set I, 
in which the voting system is implemented with the voter model, and set II in which it is 
implemented with the majority model. In set I, with swarm size N = 20 , the kilobots oper-
ate in a rectangular arena of 80 × 35 cm2 , with a relative density of 0.007 robot/cm2 (see 
Fig.  6b). In set  II, with swarm size N = 40 , the kilobots operate in a larger rectangular 
arena of 85 × 50 cm2 , with a relative density of 0.009 robot/cm2 . In both set I and set II, the 

Fig. 6   a Snapshot of two kilobots and the experimental apparatus showing the IR beacons underneath the 
arena floor. b Snapshot of the arena for the physical robots experiments
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arena is divided into 3 zones (see Fig. 6b). The central zone which measures 37 × 35 cm2 
in set I, and 37 × 50 cm2 in set II, represents the nest. The lateral zones, positioned on the 
left and on the right of the nest, correspond to exploration sites associated with quality �A 
and �B , respectively. The robots are controlled by the same finite state machine illustrated 
above (see also Fig. 1). Each run lasts 20 min with the kilobots pseudo-randomly placed in 
the nest. All robots are initialised in exploration state. It is imposed that at run start, both 
options are chosen by half of the swarm. Robots in state EA move to option A, while those 
in state EB move to option B. The movement toward and away from the respective option 
(A or B), is controlled by a light source positioned on the right side of the arena. This light 
works as a landmark with respect to which the robots develop a phototactic or an anti-pho-
totactic response depending on their state. Robots in state EA perform phototaxis to reach 
site A; robots in state EB perform antiphototaxis to reach site B. On entering the sites, each 
kilobot assesses the site quality by sensing an infra-red signal emitted from an Arduino 
based platform placed beneath the transparent arena surface, in correspondence of each 
site. Each Arduino based platform continuously emit signals with message containing the 
site type (i.e., A or B) and the quality associated with the site (i.e., the value of �A or �B ). 
The robots remain in the exploration state for a time sampled from an exponential distribu-
tion with a rate equal to roughly 1/4.76 s−1.

At the end of the exploration state, robots in state EA transition to state DA and return to 
the nest performing antiphototaxis; robots in state EB transition to state DB and return to the 
nest performing phototaxis. Once reached the nest, the robots disseminate their currently 
chosen opinion for a time randomly sampled from an exponential distribution with charac-
teristic time proportional to the opinion’s dissemination factor. While in the dissemination 
state, the robots move pseudo-randomly and continuously broadcast their opinion as well 
as their unique 16-bit identifier to ensure their vote is counted only once in each dissemi-
nation phase. Finally, after disseminating, the robots (with the exception of zealots) apply 
the voting system to confirm or to reconsider their currently chosen option and then they 
transition to the exploration state for a new cycle.

Table 2   Parameters set used with physical robots

Parameter Description Values

N Swarm size in set I/set II 20/40
�B Proportion of zealots disseminating opinion B, set I 0.05
�B Proportion of zealots disseminating opinion B, set II 0.025
�A Proportion of zealots disseminating opinion A, set I {0.05, , 0.25, 0.45}

�A Proportion of zealots disseminating opinion A, set II {0.025, , 0.225, 0.475}

�A Option A quality 1
�B Option B quality {1.05, 1.5, 2}

G Group size in majority rule 3
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5.1 � Results

The experimental design with physical robots aims to reproduce the one used in simula-
tion and ODE model. However, due to time constraints, with physical robots we tested 
less experimental conditions, and the values of some parameters have been adjusted to the 
smaller swarm size (see Table 2, for a detailed description of the parameters used). For 
each set of experiments, we run 10 runs, with 5 runs in which all agents are uninformed 
and only the zealots disseminate proportional to the quality (i.e., � = 0 ) and 5 runs in 

Fig. 7   Graphs showing the proportion of agents with opinion A in different experimental conditions: a set I, 
voter model, all non-zealots robots are uninformed ( � = 0 ); b set I, voter model, all non-zealots robots are 
informed ( � = 1 ); c set II, majority model, all non-zealots robots are uninformed ( � = 0 ); d set II, majority 
model, all non-zealots robots are informed ( � = 1 ). A spline interpolation has been applied to the original 
plot
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which all agents are informed and disseminate proportional to the quality (i.e., � = 1)4. 
The results of the runs for set  I, where the robots use the voter model as voting system, 
are shown in Fig.  7a and b. Overall, these results match those obtained with simulation 
and ODE model, illustrated in Fig. 2. For example, we observe that the maintenance of the 
proportion of agents with opinion A, for a progressively better quality of option B, requires 
a progressively larger number of zealots disseminating option A, when the non-zealots are 
all informed (see Figs. 7b and 2c and d for a comparison of the results with kilobots, simu-
lated agents and ODE model, respectively). For set-II, where the robots used the majority 
model as voting system, given the low number of experiments, only the average results 
have been plotted, being hard to define a robust criterion of assessment of bi-stability with 
very few runs. The graphs in Fig. 7c and 7d show results that match those obtained with 
simulation and ODE model, illustrated in Fig. 4. When only one solution is expected (right 
of the white area in Fig. 7c and d), we can observe a very good match between physical 
robots and simulated agents experiments. While, when two solutions are expected (left of 
the white area in Fig. 7c and d) the outcome (consensus around 0.4) is simply the average 
of the two theoretical solutions.

From the perspective of robotic applications in real scenarios, the voter model seems 
more robust to the adverse action of zealots disseminating the worst quality option (i.e., 
option A). In fact, for �A around 0.25, high quality ratio �B can still win and drive the con-
sensus. For the majority model, given the bi-stability, for similar values of �A the consen-
sus is driven in some cases to consensus to the best option A and in some cases to the worst 
option B. From an engineering perspective, a deep understanding of the possible hidden 
dynamics of the majority rule plays a crucial role in the proper design of a robot swarm. 
While most of the applied studies disregard the bi-stability, focusing only on the average 
behavior of the system, our paper sheds light on the micro-macro link, describing the dif-
ferent microscopic dynamics leading to a macro effect at swarm level.

6 � Discussion and conclusions

In this paper, a generalized version of the best-of-n problem has been investigated for 
n = 2 . We consider informed agents, able to measure the quality of the two options and 
to modulate their strategy based on it; uninformed agents, unable to measure the quality 
of the two options; and zealots, able to measure the quality of the options but unable to 
change their initial opinion. From this paper, two interesting points emerge: the first point 
is the interplay between the abundance of zealots for an option (e.g., A) and the quality 
ratio between the two options; the second is instead the interplay between the proportion of 
informed agents versus the quality ratio.

The first point (interplay between zealot abundance and quality) is explored in two 
extreme scenarios, one in which all agents are informed and can thus measure the quality 
and disseminate proportionally to it, and the other where only zealots can measure quality 
and disseminate proportionally, while all the other (uninformed) agents disseminate for a 
time that is independent from the option. In the first scenario we show that for a limited 
abundance of zealots of the worst opinion, the consensus dynamics converge to the best 

4  Specific videos, for selected values of the parameters, are provided as Supplementary Material in http://​
swarm.​live/​robot-​swarm-​democ​racy-​the-​impor​tance-​of-​infor​med-​indiv​iduals-​again​st-​zealo​ts/

http://swarm.live/robot-swarm-democracy-the-importance-of-informed-individuals-against-zealots/
http://swarm.live/robot-swarm-democracy-the-importance-of-informed-individuals-against-zealots/
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option. However, when the number of zealots of the worst option is too high (above 10% ), 
then the dynamics converge to the worst option. This behavior is observed for both voting 
models (voter and majority rule). In the second scenario, where only zealots can measure 
the quality, the option with the highest abundance of zealots is almost always dominating 
the consensus dynamics, except for the case with very few zealots.

The results of this paper shed further light on the potential dual role zealots can have 
within a collective decision-making system. In fact, previous results have highlighted 
a potential beneficial role for zealots, whose presence was deemed necessary to achieve 
adaptability of the system to changing environments (Prasetyo et al. 2018) (i.e., to option 
qualities that change over time). Also in that study, it was found that only a limited num-
ber of zealots was required to achieve adaptability, while increasingly high abundance was 
disrupting the consensus dynamics. The above results for the current paper further confirm 
this finding, in showing that if the abundance of zealots is too high, this is not beneficial for 
the system because it is preventing the consensus to the best option.

The second point (interplay between informed agents proportion and quality) has been 
investigated by varying the proportion of informed agents able to measure the quality. We 
considered, as values for the other parameters, those that kept the system close to the tran-
sition between consensus to A and B. The main result of this section shows that, whenever 
the two options can be sufficiently well discriminated thanks to a high difference in their 
quality, only a small proportion of informed is necessary to make the consensus dynam-
ics converge to the best option. Conversely, when the two options are too similar, the sys-
tem requires a higher discriminatory capability from the swarm, therefore more informed 
agents able to measure the quality are required. These results have a strong analogy with 
the study of Couzin et al. (2011), in which the focus was on uninformed agents (agents that 
are not aware of the quality) which are able to “restore democracy” to the option held by 
the majority even if it had a lower strength or weight. Conversely, lower abundance of unin-
formed agents (which means higher abundance of informed agents) promoted the “non-
democratic” choice owned by a minority with stronger weight (the equivalent of quality in 
our paper). Despite the different focus on what is good or bad in the two papers, the results 
obtained are identical, which is remarkable as the two collective decision models dramati-
cally differ: we use the best-of-n while the authors of Couzin et al. (2011) used a collec-
tive motion model as the one of their previous study (Couzin et al., 2005). Another anal-
ogy can be drawn also with one of the oldest known results in collective decision-making: 
the Condorcet’s jury Theorem (Condorcet, 1785). Despite the numerous differences (such 
as for example the centralized nature and the absence of time dynamics in Condorcet’s 
description), both in our paper as well as in the original theorem we draw a similar conclu-
sion: that a critical mass of knowledgeable or skilled individuals (in Condorcet: > 50% ) is 
required for a system to reach the correct collective decision. Our work could, in this light, 
be giving a mechanistic interpretation of what it takes to be knowledgeable: the ability to 
measure quality and to disseminate based on it.

The experiments with real kilobots confirm all the evidence coming from ODE and sim-
ulations. These results show that this mechanism can in principle be used also in real-life 
applications, with minimal requirements in terms of hardware. For example, when a swarm 
is used for the purpose of monitoring a wide region, one can potentially split the region 
into smaller areas. A quality can be associated to each small area, representing the interest 
of the area (Albani et al., 2018). The current model can be applied for the choice of the best 
area to be further explored, in scenarios in which not all robots are equipped with special-
ized sensors (e.g. thermal or infra-red cameras) to assess the potential interest of each area 
or the abundance of a certain feature in the environment. In the near future, we plan to 



335Swarm Intelligence (2021) 15:315–338	

1 3

demonstrate these approaches to applications in large unstructured environments. Further-
more, the results of this study offer to swarm designers another tool to engineer and control 
the results of self-organising collective dynamics in best-of-n scenarios. In particular, the 
role of the proportion of different types of agents on the collective decision process could 
be exploited by the swarm designer to determine the way in which a swarm of artificial 
agents respond to certain environmental conditions requiring a collective decision to be 
made. For example, we can imagine a scenario in which the designer has the possibility to 
communicate with some or all of the agents of a swarm in a way to change their character-
istics. Under these conditions, the design could mutate a “normal” agent into a zealots or 
vice-versa. This action has the effect of varying the proportion of each type of agent within 
the swarm and consequently can induce the swarm to reach a consensus on one or the other 
option, as shown by the results of this study. This idea is part of a larger experimental 
approach in which different forms of swarm heterogeneity are used to control the collective 
dynamics ( Firat et al., 2020). We will test the effectiveness of this approach in the best-of-
n scenario in our future empirical studies.
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