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Abstract
Decentralised autonomous systems rely on distributed learning to make decisions and to 
collaborate in pursuit of a shared objective. For example, in swarm robotics the best-of-n 
problem is a well-known collective decision-making problem in which agents attempt to 
learn the best option out of n possible alternatives based on local feedback from the envi-
ronment. This typically involves gathering information about all n alternatives while then 
systematically discarding information about all but the best option. However, for applica-
tions such as search and rescue in which learning the ranking of options is useful or cru-
cial, best-of-n decision-making can be wasteful and costly. Instead, we investigate a more 
general distributed learning process in which agents learn a preference ordering over all of 
the n options. More specifically, we introduce a distributed rank learning algorithm based 
on three-valued logic. We then use agent-based simulation experiments to demonstrate the 
effectiveness of this model. In this context, we show that a population of agents are able 
to learn a total ordering over the n options and furthermore the learning process is robust 
to evidential noise. To demonstrate the practicality of our model, we restrict the commu-
nication bandwidth between the agents and show that this model is also robust to limited 
communications whilst outperforming a comparable probabilistic model under the same 
communication conditions.

Keywords Collective learning · Preference learning · Distributed decision-making · Multi-
agent systems

1  Introduction and related work

In decentralised agent-based systems, we aim to develop distributed processes whereby 
desirable system-level behaviour emerges from the interactions between individuals at the 
local level (Brambilla et al. 2013). Collective decision-making broadly describes a range 
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of collective behaviours including consensus formation, task allocation and fault detec-
tion (Schranz et al. 2020). Consensus formation has long been studied at the intersection 
of mathematics and the social sciences where models of opinion diffusion were proposed 
to study the dynamics of iterative belief pooling (Stone 1961; DeGroot 1974; Lehrer and 
Wagner 1981). Such models have proven highly influential in studying how beliefs propa-
gate through a system of agents, particularly in the context of social network analysis (Per-
ron et  al. 2009; Baronchelli 2018). Traditionally, agents operate in a closed setting with 
prior knowledge about some variable of contention. Then, at each time step a weighted 
linear combination operator is applied to pool the agents’ beliefs until a consensus has 
been reached. Recently, however, there has been a shift towards adopting a more pragmatic 
approach to achieve consensus formation in multi-agent systems, inspired by works in 
social epistemology whereby agents may obtain external information in the form of direct 
evidence from their environment as well as receiving information from other agents (Cho 
and Swami 2014; Douven 2019; Douven and Kelp 2011; Lee et al. 2018a).

A class of decision problems which has been widely studied in swarm robotics is the 
best-of-n problem whereby agents attempt to identify which is the best from a finite set of 
n possible options (Parker and Zhang 2009; Valentini et al. 2016, 2017). This is a popular 
example of a consensus formation problem (referred to as ‘quorum sensing’ in biological 
systems (List et al. 2009)) in which the agents seek to obtain evidence about each of the n 
options by exploring their environment. At the same time, the agents will encounter other 
agents and subject to constraints communicate their beliefs to one another in an attempt to 
reach an agreement about which option is the best. Over time, as agents repeat this process 
a system-wide consensus emerges and a clear decision naturally follows from having iden-
tified which is the best option.

Here we consider collective learning to be a more general distributed process in which 
agents attempt to learn the current state of their environment based on sparse evidence1. 
This evidence is obtained either directly from their environment, e.g. using their on-board 
sensing capabilities, or indirectly by fusing their beliefs with those of other agents. This 
fusion of beliefs between agents helps to propagate evidence through the system whilst 
also removing inconsistencies that might result from noisy or erroneous evidence. The fun-
damental distinction is that collective learning as a process does not presume a decision 
inherently follows from having reached a consensus about the environment state. For exam-
ple, in the best-of-n problem a decision naturally follows from having reached a consensus 
about the best option due to the systematic discarding of information about the n − 1 alter-
natives. By eliminating the other options as part of the learning process, the system can 
only act on the belief that the remaining option is the best. Indeed, many of the approaches 
to the best-of-n problem have so far restricted themselves to only considering the n = 2 
case. This limitation is often due to their having been inspired by, or even attempting to 
model directly, the solutions found in natural systems such as the nest site selection behav-
iours of social insects (Seeley and Buhrman 2001; Britton et al. 2002; Sumpter and Pratt 
2009). Recently, however, we have seen increased interest in developing models that move 
us closer to the goal of deploying robot swarms for real-world applications, for example by 
proposing models for collective learning which consider more complex environments as 

1 Notice that the term ‘learning’ here is used to describe the process by which agents obtain evidence to 
inform their beliefs, or to learn, about their environment. This is not to be confused with similar terminol-
ogy used in reinforcement learning or social learning.
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well as their robustness to the presence of noise or error (Crosscombe et al. 2017; Lee et al. 
2018b).

Search and rescue is a popular example of a well-suited application for swarm robotics 
as it requires the discovery of casualties in a sparse and often dangerous environment. The 
best-of-n problem fails to address this example application because it is only capable of 
considering the highest priority casualty as a result of the learning process. As mentioned 
above, information regarding the other casualties is most likely discarded and the decision-
making process would have to be repeated for each remaining casualty. Alternatively, any 
deployed system ought to be able to accurately rank the casualties in order of severity in a 
timely manner. Ideally, the collective learning process should also be robust, e.g. to noise, 
error, or malfunction. This is because a common assumption in swarm robotics is that sys-
tems are composed of many cost-efficient robots that may suffer from reliability issues, but 
this can be counteracted by the deployment of a large number of robots to achieve robust-
ness through redundancy (Schranz et al. 2020). Any proposed solution should therefore be 
robust to noisy or erroneous information and able to scale to large numbers of individuals.

In this paper, we propose a model of collective preference learning and apply it to the 
best-of-n problem. However, instead of only learning which option is the best, agents 
attempt to rank all of the n options by repeatedly obtaining evidence from the environment 
to form a preference ordering. While models for pairwise preference fusion have been pro-
posed in the context of social networks (Brill et al. 2016; Hassanzadeh et al. 2013), these 
models employ a majority rule in order to reach consensus. In Sect. 2, we propose an itera-
tive process of belief fusion in which pairs of agents combine their preference orderings 
by exploiting a third truth value to represent uncertainty. In Sect. 3, we demonstrate how 
over time the agents are able to learn a total ordering defined over n = 10 options, even 
when the environment is noisy. Then in Sect. 4, we discuss the implications of preserving 
the transitive closure of agents’ beliefs during the learning process. The trade-off between 
speed and accuracy is an important one in applications such as search and rescue because 
the outcome of reaching a decision too slowly may be the same as ranking the priority of 
casualties incorrectly. As a result, we analyse the performance of our approach with respect 
to both accuracy and runtime as an indicator of the additional computational requirements 
of preserving transitivity. In Sect. 5, we study the limits of our approach when scaling to 
environments of different dimensions, i.e. from n = 5,… , 25 dimensions. Then in Sects. 6 
and 7, we introduce two alternative models for collective preference learning under limited 
communications, e.g. when the bandwidth between agents is restricted due to hardware 
constraints. Specifically, Sect.  6 details a modified version of our original three-valued 
model adapted so that agents transmit only a subset of preference relations, while in Sect. 7 
we introduce a probabilistic model whereby agents attempt to learn a probability distribu-
tion over the n options and deduce a ranking from that distribution. Finally, we provide 
some concluding remarks in Sect. 8.

2  A model for collective preference learning

Consider the basis of a best-of-n problem with n options O = {o1,… , on} . We assume 
that there is a true preference ordering on the options dependent on their relative qual-
ity and that this takes the form of a strict total order on O , denoted by ≻ . For example, 
in a search and rescue scenario there exists an inherent ordering of the casualties, rank-
ing them from most to least in need of medical attention. Each agent possesses a belief 
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about ≻ represented by an imprecise relation in the form of a n × n matrix R for which 
Ri,j ∈ {0,

1

2
, 1} . Here Ri,j = 1 means that the agent believes that the preference assertion 

oi ≻ oj is true, Ri,j = 0 means they believe it is false, and Ri,j =
1

2
 means that they are uncer-

tain whether it is true or false. Since for each agent the relation R is intended to represent 
incomplete knowledge of the strict total order ≻ , it would be natural to require R to satisfy 
transitivity, i.e. Ri,j = 1 & Rj,k = 1 implies Ri,k = 1 . However, since we are assuming that 
evidence will always compare a particular pair of options, the transitive closure operation 
would then need to be performed after any such update to ensure that transitivity is pre-
served. This is computationally expensive and in Sects. 4, and 5, we investigate and com-
pare collective preference learning both with and without the application of the transitive 
closure operation.

Belief fusion. We will consider pairwise fusion of agents’ beliefs as follows: The binary 
operator ⊙ is defined on {0, 1

2
, 1} as given in Table 1. Now given R and R′ corresponding to 

the beliefs of two agents, we define the fused belief matrix R⊙ R′ in terms of the element-
wise application of the ⊙ operator so that (R⊙ R�)i,j = Ri,j ⊙ R�

i,j
 . The fused belief R⊙ R′ is 

then adopted by both agents forming a pairwise consensus.
Evidential updating.  Evidence takes the form of a preference assertion E = ‘ oi ≻ oj ’ 

upon receiving which an agent updates their belief matrix R to R|E such that

Updating in this manner does not take account of any additional information that can be 
inferred about ≻ from transitivity. Hence, ideally an agent who has just updated their belief 
should then apply the transitive closure operation. More specifically, the agent should take 
their new belief to be (R|E)+ as obtained in this three-valued setting by making the mini-
mum of changes to those elements of R|E with truth value 1

2
 so as to ensure that the follow-

ing holds: For all i, j,

– If (R|E)+
i,j
= 1 & (R|E)+

j,k
= 1 then (R|E)+

i,k
= 1

– If (R|E)+
j,i
= 0 & (R|E)+

k,j
= 0 then (R|E)+

k,i
= 0.

As noted above, there is a significant computational cost of applying this operator and we 
will investigate performance both with and without it.

In order to obtain evidence, agents must choose which options to investigate. We 
assume that agents select a pair of options oi, oj ∈ O to visit at random from those pairs 
about which they are uncertain, i.e. where Ri,j =

1

2
 . Having selected two options to com-

pare, agents will then either obtain some evidence E with probability r or learn nothing 
with probability 1 − r , where r is an evidence rate quantifying the sparsity of evidence 

(R|E)i,j = 1, (R|E)j,i = 0 and

(R|E)u,v = Ru,v for (u, v) ≠ (i, j), (u, v) ≠ (j, i).

Table 1  The fusion operator ⊙ 
applied to beliefs R and R′

R′
i,j

Ri,j ⊙ 0 �

�

1

0 0 0 1

2

�

�

0 1

2

1

1 1

2

1 1
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in the environment. More formally, during each time step an agent with belief R shall 
update its belief such that

The process by which agents obtain evidence is also subject to noise; perhaps due to noisy 
sensors on-board the agents or merely a feature of the environment itself. We therefore 
introduce the notion of a comparison error as follows:

Definition 1 Comparison error The comparison error between any two options oi, oj ∈ O 
is given by

where d =
|i−j|
n

 is the relative distance between options oi and oj in the true ordering ≻ and 
� is a non-negative precision parameter in ℝ+ . In the case that � = 0 then the comparison 
error becomes

Furthermore, as we increase � then the comparison errors for all oi, oj ∈ O become

Notice that the comparison error depends upon the relative distance between the 
options in ≻ . If the options being compared are closer together according to ≻ , then they 
have a higher probability of being incorrectly compared while options which are further 
apart have a higher probability of being compared correctly. We scale the comparison 
errors by 1

2
 to ensure that we do not consider the case where the evidence obtained is 

more likely to be incorrect than correct. The comparison error therefore determines the 
probability with which the evidence takes the form of an incorrect preference assertion. 
That is, for oi, oj ∈ O where oi ≻ oj:

It may be useful to identify and compare the difficulty of learning ≻ for different 
values of � as it may not be immediately obvious how this affects the level of preci-
sion, or inversely the level of noise, experienced by the agents. In Fig.  1, we plot C� 
against the distance between the options in ≻ for n = 10 options and different values of 
� = 1,… , 100 . Here we see that � = 0 is the case where the error decreases linearly as 
the distance between the options increases, while for larger values of lambda the com-
parison error decreases more rapidly as the distance between the options in ≻ increases. 
For � = 100 , there is no error when comparing even neighbouring options for n = 10 . 
Furthermore, as the error between two options oi, oj varies depending both on � and the 
distance between the options, |i − j| , according to ≻ , it is useful to quantify the expected 
error in our model.

R =

{
R|E ∶ with probability r

R ∶ with probability 1 − r.

C�(oi, oj) =
1

2

(
e−�d − e−�

1 − e−�

)
,

lim
�→0

C�(oi, oj) =
1

2
(1 − d).

lim
�→+∞

C�(oi, oj) = 0.

E =

{
oi ≻ oj ∶ with probability 1 − C𝜆(oi, oj)

oj ≻ oi ∶ with probability C𝜆(oi, oj).
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Definition 2 Expected error The expected error of comparing any two options in O is the 
sum of all comparison errors produced by C� multiplied by their respective probabilities of 
occurring, as follows:

where

is the probability of any two options in O having a distance of i according to ≻ , and

is the comparison error for two options with distance i.

The expected error then provides us with a baseline for performance such that if 
the agents were to update based on evidence alone–that is, without any fusion taking 
place between the agents’ beliefs–then the system would be expected to converge to an 
average error of �[C�] , e.g. �[C0] = 0.32 . If a population converges to an average error 
that is below the expected error, then we can say that the system’s accuracy is being 
improved by the fusion process, while if the average error remains above the expected 
error then that system has performed worse than if agents were to conduct individual, 
rather than collective, learning.

To evaluate the performance of a population of agents attempting to learn the true 
preference ordering ≻ , we propose to study the average error of the population as given 
in Definition 3. We assume that the true preference ordering ≻ can be represented by the 
n × n matrix R∗ where R∗

i,j
∈ {0, 1}.

Definition 3 Average error The average error of a population of k agents is the normal-
ised difference between each agent’s belief Ra , for a = 1,… , k , and the true preference 
ordering R∗ averaged across the population as follows:

�[C�] =

n−1∑

i=1

cipi

pi = 2

(
n − 1

n(n − 1)

)

ci =
1

2

(
e
−

�i

n − e−�

1 − e−�

)

Fig. 1  Comparison errors across 
absolute distance between 
options oi, oj ∈ ≻ for different 
levels of precision � = 0,… , 100 
and n = 10 options
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In the next section, we describe agent-based simulations of preference learning based on 
the three-valued model defined here.

3  Agent‑based simulations

We consider an environment with n options, and for each experiment, we initialise a popu-
lation of k agents where k varies between 10 and 100. Without loss of generality, we define 
the true ordering ≻ on O to be o1 ≻ ⋯ ≻ on . At initialisation, the agents begin in a state 
of complete ignorance about the true ordering ≻ , i.e. at time t = 0 each agent holds the 
belief Ri,j =

1

2
 for all i, j ∈ {1, ..., n} . Notice that by Definition 3 such a belief, representing 

complete uncertainty, has an average error of 0.5 and therefore each population will begin 
with an average error of 0.5. Furthermore, if the population converges on the true ordering 
≻ then the average error will be 0. While the rate at which agents combine their beliefs is 
fixed at one pair per time step, we define r ∈ (0, 1] as the population-wide evidence rate 
which determines the frequency with which agents update based on direct evidence. That 
is, every agent has an equal probability r of successfully receiving evidence from the envi-
ronment. Agents are also likely to experience noisy evidence with � ∈ [0, 100] denoting 
the extent to which the environment is noisy; notice that larger values of � result in higher 
precision, or less noise during option comparisons. For a given set of parameter values, we 
run each experiment 100 times, averaging the results over those runs and each experiment 
runs for a maximum of 10,000 time steps or until the population converges. Variations 
across the 100 runs are shown as shaded regions representing the 10th and 90th percentiles. 
We define convergence as the beliefs of the population remaining unchanged for 100 inter-
actions, where an interaction means either updating based on evidence or on the beliefs of 
other agents through application of the fusion operator defined in Table 1.

For our experiments, we adopt the ‘well-stirred system’ assumption from (Parker and 
Zhang 2009) which for the purpose of interaction translates to treating agents as nodes in a 
totally connected network. It is then possible for any agent to communicate with any other 
agent and each ‘encounter’ is modelled as an independent event. The reasoning behind this 
assumption is that in many swarm robotics applications, individual robots typically explore 
their environment stochastically based on local feedback received either directly from their 
environment or via other agents within communication range. Over time, as individuals 
continue to explore, the system will have mixed well enough as to be considered ‘well-
stirred’ and the local neighbourhoods of each individual agent will have changed to account 
for the agents entering/exiting their range of communication. However, in this paper we do 
not take into account agents’ spatial positions. Instead, we shall adopt the well-stirred sys-
tem assumption going forward. Therefore, during any one time step we simply select an 
edge connecting two agents in the network before combining their beliefs using the fusion 
operator in Table  1 and this belief is adopted by both of the selected agents. From this 
assumption, it then follows that agent communication is not dependent upon which options 
each agent may have gathered evidence about prior to the belief fusion process, i.e. the 
agents remain well-stirred for the entire duration of the simulation.

In this section, we study the macro-level performance of our proposed approach to col-
lective preference learning in the context of the best-of-n problem for n = 10 . We present 

1

k

k∑

a=1

2

n(n − 1)

n∑

i=1

n∑

j=i+1

|||R
a
i,j
− R∗

i,j

|||.
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both trajectory and steady-state results across a range of parameter settings before consid-
ering the effects of preserving transitivity of agents’ beliefs in Sect. 4.

3.1  Convergence results for n = 10

Figure 2 shows the trajectories of the average error over time for populations of 10 and 
100 agents. Each solid line represents a different evidence rate r between 0.01 and 1 while 
the red dotted line shows the expected error given � according to Definition 2. In Fig. 2a, 
we present the dynamics for a high noise scenario with �[C0] = 0.32 . For 10 agents and 
an evidence rate r = 1.0 , the population converges to 0 average error in 123 time steps on 
average, while for r = 0.5 the average error slowly declines towards 0 and eventually con-
verges after an average of 3,850 time steps. When the rate at which agents receive evidence 
is too low, e.g. r ≤ 0.5 , the population no longer converges to the true preference order-
ing and instead agents reach a steady state that is, on average, close to the expected error 
�[C0] = 0.32 . Figure 2b shows the same trajectories but for 100 agents. Due to a larger 
population size, we see that the system benefits from increased exposure to evidence at 
the lower evidence rates. When r = 0.01 , the population is still incapable of learning the 

Fig. 2  Average error over time for different evidence rates r ∈ [0, 1] . For � = 0 and � = 5 , the expected 
errors �[C0] = 0.32 and �[C5] = 0.13 represent high and moderate noise scenarios, respectively. The red 
dotted line represents the expected error �[C�] , and the shaded regions represent the 10th and 90th percen-
tiles
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true preference ordering due to receiving an insufficient amount of evidence. However, as r 
increases the population learns the true preference in roughly 3,600 time steps for r = 0.05 , 
around 930 time steps for r = 0.1 and at the higher end of the evidence range, with r = 0.5 
and 1, the population requires just 325 and 162 time steps on average, respectively.

We observe in Fig. 2c that for a moderately noisy scenario with �[C5] = 0.13 and only 
10 agents, an evidence rate of r ≥ 0.5 is necessary for agents to learn the true preference 
ordering, requiring under 700 time steps and just 70 time steps on average for r = 0.5 and 
1, respectively. For r ≤ 0.1 , the population performance is close to the expected error of 
0.13. When the population is increased to 100 agents in Fig. 2d, the performance is simi-
lar for evidence rates r ≥ 0.05 where the number of time steps required for the population 
to converge on the true preference ordering decreases as the evidence rate increases. For 
r = 0.01 , where only one agent per time step on average successfully obtains evidence, the 
population fails to reliably converge to the true preference ordering.

These trajectory results suggest that when the rate at which individual agents are able 
to obtain evidence is low, a larger population size is necessary to ensure that the system 
collectively obtains the evidence it needs to converge to an accurate ranking of the options. 
That is, the evidence rate r and the population size k are correlated in determining whether 
the system will successfully learn the true ordering of the options in O.

Figure 3a to d shows the average error at steady state2 for a decreasing amount of noise 
in the environment. As before, we vary the evidence rate r from 0.01 to 1. In Fig. 3a with 
�[C0] = 0.32 and n = 10 options, the probability of learning a false preference assertion 
when comparing two adjacent options, i.e. where |i − j| = 1 for oi, oj ∈ O , is 0.45. We can 
see that for such a high level of noise and moderate evidence rates the population size plays 
an important role in governing convergence to the true preference ordering. When r = 0.01 
for 10 agents, the population achieves an average error of 0.32 at steady state, equal to 
the expected error, and for 100 agents this is reduced to 0.28. At the other extreme when 
r ≥ 0.5 , the agents always converge to an average error of 0 for all population sizes. It is for 
evidence rates of r = 0.05 and 0.1 where we see that increasing the population size results 
in improved performance as the system is able to more reliably converge to 0 average error.

In Fig. 3b to d, we observe the expected behaviour where the average error decreases 
for all evidence rates as the environment becomes less noisy. In Fig. 3b with an expected 
error �[C5] = 0.13 , all populations of k = 10 to 100 agents converge to 0 average error 
when the evidence rate r ≥ 0.5 . For r = 0.1 , populations of 30 agents or more always con-
verge to 0 average error, while for r = 0.05 a population of 50 agents or more is required. 
With an evidence rate r = 0.01 , all population sizes produce an average error above 0 but 
below the expected error at steady state. In Figure 3c with �[C10] = 0.05 , we see that for 
r ≥ 0.1 all populations converge to the true preference ordering while for r = 0.05 popula-
tions of k ≥ 30 agents also achieve 0 average error. Again, r = 0.01 proves ineffective at 
reliably learning the true preference ordering, instead achieving an average error of 0.004 
with a population of 100 agents. Figure 3d shows that when the environment is essentially 
noise-free any population with 10 agents or more will learn the true preference ordering, 
converging to an average error of 0 for all evidence rates.

Generally, the model is robust to high levels of noise provided that the system is able to 
obtain evidence at a sufficient rate, either owing to a larger population or an environment 
in which evidence can be more frequently obtained. This is shown in Fig. 3a where large 

2 Either after the population has converged, or after 10,000 time steps.
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populations of 90 or more agents achieve a surprising level of accuracy despite the popula-
tion only obtaining evidence at a rate of 5% . This is because in larger populations agents 
are more likely to encounter inconsistencies amongst their beliefs owing to having gath-
ered conflicting pieces of evidence. By combining their beliefs according to Table 1, agents 
resolve these inconsistencies by becoming less certain about any pairwise relations that 
conflict before seeking additional evidence to determine their truth. Afterwards, agents will 
seek to obtain additional evidence and this slows the process of convergence, allowing the 
system to reconsider erroneous preference relations for as many times as is necessary until 
the population eventually reaches a global consensus. This is supported by Fig. 2 where 
populations tend to converge more slowly when the environment exhibits more noise.

For a complete picture of the dynamics of the model, we also show a heatmap of the 
fusion rate � = 1,… , 50 against evidence rate r ∈ [0.02, 1] in Fig. 4. Here, the fusion rate 
� determines the number of pairs of agents that fuse their beliefs to reach a pairwise con-
sensus during each time step, e.g. � = 1 means a single pair of agents fuse their beliefs each 
time step, while � = 50 means that all 100 agents are paired up for belief fusion every time 
step. Until now, we have set � = 1 as the standard fusion rate, but changed the population 
size which acted as a sort of proxy for the fusion rate. With a population size of 100, agents 
would fuse their beliefs far less regularly than in a population of 10 agents. In this figure, 

Fig. 3  Average error across different population sizes for different evidence rates r ∈ [0, 1] . The red dotted 
line represents the expected error �[C�] and the shaded regions represent the 10th and 90th percentiles
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we instead fix the population size at 100 agents and run the simulation experiments for dif-
ferent fusion rates and evidence rates. We see that, when agents are fusing their beliefs at a 
higher rate than the population can receive evidence, the accuracy of the system decreases 
to around the expected error �[C0] = 0.32 . For the upper-left region of the heatmap, we see 
that having much higher evidence rates compared with the fusion rate results in conver-
gence close to, or precisely to, the true ranking of O . For example, when � = 1 and only a 
single pair of agents fuse their beliefs per time step, an evidence rate of r = 0.2 is sufficient 
for convergence to the true ordering. When � = 5 , meaning that 10 agents are involved in 
the belief fusion process, an evidence rate of around r = 0.8 is suddenly required to prevent 
the increase in fusion from causing agents to converge prematurely to an inaccurate prefer-
ence ordering. This also helps to explain why scaling the number of agents in the popula-
tion helped to improve the accuracy of the model: when there is a larger number of agents 
in the system, there is an increase in the ratio of evidence gathering to belief fusion. The 
importance of evidence over the fusion process is generally true of most collective learn-
ing systems, as the fusion process’ main purpose is to provide error correction and, in very 
sparse environments, the propagation of evidence in conjunction with error correction.

4  The effects of preserving transitivity

Until now, we have assumed that the combined processes of evidential updating and belief 
fusion between agents is sufficient to ensure that the population reaches a consensus about 
the true ordering ≻ . While we have shown this to be true under certain conditions, includ-
ing a sufficient evidence rate and population size, we have yet to address how our approach 
performs when we apply the transitive closure operator on agents’ beliefs. Therefore, in 
this section we study the effects that preserving transitivity has on the population’s abil-
ity to converge to the true preference ordering. Furthermore, we examine how the runtime 
performance is impacted by applying the transitive closure operation and therefore whether 
preserving transitivity of agents’ beliefs is a worthwhile trade-off for real-world applica-
tions, particularly when decision-making is time-critical. Here we define runtime as the 

Fig. 4  Average error com-
pared across both fusion rate 
� = 1,… , 50 and evidence rate 
r ∈ [0, 1] . The fusion rate � 
indicates the number of pairs of 
agents that are selected for belief 
fusion during each time step
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amount of CPU time in seconds that a process takes to complete one run of a simulation 
experiment3.

4.1  Comparison results for applying the transitive closure operation

In Fig.  5, we present the average error over population size for a comparison between 
two distinct variants of our model: the purple line depicts performance while preserving 
transitivity of the agents’ beliefs, while the orange line shows our model without apply-
ing the transitive closure operation. We have chosen to present a high noise scenario with 
�[C0] = 0.32 as this provides us with the largest range of separation between the two vari-
ants and allows us to observe more closely the difference in convergence to the true order-
ing. These results reflect the populations at the end of the simulation, either after 10,000 
time steps or after the population has converged, whichever occurs first. We can see in 
Fig.  5a that preserving transitivity does indeed produce an noticeable performance gain 
when the rate at which agents receive evidence is low. For populations under 90 agents, 
i.e. for populations that do not converge to an average error of 0 at this evidence rate, we 
see that preserving transitivity leads to a reduction in average error. In some cases, such 
as for 60 agents, preserving transitivity can improve the average error by as much as 60% 
from 0.16 to 0.06. In Fig. 5b, we see that for a higher evidence rate r = 0.1 the impact on 
the accuracy of our approach is reduced. Applying the transitive closure operator results in 
slightly lower average error for smaller populations between 20 and 40 agents but the dif-
ference decreases with population size.

While it is useful to compare the two approaches for a particular combination of param-
eter settings, in Fig. 6 we show heatmaps of the difference in average error between apply-
ing and not applying the transitive closure operation, across increasing expected error 
�[C�] and evidence rates r. The warmer colours indicate the conditions for which preserv-
ing transitivity reduces the average error, while the cooler regions indicate an increase in 

Fig. 5  Comparisons of the average error across different population sizes with and without preservation of 
transitivity. We depict a high noise scenario with expected error �[C0] = 0.32 , represented by the red dotted 
line. The shaded regions represent the 10th and 90th percentiles

3 The computer used to run these experiments is composed of an AMD Ryzen 9 3900X 12-core processor 
(3.8 GHz base clock, 4.6 GHz boost) with 32GB RAM (3600 Mhz).
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average error when the transitive closure is performed. In Fig. 6a and b, we see that for 
higher expected error, corresponding to a noisier environment, and in conjunction with low 
evidence rates there is a clear benefit to applying the transitive closure operation. Particu-
larly for high levels of noise, for a relatively low evidence rate r = 0.05 the transitive clo-
sure operation does reduce the average error. However, there are limited cases where this 
operation leads to noticeable performance improvements, and indeed for the lowest evi-
dence rate r = 0.01 and a population of 50 agents there are small increases in average error 
when preserving transitivity, though this difference is minimal.

The above results suggest that the application of the transitive closure operation does 
improve performance for environments in which evidence is sparse and population sizes 
are small. Additionally, preserving transitivity is beneficial when the noise level is high but 
the rate at which agents obtain evidence remains low. However, it is equally important to 
understand the computational impact that a system is likely to incur as a result of applying 

Fig. 6  Change in average error resulting from applying the transitive closure operation for r ∈ [0.01, 1] and 
�[C�] with � from 100 to 0. Warmer colours favour the preservation of transitivity, while cooler colours 
favour its omission

Fig. 7  Average runtime in seconds against increasing expected error �[C�] for 100 agents, with and without 
the transitive closure. The shaded regions represent the 10th and 90th percentiles
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the transitive closure operation repeatedly during the collective learning process. To this 
end, we now discuss the runtime performance as an indication of the additional computa-
tional requirements of applying the transitive closure operation.

Figure 7 shows the average runtime in seconds against increasing expected error �[C�] 
for a population of 100 agents; chosen as the population converges in under the 10, 000 
time step limit, portraying consistent expected runtimes. We see that in Fig. 7a for r = 0.05 
and expected error �[C�] = 0 to 0.32, the resulting runtimes can be more than 2 seconds 
slower when preserving transitivity than when not. With this low evidence rate, we see that 
the runtimes both with and without transitivity are generally increasing with the noise level 
until �[C𝜆] > 0.21 . Beyond this point, it seems that the two approaches behave similarly 
due to the combination of sparse and noisy evidence. In Fig. 7b for r = 0.1 , we see a more 
monotonically increasing impact from applying the transitive closure operation. Without 
transitivity, the average runtime increases only marginally from 1.7 seconds to 2.1 seconds 
when the expected error is �[C100] = 0 and �[C0] = 0.32 , respectively. When transitivity 
is preserved, the runtimes increase from 2.6 seconds to 4.3 seconds for the same expected 
errors. From a noise-free scenario to a high-noise scenario, the average runtime when 
applying the transitive closure operation grows to more than double that of our model with-
out transitivity.

Broadly, we observe that preserving transitivity will result in increased runtimes but the 
degree to which slowdown occurs depends significantly upon the amount of noise present 
in the system. Noisy evidence increases the amount of conflict that occurs in a population 
as agents with inconsistent beliefs resolve these conflicts by adopting more imprecision in 
their beliefs. Doing so results in agents seeking additional evidence from the environment 
and each subsequent update of an agent’s belief results in another transitive closure opera-
tion. When the system is too noisy and convergence to the true preference ordering does 
not occur, the system suffers from large increases in the runtime duration of the model. 
This might not pose a problem for one-off decisions where accuracy is paramount but in 
highly dynamic environments the collective learning process would need to be repeated 
often to capture changes in the environment. Although, when serialised, the presented 
average runtimes depict a large cost to applying the transitive closure operation, it should 
be noted that these results are only indicative of the additional computation that would 
be required in a distributed system where computation happens in parallel on each agent. 
Here, runtime acts as a proxy for computation and increased runtimes therefore depict a 
relative increase in computation required by each agent in the system. For swarm robotics 
in particular, each agent is typically equipped with only modest compute performance and 
a finite power source, presenting us with a trade-off between an increase in accuracy when 
learning the true preference ordering, and a decrease in performance due to additional 
computation being performed by each individual applying the transitive closure operation.

5  Scalability of collective preference learning

Many of the approaches to the best-of-n problem only consider the case of n = 2 , the 
equivalent of a binary discrimination problem where agents must determine the truth 
or falsity of a single proposition (Kernbach et  al. 2013; Parker and Zhang 2009, 2011; 
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Prasetyo et al. 2019; Reina et al. 2015; Valentini et al. 2016, 2015)4. As the research com-
munity continues to make the case for applying swarm robotics to real-world problems, it 
is important to identify whether the proposed solutions can perform well in complex envi-
ronments. Previously it has been shown that both the robustness and scalability of current 
approaches suffer in the presence of noisy and complex environments, for example in the 
weighted voter model (Crosscombe et al. 2017), with few models since having attempted 
to address these problems (Lawry et al. 2019; Lee et al. 2018b). So far we have shown that 
using our approach agents can learn an accurate ordering of n = 10 options and that the 
model is robust to high levels of noise under certain conditions, i.e. when the evidence rate 
r ≥ 0.1 and the population consists of 50 or more agents. However, we must also consider 
the model’s ability to scale to environments of increasing complexity. Due to our approach 
of ranking pairs of options in O , agents have to learn n(n−1)

2
 preference relations, or put 

another way, agents must obtain evidence about 45 pairwise relations until a system-wide 
consensus is reached. When we increase the complexity of our environment to 20 options, 
for example, agents must reach a consensus about 190 preference relations. In this section, 
we shall present results for n = 5,… , 25 options and study the performance of our model 
with regard to both average error and runtime. We aim to highlight the extent of the scala-
bility of this model while maintaining a focus on its robustness to noise in the environment.

Figure 8 shows the average error across population sizes from 10 to 100 agents, again 
comparing results with (purple) and without (orange) the preservation of transitivity. We 
study an evidence rate of r = 0.1 for two scenarios with high and low noise. We can see 
in Fig. 8a that for our high-noise scenario, with �[C0] = 0.32 and 20 options, an evidence 
rate of r = 0.1 is no longer sufficient to reach an average error of 0 for populations of 50 or 
more agents. In this scenario, the agents must gather evidence about twice as many options 
as for n = 10 and so lower evidence rates become insufficient to enable convergence to the 
true preference ordering ≻ when the population size is not adjusted. Of course, as the noise 
is reduced as in Fig. 8b, then for a moderately noisy scenario with �[C5] = 0.13 we begin 

Fig. 8  Comparisons of the average error for n = 20 options across different population sizes with and with-
out preservation of transitivity and an evidence rate r = 0.1 . The shaded regions represent the 10th and 90th 
percentiles

4 Recent works considering n > 2 include (Crosscombe et al. 2017; Lawry et al. 2019; Lee et al. 2018a, b; 
Reina et al. 2017).
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to see convergence to an average error of 0 for populations of 70 and above when transitiv-
ity is preserved, or 80 agents and above when we omit the transitive closure operation. The 
difference when applying the transitive closure operation is greater when the populations 
do not tend to converge, as is the case in Fig. 8a. When the environment is less noisy, this 
difference is reduced.

The difference between the two approaches is more apparent in Fig.  9 which shows 
the runtimes of our model with and without application of the transitive closure operation 
for n = 20 options and k = 100 agents. Here we show results with evidence rates r = 0.05 
and 0.1 in Fig. 9a and b, respectively, plotted against expected error �[C�] from 0 to 0.32. 
Compared with the runtime results for 10 options, the difference in runtime between our 
approach with and without the preservation of transitivity is much greater. Specifically, 
without the preservation of transitivity and an evidence rate r = 0.05 , runtimes range from 
4.3 seconds for an expected error �[C100] = 0 to 22.3 seconds for �[C0] = 0.32 . With tran-
sitivity, the average runtimes are dramatically increased, ranging from 15.7 seconds to 
101.9 seconds for the aforementioned expected errors, respectively. Clearly, with n = 20 
options the additional time required to compute the transitive closure of agents’ beliefs is 
strongly increasing with the extent to which the evidence is noisy. Similar results can be 
seen in Fig. 9b for an evidence rate r = 0.1 . This is due to the much larger number of pref-
erence relations that must be considered by the transitive closure operation each time a pair 
of agents fuse their beliefs. For example, with 10 options there were 45 preference relations 
to consider, whereas here with 20 options there are now 190 preference relations that must 
be considered. These extended runtimes are the result of additional computation that must 
be performed to calculate the transitive closure of an agent’s fused belief and is therefore 
indicative of the additional computation that each agent would need to perform. For noisy 
environments, the additional computation required to form the transitive closure therefore 
increases exponentially with the number of options being considered.

It is clear that there is an appreciable reduction in the average error when transitivity of 
agents’ beliefs is preserved but this comes at the cost of large increases in runtime. In the 
extreme case, for an evidence rate r = 0.1 , �[C0] = 0.32 and a population of 100 agents 
you can decrease the average error of the population’s learning process by 53% from 0.19 
to 0.08 at the cost of a runtime increase of 608% on average, going from 23 seconds to 140 

Fig. 9  Average test runtime in seconds for n = 20 options and 100 agents across increasing expected error 
�[C�] with and without preservation of transitivity. The shaded regions represent the 10th and 90th percen-
tiles
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seconds. However, provided enough agents can be deployed and the environment is not too 
sparse for agents to obtain evidence at a suitable rate, both approaches will converge to an 
average error of 0 while our initial model without transitivity will learn the true ordering in 
less time.

To provide a broader overview of the scalability of the proposed model for collective 
learning, we also include Fig. 10 where, for a population of 100 agents and an evidence rate 
r = 0.1 , we show the average error across both the number of options n and the expected 
error �[C�] according to the noise level � . Clearly, as the number of options increases such 
that n ≥ 20 we begin to see the populations failing to consistently learn the true prefer-
ence ordering ≻ for a high expected error �[C0] = 0.32 . In Fig. 10a and b, we see that the 
application of the transitive closure operation does lead to a reduction in the average error 
in the cases where the populations fail to reliably reach a consensus. We see in Fig. 11a, 
however, that for the same expected error �[C0] = 0.32 the preservation of transitivity is 

Fig. 10  Average error compared against number of options n and expected error �[C�] for � from 100 to 0. 
Results are for a population of 100 agents with r = 0.1

Fig. 11  Average test runtime in seconds across the number of options n for 100 agents and different 
expected error �[C�] . The shaded regions represent the 10th and 90th percentiles
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extremely costly in terms of runtime performance. Figure 11 shows the average runtime 
in seconds for n = 5,… , 25 options for both �[C0] = 0.32 and �[C5] = 0.13 . On the other 
hand, Fig. 11a and b shows that a reduction in noise produces a significant reduction in 
the average runtime when preserving transitivity. The scalability of our approach therefore 
depends on the avoidance of applying the transitive closure operation during the simulation 
when the level of noise is very high. If the evidence in the environment is subject to lower 
levels of noise, e.g. for �[C5] = 0.13 , then this runtime cost is significantly reduced but for 
the decrease in average error it is difficult to make a case for the preservation of transitivity 
in this model.

6  Robustness to limited communications

An important aspect of systems designed for collective learning is their utilisation of local 
communications to achieve system-level behaviours. Though many robotic platforms at 
present already possess reasonably sufficient communications capabilities, the bandwidth 
between individuals is not limitless. For example, Kilobots can communicate with other 
Kilobots within a radius of up to 10 cm at a rate of up to 30 kb/s (Rubenstein et al. 2014)5. 
Bandwidth limitations between agents therefore pose a potential hurdle for multi-agent sys-
tems where frequent communication is crucial to their function. In Sect. 2, we proposed a 
model of collective preference learning that relies upon pairs of agents sharing their full 
beliefs, composed of up to n(n−1)

2
 preference relations, during a single time step so as to 

fuse their beliefs. While it would be possible to have agents split their preference set into 
multiple messages to be aggregated by the receiving agents, this kind of solution relies 
upon platform-specific implementations. Instead, in this section we propose a modifica-
tion of our initial model that limits agents to communicating only a subset of their belief, 
specifically a belief with only n preference relations and demonstrating that while the con-
vergence times are impacted by such an approach, the performance of the model in terms 
of accuracy at least meets, if not exceeds, that of our initial model.

As before, each agent possesses a belief about the true preference ordering ≻ represented 
by an n × n matrix R with Ri,j ∈ {0,

1

2
, 1} . To achieve a bandwidth-limited version of our 

proposed model, we make the following alteration to the belief fusion process: Until now, 
two agents would form a pairwise consensus by sharing their full beliefs R,R′ with one 
another and both agents would then adopt the fused belief R⊙ R′ . Instead, we propose that 
each agent selects up to n preference relations that they believe to be true, at random, and 
share those with the other agent. Consider the set of clear (precise) preferences in R given 
by C = {(i, j) ∶ j > i,Ri,j ≠

1

2
} . If |C| > n then the agent selects P ⊂ C such that |P| = n , 

otherwise they select P = C . The agent then forms R̃ where

The agent transmits R̃ and at the same time receives R̃′ , generated from R′ based on the 
same process described above. Notice that transmitting R̃ only requires transmitting |P| ≤ n 

R̃i,j =

{
Ri,j ∶ (i, j) ∈ P
1

2
∶ otherwise.

5 This is the stated maximum communication rate of the Kilobots. However, due to practical limitations, 
the actual communication rate is often lower. For example, with up to 9 bytes per message, if the Kilobots 
update at a rate of 2 time steps per second, then the actual communication rate will be 144 b/s.
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distinct preferences, i.e. Ri,j for (i, j) ∈ P , since the receiving agent can adopt the protocol 
of assuming the value of 1

2
 for any unspecified preferences. Finally, the agents update their 

beliefs such that the agent with belief R adopts R⊙ R̃′ as its new belief, while the other 
agent adopts R̃⊙ R′ as its new belief. Unlike in our original model in which both agents 
adopted the same fused belief R⊙ R′ , the agents are instead adopting beliefs based on hav-
ing received only partial preference orderings held by the other agents, which are likely to 
differ from one another. This means that agents no longer adopt a pairwise consensus as a 
result of the belief fusion process.

6.1  Comparing the standard and bandwidth‑limited models

Figure 12 shows the average error across time for 10 options. Here we compare the stand-
ard model with the bandwidth-limited model for different evidence rates r and expected 
errors �[C�] . We notice immediately from Fig. 12a that in a highly noisy environment with 
very sparse evidence, i.e. �[C0] = 0.32 and r = 0.01 the bandwidth-limited model, whereby 
agents may only communicate up to n preference relations, actually outperforms the stand-
ard model. As is clear from the figure, the limited model is much slower to converge but 
does reduce error to below that of the standard model, where the standard model reaches an 
average error of 0.28 while the limited model reaches an average of 0.2 at steady state. This 

Fig. 12  Average error compared between the standard model (purple) and the bandwidth-limited model 
(orange) against time t for n = 10 options and 100 agents. The red dotted line represents the expected error 
�[C�] and the shaded regions represent the 10th and 90th percentiles
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is due to agents only communicating a subset of their beliefs, which prevents agents from 
reaching a pairwise consensus during the fusion process and slowing convergence. These 
slower convergence times allow for agents to reach more accurate decisions by ensuring 
that, at such a low evidence rate, the fusion process does not prematurely lead to the popu-
lation adopting a more erroneous preference ordering. These dynamics are very similar 
for the same low evidence rate r = 0.01 but reduced noise in Fig. 12b. That is, the lim-
ited model eventually outperforms the standard model, which converges faster but to a less 
accurate preference ordering. For a higher evidence rate of r = 0.1 , as shown in Fig. 12c 
and d, the two models are equal in their accuracy, but with high noise the limited model 
converges much more slowly than in a less noisy scenario.

An advantage of our bandwidth-limited approach is that the subset of preference rela-
tions that form the communicated belief R̃ could be chosen in a non-random manner to 
maximise the number of preference relations that would be added under the transitive clo-
sure. Put another way, let’s suppose an agent possesses a precise belief such that the agent 
believes it has identified a strict total ordering over all n options, i.e. Ri,j ≠

1

2
 for all i,  j 

where i ≠ j . Then the agent would only need to communicate n − 1 preference relations 
for the receiving agent to be able to generate the full set of preference relations and reform 
R. Additionally, in this model the amount of information being sent between agents can 
be tuned to adjust the speed vs. accuracy trade-off. For example, provided that the slower 
convergence times can be tolerated, the communication bandwidth could be purposefully 
restricted to enable slower, more accurate collective learning when preferred, while unlim-
ited communication could be enabled should the scenario require faster, less accurate col-
lective learning. The approach taken would therefore be specific to the context in which the 
system is deployed.

7  Probabilistic preference learning for limited communications

Following on from Sect. 6 in which we modified our original model to function under lim-
ited communications, with this same aim in mind we now consider an alternative proba-
bilistic model whereby agents attempt to learn a probability distribution over the n options 
and therefore need only transmit n real values during the belief fusion process. That is, 
each agent holds a belief B ∶ O → [0, 1]n where B(oi) represents the probability with which 
the agent believes option oi to be the best. Of course, one immediate problem encountered 
when using a quantitative representation is the need to assign numerical values to each of 
the n options. Given that we are interested in ranking the options we first assign a quality 
value to each option such that for each oi ∈ O the associated quality qi =

i

n+1
 . This way, the 

option qualities are ranked according to ≻ such that qn > ⋯ > q1.
Another problem arising from this representation is the need for a fusion operator which 

preserves the order of the options based on their respective qualities. While a probabilistic 
model of belief may be well suited for learning which option is the best (Lee et al. 2018b), 
maintaining a preference ordering over O has to our knowledge not yet been considered in 
this context. In this probabilistic setting, we combine agents’ beliefs using the probability 
fusion function in Definition 4.

Definition 4 Probability fusion function Let ℙ denote the set of all probability distribu-
tions on O . Then a probability fusion function is a function c ∶ ℙ

2
→ ℙ . In particular, we 

will focus on the product fusion function given by: for oi ∈ O,
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This established operator (Bordley 1982) has recently been studied by Lee et al. (2018a) 
in the context of the best-of-n problem. However, in order to prevent agents reaching abso-
lute certainty about any particular option, i.e. probabilities of either 0 or 1, we apply a 
small weighting of the agent’s belief towards ignorance as represented by the uniform dis-
tribution over O . This helps the agents to maintain a preference ordering. More formally, 
immediately following any application of the probabilistic fusion function, the agents 
update their beliefs as follows: for oi ∈ O,

where � ∈ [0, 0.5] is a dampening term typically set to a small value, i.e. � = 0.1 as in our 
simulation experiments.

In this model, agents obtain evidence from the environment in the following form:

where � is a normally distributed random variable with mean 0 and standard deviation � , 
and BE is the linear combination of the probability distribution with B(oi) = 1 and the uni-
form distribution with weights qi + � and 1 − (qi + �) , respectively. Notice that under this 
noise model the error is applied to each option that is investigated as opposed to each pair 
of options as in our initial model. Then, the agent combines its current belief with the 
evidence using the probabilistic fusion operator, adopting c(B,BE) as its new belief before 
dampening its belief as above. Unlike in the original model in which agents only seek to 
obtain evidence when Ri,j =

1

2
 , there is no natural way to determine whether agents should 

or should not seek additional evidence. Therefore, agents seek evidence about one option 
oi ∈ O at random according to the evidence rate r. This is a clear weakness of this probabil-
istic approach as the agents will continue to seek additional evidence without intervention.

At time t = 0 , agents have total ignorance about the options represented by their beliefs 
being the uniform distribution, i.e. B(oi) =

1

n
 for i = 1,… , n . Just as we described in our 

initial model from Sect. 2, agents then begin a process of gathering evidence and fusing 
their beliefs with other agents using the probabilistic processes described above. To closely 
align the probabilistic model with our original model, the noise value � is drawn from a 
normal distribution with � chosen to reflect the associated expected error �[C�] . In Table 2, 
we show the values of � which most closely match the expected errors for different preci-
sion values � . To determine the average error in this model, we simply extract the prefer-
ence ordering from the agent’s belief B, where an agent believes oi ≻ oj if B(oi) > B(oj) and 
believes oj ≻ oi if B(oi) < B(oj) . In the case that B(oi) = B(oj) the agent has no preference 
between options oi and oj , e.g. as when Ri,j =

1

2
 in our original model.

c(B1,B2)(oi) =
B1(oi)B2(oi)∑n

j=1
B1(oj)B2(oj)

.

B(oi) = �
1

n
+ (1 − �)B(oi)

BE(oj) =

{
1−qi−�

n
∶ j ≠ i

(n−1)(qi+�)+1

n
∶ j = i

Table 2  The expected errors 
�[C�] and associated standard 
deviation � for different noise 
values �

� � � �.� � �.� �� ���

�[C
�
] 0.32 0.27 0.21 0.13 0.08 0.05 0.0

� 0.47 0.33 0.21 0.12 0.09 0.07 0.0
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7.1  Convergence results with probabilistic beliefs

We now present summary results for the probabilistic model for collective learning. In 
Fig.  13, we show the average error of the population over time for different evidence 
rates r, with shaded regions depicting the 10th and 90th percentiles. Specifically, Fig. 13a 
shows the average error for a high-noise scenario where �[C0] = 0.32 . Under high noise, 
the probabilistic model struggles to converge to an average error below 0.4 for all evi-
dence rates. For r = 0.01 , we see that the average error initially decreases to below 0.4 
at around 500 time steps, before increasing again to converge at a higher average error 
than for r = 0.05 . This is most likely owed to the system continuing to obtain evidence 
due to the agents lacking a mechanism for determining their certainty. When we move to 
a noise-free scenario as shown in Fig. 13b, we do see an improvement in average error 
across the different evidence rates r, with each showing similar dynamics as before, e.g. 
for r = 0.01 , there is a large decrease in average error before 500 time steps before the 
average error increases again, this time exceeding even r = 0.1 on average. Given that 
the evidence is always accurate in this scenario, it is clear that this model is ineffective 
for consistently learning the true preference ordering.

An additional perspective of the convergence dynamics of the probabilistic model 
is presented in Fig.  14. In this figure, we show the proportion of the population with 
clear preferences oi ≻ oj based on the agents believing B(oi) > B(oj) for oi, oj ∈ O and 
where i > j . That is, higher probability is assigned to option oi than option oj , indicating 
a clear preference in oi over oj . We can conclude from these dynamics that the proba-
bilistic model is not suited to maintain a precise and accurate preference ordering over 
the n = 10 options, even for the noise-free scenario shown here. For the lowest evidence 
rate r = 0.01 shown in Fig.  14a, we see that the population does better at accurately 
learning the ordering between the options with higher quality, e.g. o9 ≻ o8 , than it does 
for options of lower quality. However, as we increase the evidence rate to r = 0.1 the 
performance for all options narrows to be roughly equal. Notice that we have chosen to 

Fig. 13  Average error over time for 100 agents and different evidence rates r ∈ [0, 1] . For � = 0.47 and 
� = 0 , the expected errors �[C0] = 0.32 and �[C100] = 0 represent high and zero noise scenarios, respec-
tively. The red dotted line represents the expected error �[C�] and the shaded regions represent the 10th and 
90th percentiles
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omit the error bars here due to the extremely large variation between runs and generally 
poor accuracy performance of the probabilistic model.

In this section, we have proposed a probabilistic model based on a well-established 
fusion operator and modified the convergence behaviour using a dampening term to pre-
serve an ordering over the n options. The results show that this probabilistic operator is 
not well suited to a collective preference learning problem due to its inability to maintain 
an accurate preference ordering over the options. Preliminary studies were also conducted 
using a simple averaging operator which appeared to perform similarly to the presented 
model. However, there may be other fusion operators that work well in this setting which 
we have not considered here.

8  Conclusions and future work

We have proposed a model for collective preference learning in the context of the best-
of-n problem and demonstrated the ability of a population of agents to rank all of the 
n options during the learning process. Our model leads to highly robust consensus for-
mation in populations of 10 to 100 agents and is scalable up to n = 20 options before 
the accuracy of the model is affected by high levels of noise in the evidential updating 
process. When evidence is sparse and the level of noise is high, the robustness of our 
model is improved by performing the transitive closure operation after agents fuse their 
beliefs. However, this operation is computationally expensive and the transitive closure 
is not strictly required to learn the true preference ordering, thereby offering a trade 
of increased convergence times and computational power for increased accuracy. This 
approach to collective learning may therefore be well suited to applications in noisy 
environments or for systems where large numbers of cost-effective but noisy sensors 
are deployed to identify the true state of the world. Using our approach, the system can 
accurately reach a consensus about the state of its environment despite high noise and/or 
a low frequency of obtaining evidence. We also demonstrated that our approach can be 

Fig. 14  Proportion of the population which believes B(oi) > B(oj) , indicating preferences oi ≻ oj for all 
options oi, oj ∈ O where i < j , against time. We show a noise-free scenario for a population of 100 agents 
where � = 0 and E[C100] = 0
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adapted to perform well when the communication bandwidth between agents is limited, 
provided that longer convergence times are tolerable for the given application.

Furthermore, we have presented an alternative model in which agents’ beliefs are 
represented by probability distributions and demonstrated that this approach performs 
poorly when agents must collectively rank the options, despite having previously been 
shown to perform well on the best-of-n problem and also only requiring agents transmit 
n real values as opposed to n(n−1)

2
 pairwise preferences. In the context of ranking all n 

options, our proposed three-valued model performs well for a variety of scenarios and 
additional modifications can be made to better fit a range of conditions, such as sparse 
environments or hardware platforms that impose limitations on agents’ communications.

Scalability is only one aspect to consider for deploying systems into complex envi-
ronments: adaptability is another. More recently, Prasetyo et  al. (2019) have explored 
the consensus formation problem in dynamic environments where one-off decisions 
are no longer sufficient and repeating the whole collective learning process when one 
feature of the environment changes is wasteful. Our proposed model could be easily 
extended by adopting a concept of “preference decay” to ensure that old information is 
periodically discarded and new evidence is gathered to maintain accuracy in the event 
that the environment changes.

Following this work, we plan to implement our model in a physical simulator. The added 
spatial element would provide agents with additional constraints such as ranges of commu-
nication and observation which shall affect the ability of agents to communicate with the 
rest of the system and to obtain evidence about specific locations of interest. Defining a 
range of communication would inform the underlying network topology over which agents 
would be required to communicate for the purpose of belief fusion. An observation range 
would act to have agents incur a cost when travelling between locations in order to obtain 
evidence about the environment. These aspects alone would further inform the suitability 
of our model to the collective learning problem, as well as allow us to better compare dif-
ferent approaches that exist in more abstract forms but have yet to prove their applicability 
to collective learning applications. Recently, Crosscombe and Lawry (2021) have shown 
that systems modelled with total connectivity behave sub-optimally on a similar collective 
learning task, demonstrating instead that limited connectivity leads to improved perfor-
mance in this context. This is evidence that this simplifying assumption fails to adequately 
capture the dynamics of swarm systems. Therefore, through physical simulations we intend 
to investigate general principles for constructing effective communication network topolo-
gies for swarm systems, including the investigation of network topologies determined by 
the range of communication or even the pre-allocation of neighbourhoods with varying 
degrees of connectivity, regularity, etc.

Through physical simulations, we will also investigate the performance of our model 
when there is an inherent cost associated with agents exploring their environment. At pre-
sent, the connectivity of agents is not dependent upon their range of communication and 
therefore there is no cost associated with agents exploring distant options that may place 
them out of range of other agents. As agents must travel between the pair of options in 
order to obtain evidence about them, some pieces of evidence will necessarily take longer 
to obtain and therefore be associated with a higher cost. We intend to explore how this 
impacts the performance of our model, particularly with regard to the preservation of tran-
sitivity which may provide our agents with a means of avoiding costly option comparisons.
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