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Abstract Demand for autonomous swarms, where robots can cooperate with each other
without human intervention, is set to grow rapidly in the near future. Currently, one of the
main challenges in swarm robotics is understanding how the behaviour of individual robots
leads to an observed emergent collective performance. In this paper, a novel approach to
understanding robot swarms that perform foraging is proposed in the form of the Information-
Cost-Reward (ICR) framework. The framework relates the way in which robots obtain and
share information (about where work needs to be done) to the swarm’s ability to exploit
that information in order to obtain reward efficiently in the context of a particular task and
environment. The ICR framework can be applied to analyse underlying mechanisms that
lead to observed swarm performance, as well as to inform hypotheses about the suitability
of a particular robot control strategy for new swarm missions. Additionally, the information-
centred understanding that the framework offers paves a way towards a new swarm design
methodology where general principles of collective robot behaviour guide algorithm design.

Keywords Swarm robotics · Foraging · Modelling · Information flow

1 Introduction

Demand for autonomous multi-robot systems is set to grow rapidly in the near future. Con-
siderable effort is currently being invested in the design of fleets of self-driving taxis (e.g.
Griswold 2016), delivery robots (e.g. Amazon Prime Air 2016), autonomous agricultural
robots (e.g. Cartade et al. 2012) and automated warehouses (e.g. Stiefelhagen et al. 2004). In
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order to become pervasive, these and other robots will need to coordinate and cooperate with
each other while fulfilling on-demand tasks. While many swarm robotic experiments have
been performed both in simulation and in the real world, a framework that organises results
and explains how the behaviour of individual robots affects emergent swarm performance is
still missing. It is therefore often unclear what type of robot control algorithm is suitable in
a given swarm mission and which design decisions can be generalised to other missions. To
this end, several authors have proposed that an information-based understanding of swarm
behaviour can help us to generalise experimental results (e.g. Wang et al. 2012; Miller et al.
2014) and that paying attention to feedback loops between the swarm and the environment
is important (e.g. Gardelli et al. 2007; Fernandez-Marquez et al. 2013).

In this paper, the Information-Cost-Reward (ICR) framework is developed, providing
a high-level, information-based account of robot swarm behaviour during foraging. The
framework defines several metrics that allow for a detailed analysis of mechanisms that lead
to observed swarm performance. Scouting efficiency and information gain rate characterise
information flowwithin the swarm, i.e. howwell robots can acquire and share information and
decrease the swarm’s uncertainty cost.Displacement andmisinformation costs are associated
with the ability of the swarm to turn information into reward.

There are two main contributions of our research. First, we compare three robot con-
trol strategies, commonly used in the swarm robotics research, in a number of experimental
scenarios and identify swarmmissions in which each strategy leads to the best swarm perfor-
mance. Second, we demonstrate how the ICR framework can be used to understand swarm
performance and to identify aspects of robot behaviour that affect it negatively, and how the
framework can be used to explain and form hypotheses regarding the relative performance
of swarms that employ different control strategies.

This paper is organised as follows. Section 2 provides an account of the literature on
swarm analysis and modelling methods. Section 3 introduces our simulation environment,
robot control strategies, performance metrics and visualisation methods. The performance of
robot swarms is explored initially in Sect. 4, where a simple foragingmission is considered. In
this mission, worksites are “consumed” when encountered by robots and worksite locations
remain constant during an experimental run. The information flow and cost analysis are
presented in Sects. 5 and 6. The ICR framework is formulated in Sect. 7 and is employed
to make sense of swarm behaviour in static central-place foraging and in dynamic foraging
missions, where worksite locations change over time, in Sects. 8 and 9, respectively. Finally,
the experimental results and the ICR framework are discussed more broadly in Sect. 10.

2 Background

Mathematical modelling approaches have been used in order to study the effect of sys-
tem parameters on robot behaviour and swarm performance. These approaches include, for
instance, “property-driven design” (Brambilla et al. 2014), “swarmcalculus” (Hamann 2013),
and other models based on probabilistic finite state machines (PFSMs) (e.g. Liu andWinfield
2010; Reina et al. 2015a) and differential equations (DEs) (e.g. Montes de Oca et al. 2011;
Mather and Hsieh 2012; Reina et al. 2015b; Scheidler et al. 2016; Valentini et al. 2016). A
comprehensive overview of these methods can be found in Brambilla et al. (2013). PFSMs
are microscopic, time-discrete, models that describe how the robot population probabilisti-
cally transitions between possible “states” (e.g. “scouting” and “foraging”) in discrete time
intervals. The state transition rates can be calculated in order to link a PFSM model to a

123



Swarm Intell (2018) 12:71–96 73

macroscopic model expressed in terms of DEs. The transition rates are often subject to var-
ious parameters. Parameters that the swarm designer has no control over, e.g. the effect of
interference between robots, are estimated or measured by performing targeted experiments.
Other parameters, such as recruitment time, can be controlled and their effect on swarm
performance can be studied. A related modelling method is Turing Learning (Li et al. 2016),
where the neural network architecture of agents can be inferred automatically through a
co-evolution of models and their classifiers.

Swarm entropy (Sperati et al. 2011) has been used in order to quantify how much order
there is in the observed behaviour of robots. The measure of entropy is inspired by Shannon’s
information theory (Shannon 1948) and characterises the probability of each robot being in
one of N possible discrete states at a given point in time. For example, in the context of a
transport task between two areas, robots needed to form chains when moving from one area
to another (Sperati et al. 2011). The heading of robots was discretised into four possible
directions. Entropy (i.e. “disorder”) of the swarm was high when robots moved randomly,
and it was low when robots synchronised their heading directions, i.e. when they formed
chains. Similarly, hierarchic social entropy (Balch 2000) has been applied to measure the
extent to which robots formed coherent clusters in a coordinated motion task (Ducatelle et al.
2014). Finally, local transfer entropy (LTE) has been used in order to measure information
flow in robot swarms in the context of coordinated motion (Wang et al. 2012; Miller et al.
2014). LTE measures the correlation between a previous “state” (e.g. current velocity) of a
source robot that holds some information, and the next “state” of a destination robot that
reads the information. Positive LTE thus corresponds to coordinated motion in a swarm.

Despite providing valuable insights into swarmbehaviour, these approaches have a number
of drawbacks.Models based on PFSMs andDEs are useful when the selected robot behaviour
needs to be parametrised for a specific experiment. However, because their role is to estimate
swarmperformance, given specific conditions or parameter values, they cannot explain swarm
behaviour in a way that would allow us to learn something general about the algorithms
used. On the other hand, measures of entropy can, to various degrees, describe more general
properties of swarm behaviour, such as information flow between robots, or their tendency to
coordinate their actions. However, to the best of our knowledge, no study has demonstrated
so far how andwhether entropy can be directly related to swarm performance in foraging-like
missions, where the performance is not only dependent on the ability of robots to observe each
other’s actions and to coordinate their behaviour, but also on the structure of the environment
and on interference between robots.

3 Methods

3.1 Simulation environment and swarm missions

All experiments are performed in the ARGoS simulation environment (Pinciroli et al. 2012).1

The simulation takes place in continuous space and it is updated 10 times per second. The
experimental arena contains a centrally located circular base surroundedbyworksites (Fig. 1a,
b). A similar setup has been previously used in, e.g. Balch and Arkin (1994), Pitonakova et al.
(2016b), Gutiérrez et al. (2010).

The base has a radius of 3 m and is divided into two sections: an interior recruitment area
and an unloading area around it (Fig. 1c). There is a light source placed above the middle of

1 We discuss the advantages of using this simulation engine in Pitonakova et al. (2016a).
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Fig. 1 a, b ARGoS simulation screenshot of the experimental arena containing a base in the centre and
worksites in the a Heap2 and b Scatter25 scenarios with worksite distance D = 13 m. c A close-up screenshot
of a base and nearby worksites

the base that the robots use as a reference for navigation towards and away from the centre
of the base (as in, e.g. Krieger and Billeter 2000; Pini et al. 2013).

There are two types of scenario: (Fig. 1a, b):

– HeapNW NWε{1, 2, 4} high-volume worksites distributed evenly around the base at a
distance D from the base edge

– Scatter25 NW = 25 worksites randomly distributed between distance D and D − 5 m
from the base edge

The total amount of reward in each scenario is set to 100 and the amount of reward per
worksite, V = 100/NW. For example, each worksite in a Heap2 scenario has V = 50,
while worksites in the Scatter25 scenario have V = 4. Each scenario is investigated with
five different values for worksite distance, D ∈ {5, 9, 13, 17, 21} m, from the base edge. The
worksites are cylindrical and have a radius rD = 0.1 m. In order to enable robots close to a
worksite to move towards it, a colour gradient with radius rC = 1 m is centred on the floor
around each worksite (see Fig. 1c).

Two basic types of foraging mission are investigated in each scenario:

– Consumption worksites represent “tasks” or “jobs” that need to be completed by robots
as soon as possible. When a robot is near a worksite, it gradually depletes the worksites’s
volume, increasing the swarm’s total reward by a reward gain rate ρ = 1/400 units per
second. This type of mission is analogous to the “consume” mission explored by Balch
and Arkin (1994), the “task allocation” problem (e.g. Mataric et al. 2003; Lerman et al.
2006; Jevtic et al. 2012, or the “job completion” problem on a manufacturing floor (e.g.
Gerkey and Mataric 2003; Dahl et al. 2009; Sarker and Dahl 2011).

– Collection worksites represent resource deposits that need to be exploited as soon as
possible. A robot can collect a maximum of one unit of volume of resource at a time. A
robot takes one second to load the resource and returns to the base in order to unload it.
Reward is obtained in the base after one second of unloading, i.e. ρ = 1 unit per second.
The robot then returns to the worksite in order to continue foraging from it, provided
that the worksite has not been previously depleted. Similar missions were explored e.g.
in Krieger and Billeter (2000), Lemmens et al. (2008), Ducatelle et al. (2011).

Worksites in bothmissions are depleted faster whenmore robots work on them at the same
time. The loading rates for the two missions are set so that worksites take a similar average
time to deplete during both Consumption and Collection, and when different experimental
environments are considered.
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Fig. 2 Finite state machine representation of a a solitary, b local broadcaster, c bee robot

3.2 Robots and robot control strategies

The simulated MarXbots (Bonani et al. 2010) are circular robots with a radius of 8.5 cm.2

Each experiment is performed with three types of homogeneous robot swarms that repre-
sent three different robot control strategies commonly used in the swarm robotics literature
and used here to highlight the ICR framework. The control strategies, described below, are
implemented as finite state machines and visualised in Fig. 2.

– Solitary (also in, e.g. Labella et al. 2006; Yang et al. 2009): robots search the environment
for worksites as “scouts” and become “workers” when they discover a worksite. They do
not communicate worksite locations to each other.

– Local broadcaster (also in, e.g. Gutiérrez et al. 2010; Wawerla and Vaughan 2010;
Ducatelle et al. 2014): workers broadcast information about a worksite that they are
currently working on to scouts that are nearby in order to recruit them.

– Bee (also in, e.g. Krieger and Billeter 2000; Pitonakova et al. 2014; Hecker and Moses
2015; Reina et al. 2015a): robots meet in the base in order to exchange information
about worksites. A robot located in the base can be in one of two states: “recruiter” or
“observer”. A recruiter knows a worksite’s location and spends a certain amount of time
in the base in order to recruit observers to its worksite. Observers that are not recruited
have a small probability, p(S), to leave the base in order to become scouts. Scouts that
are unable to find worksites after a certain period of time abandon scouting and return to
the base to become observers.

The swarms are fully decentralised, and any communication between the robots, if appli-
cable to their control strategy, happens locally, using the range and bearing module with a
signal range of approximately 5 m. Each robot utilises odometry in order to keep track of the
location of its current worksite. Odometry errors may occur as a result of minor differential
steering sensor noise and wheel slippage. See online supplementary material, Section S1, for
additional details about the robot control strategies and their parameters.

2 We have previously described the robots in detail in Pitonakova et al. (2016a).
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3.3 Performance metrics and visualisation

When swarm performance is considered, a control strategy that performs significantly better
than others is referred to as thewinning strategy. In static environments, a strategy that makes
the swarm deplete all worksites the quickest, and thus has the lowest mission completion
time, is considered a winning strategy. In dynamic environments, where worksites sponta-
neously disappear, a winning strategy has the highest total reward. Statistical significance
is determined by using Tukey’s honest significant difference (HSD) test (Tukey 1949) in
conjunction with ANOVA, with statistical significance level p = 0.01. Each performance
metric is based on 50 independent simulation runs with different random seeds.

Winning strategies are visualised in matrix plots (e.g. Fig. 3), where each grid cell repre-
sents a mission scenario as a combination of a particular number of worksites and worksite
distance from the base. The grid cell colour represents a winning strategy in that scenario.
On some occasions, there may be more than one winning strategy, provided that the differ-
ences between them are not statistically significant but at least one of them is significantly
better than the third remaining strategy. When there are no statistically significant differ-
ences between any control strategies in a given experiment, all are considered to be winning
strategies. Multiple winning strategies are represented as multiple coloured boxes in a single
matrix plot cell.

Additionally, box plots (e.g. Fig. 4) are utilised for comparing characteristics of multiple
control strategies. A middle horizontal line of a box plot represents a median value of a set of
results. The line is surrounded by a box, representing the inter-quartile range or “middle fifty”
of the result set, and whiskers representing data in the range of 1.5 times the inter-quartile
range, with outliers outside this range shown as plus signs (Matplotlib: Box plots 2017).

4 Consumption in static environments

The relative performances of the control strategies explored here are dependent on the prop-
erties of the experimental scenario being simulated (Fig. 3). Solitary swarms complete the
Consumption mission faster than the other swarms in the least difficult scenarios, where
worksites are numerous and thus easy to find, i.e. in the Scatter25 scenarios with work-
sites that are close to the base. In these environments, recruitment, utilised by both local
broadcasters and bee swarms leads to a strong commitment of multiple robots to a single
worksite, causing physical interference between robots and preventing them from accessing
worksites and from moving around the environment. Additionally, bee swarms also experi-
ence exploitational interference, where robots in the base recruit observers to worksites that
have already been depleted by others.3 Local broadcasters rarely suffer from this type of
interference, since they recruit near worksites and the recruiters thus have more up-to-date
information about whether their worksites still have some reward in them. The disadvantage
of local broadcasters and bee swarms in less difficult scenarios is greater when there are more
robots in the swarm, i.e. when the interference between robots is stronger.

On the other hand, Heap1 scenarios represent the most difficult environments, where
only a single worksite exists and reward is thus difficult to obtain. Local broadcasters and
bee swarms outperform the solitary swarms in most Heap1 environments, since the robots
can share information about where reward is located. Finally, in the intermediate Heap2
and Heap4 scenarios, bee swarms generally cannot perform as well as the other swarms,

3 Exploitational interference was investigated in detail in Pitonakova et al. (2014) as “environmental” inter-
ference.
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Fig. 3 Winning strategies that complete the static Consumption mission the fastest in different environments
using a 10, b 25 and c 50 robots. Box plots of these results are shown in online supplementary material,
Figures S2.1–S2.3

both due to exploitational interference and due to the fact that the bee robots have to spend
additional time travelling to the base to recruit. In these environments, solitary swarms and
local broadcasters perform similarly well when D is small, while more difficult environments
with large D favour local broadcasters.

5 Information flow analysis

Analysing when and how information is acquired by a swarm and how it spreads between
robots is the first step towards understanding why some control strategies are more suitable
than others in a given environment. In this section, two swarm characteristics that characterise
its information flow are introduced: the scouting efficiency and the information gain rate.

5.1 Scouting efficiency

Aswarm’s scouting efficiency can be approximated bymeasuring the time of the firstworksite
discovery in a given experimental run. The longer it takes a swarm to discover its firstworksite,
the worse scouting efficiency it has. Note that the time of the first, rather than of the last or
median worksite discovery, is evaluated, as it is the least affected by interference between
robots.

All swarms are less efficient at scouting in environments where worksites are far away
from the base, since they have a larger area to search. However, the scouting efficiency of bee
swarms is affected more significantly by worksite distance than that of other swarms, since
bee scouts periodically return to the base in order to check whether there are any recruiters
there, which limits the amount of time that they spend scouting. The inefficient scouting
behaviour of bee swarms is most obvious in the difficult Heap1 environments (see Fig. 4 for
results from Heap1 environments and online supplementary material, Figures S2.4–S2.6, for
results from other environments).
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Fig. 4 Time of the first worksite discovery in the static Consumption mission, Heap1 environments, using a
10, b 25 and c 50 robots. The negative effect of large worksite distance, D, is larger in bee swarms, compared
to the other control strategies. Note the different scales of the y-axis for different values of NR

5.2 Information gain

The amount of information that the swarm has at a given point in time is defined as:

I (t) =
NA∑

W

SW(t) (1)

where NA is the number of active (i.e. not depleted) worksites in the environment and SW(t)
is the number of subscribed robots that know the location of a worksite W at time t . The
information gain,4 ΔI , of a swarm represents the change in I and it is defined as:

ΔI (t) = I (t) − I (t − 1)

=
NA∑

W

[SW(t) − SW(t − 1)] (2)

Finally, we can obtain normalised information gain,ΔI (t)′, by dividingΔI by the number
of robots, NR:

ΔI (t)′ = ΔI (t)

NR
(3)

By measuring information gain, we can identify when scouts find new worksites or when
robots are recruited for work. In these cases, a swarm gains new information and ΔI is
positive. Similarly,when robots abandon activeworksites, they no longer know their locations
and they have a negative information gain. When no information is gained or lost, ΔI = 0.

For example, in Scatter25, where it is relatively easy to discover worksites as they are
numerous, all swarms generate a large information gain, especially at the beginning of experi-
mental runs, when scouting is themost successful. Solitary robots (Fig. 5a) maintainΔI ′ > 0
until all worksites are depleted, as the robots are rather evenly spread across the work arena
and thus suffer from minimal interference. The region of the graph during which ΔI ′ > 0
is referred to as a positive information gain region. Solitary swarms have a single positive
information gain region. On the other hand, bee robots (Fig. 5b) learn about worksites in a

4 Information gain is a more general metric inspired by information value that has been formalised in Piton-
akova et al. (2016a)
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Fig. 5 Normalised information gain of a 25 solitary robots, b 25 bee robots in the static Consumptionmission,
Scatter25 scenario with D = 9 m

solitary fashion at the beginning of each run, and recruit each other in the base later, and
therefore have two positive information gain regions in this scenario.

5.3 Information gain rate

Information gain rate, i , characterises how quickly positive information gain regions of a
swarm can grow, in other words, how good robots are in discovering worksites and sharing
worksite locations with each other.

In order to calculate i , the normalised information gain time series is first compressed
into time intervals Ti seconds long by summing the individual values of ΔI (t)′ in each Ti
interval. Compressing the data this way makes it possible to identify and measure trends in
ΔI ′, since individual information gain events, such as a robot finding a worksite or a robot
being recruited, that usually occur a few seconds apart, are grouped together into discrete
time intervals. Positive regions are then distinguished from the rest of the compressed time
series by considering intervals during which the compressed information gain,ΔI ∗, remains
positive. Ti is a parameter to the information gain rate calculation, set to Ti = 60 s. Using a
different value does not affect the order of the swarms based on i (see online supplementary
material, Section S3).

Information gain rate of each positive region, iP, is defined as:

iP =
∑TP

T=0 ΔI ∗(T )

TP
(4)

where TP is the length of a positive region in seconds and ΔI (T )∗ is the total compressed
information gain in a given time interval. The information gain rate of a swarm i is the
maximum5 value of iP measured in an experimental run:

i = max (iP) (5)

5 The maximum, rather than median or average iP is used, because it characterises the best-case increase in
information gain, and it is thus less likely to be affected by physical and exploitational interference between
robots. In other words, i represents the upper limit of how quickly robots can gain information in a given
environment.
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Fig. 6 Information gain rate, i , of 25-robot swarms in the static Consumption mission. Bee swarms enjoy the
highest i in most environments, apart from the Scatter25 scenarios when D ≤ 9 m

In solitary swarms, worksite discoveries are more probable when worksites are abundant
or when the work arena is small. Consequently, the information gain rate of solitary swarms
is high when the number of worksites, NW is high and when worksite distance, D, is small
(Fig. 6). A similar trend can be observed for local broadcasters. On the other hand, the
information gain rate of bee swarms varies less across scenarios and generally does not
increase with NW, unless the worksites are far away from the base (D = 21 m) or when
swarms are small (NR = 10, see online supplementary material, Figure S2.7). Since bee
robots share information in the base, they are able to achieve a relatively high information
gain rate in difficult environments like Heap1. However, their information gain rate usually
cannot increase further in less difficult environments due to interference between robots.
Similar trends can be observed for 50-robot swarms (see online supplementary material,
Figure S2.8.).

6 Cost analysis

A swarm that does not know where worksites are located pays a cost associated with this
uncertainty—the robots are roaming the environment instead of earning reward. However, it
is apparent from the comparison between information flow and mission completion time of
swarms that even if robots can obtain information about where worksites are, this information
might be difficult to utilise. For example, even though bee swarms achieve the highest i in
the Heap environments, they very rarely outperform local broadcasters (Fig. 3). On the other
hand, solitary swarms, that achieve the lowest information gain rate in all environments, are
able to complete the Consumption mission faster than any other swarm when worksites are
easy to find.

We propose here that different swarms pay different costs for both lacking information
and for exploiting information. Note that unlike in the optimal foraging literature, where
“costs” usually represent the energy costs of behaviours (Charnov 1976; Fagen 1987), all
costs are quantified here as proportional to the amount of reward that cannot be obtained
by robots. Using this representation of costs makes it possible to precisely identify stages
of a robot’s work cycle that prevent the robot from obtaining reward and to mathematically
relate a swarm’s information flow to the swarm’s performance. In this section, the work
cycle of a robot is first described, and the costs paid at each stage of the work cycle are
defined.
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Fig. 7 The robot work cycle, along with the incurred costs. Arrows next to cost symbols that point upwards
(downwards) indicate that a robot increases (decreases) the amount of that particular cost paid by the swarm
in the previous time step by transitioning from one stage of the work cycle to another

6.1 The robot work cycle

The robot work cycle (Fig. 7) can be generalised to describe both Consumption and Collec-
tion as follows. A robot starts by being unemployed (U) and searches the environment for
information. When it discovers a worksite, either by itself or as a result of being recruited, it
subscribes (S) to that worksite. It then travels to it and becomes laden (L) with resource. It
starts earning (E) reward when it reaches a reward generator. In the Consumption mission,
the reward generator is the worksite itself and laden robots immediately become earning
robots. In the Collection mission, the reward generator is the base and laden robots need
to travel there in order to earn reward. Note that the total number of robots in a swarm,
NR = U + S and that S ≥ L ≥ E .

During each stage of the work cycle, a robot has the potential to incur certain costs,
also depicted in Fig. 7. There are three types of cost: uncertainty cost, CU, incurred by
unemployed robots that do not know where work is located, displacement cost, CD, that
all subscribed robots pay until they reach a reward generator, and misinformation cost, CM,
incurred by robots that are subscribed to depleted worksites and are thus unable to find or
perform work.

Figure 8 shows an example of how these costs are incurred by robots that utilise recruitment
over time. At the beginning of a run, all robots are unemployed, paying the maximum amount
of uncertainty cost. CU decreases when robots learn about a worksite, while CD increases as
some of those robots are recruits that are not yet located at the worksite. When one worksite
gets depleted (just before the first hour in Fig. 8), the total uncertainty cost decreases, since
there is one less active worksite that the swarm needs to know about. However, robots that are
still subscribed to the depleted worksite incur misinformation cost until they determine that
the worksite is in fact depleted and they abandon it. The task is completed when all worksites
are depleted (at around 1.5h in Fig. 8), and costs fall to 0.
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Fig. 8 An example of costs incurred by robots over time during a single experimental run with 25 local
broadcasters in the static Consumption mission, Heap2 scenario, D = 9 m

Quantifying these costs first requires calculating the amount of reward, r , available per
worksite and per robot:

r = R′
T

NR × N ′
W

(6)

where NR is the total number of robots and N ′
W is the total number of worksites that can be

active at the same time (i.e. in static environments, the number of worksites at the beginning
of an experiment). R′

T represents the total amount of reward available from the N ′
W worksites.

During experiments with static environments, R′
T = 100 (see Sect. 3.1). Note that if reward

r could be obtained by all robots from all worksites at the same time, the task would be
instantly completed.

6.2 Uncertainty cost

When all robots are unemployed, no reward can be obtained and the total amount of uncer-
tainty cost thus equals the total reward from all active worksites.When a robot finds out about
a worksite, the swarm’s CU decreases by r . At any given time, the amount of CU a swarm
pays is thus:

CU =
NA∑

W=1

[(NR − SW) × r ] (7)

where NA is the number of active worksites and SW is the number of robots subscribed to a
worksiteW . Note that the change in uncertainty cost,ΔCU, relates to the swarm’s information
gain, ΔI , in the following way:

ΔCU = CU(t) − CU(t − 1)

=
⎡

⎣
NA(t)∑

W=1

(NR × r) −
NA(t)∑

W=1

(SW(t) × r)

⎤

⎦

−
⎡

⎣
NA(t−1)∑

W=1

(NR × r) −
NA(t−1)∑

W=1

(SW(t − 1) × r)

⎤

⎦

=
⎡

⎣
NA(t)∑

W=1

(NR × r) −
NA(t−1)∑

W=1

(NR × r)

⎤

⎦ − ΔI × r

(8)

Or:

ΔI × r = −ΔCU +
⎡

⎣
NA(t)∑

W=1

(NR × r) −
NA(t−1)∑

W=1

(NR × r)

⎤

⎦ (9)
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In other words, the swarm’s information gain between time steps (t − 1) and t is directly
proportional to the sum of the decrease in the swarm’s uncertainty cost and the change in
the total available reward from all active worksites. If the number of active worksites at time
step t remains the same as in time step (t − 1), i.e. when no worksites are depleted or added
to the environment, then

∑NA(t)
W=1 (NR × r) − ∑NA(t−1)

W=1 (NR × r) = 0 and ΔI × r = −ΔCU.

6.3 Displacement cost

The displacement cost, CD, is defined as:

CD =
NA∑

W=1

[(SW − EW) × r ] +
ND∑

W=1

[(LW − EW) × r ] (10)

where EW is the number of robots earning reward from a worksite W , ND is the number of
depleted worksites and LW is the number of robots laden with resource from a worksite W .
The first term on the right hand side of Eq. 10 represents the displacement cost incurred by
robots subscribed to, but not located at, active worksites. These robots are either travelling to
worksites after being recruited, or, in the case of the Collection mission, they are travelling
between the base and worksites to unload resource (see Fig. 7). The second term represents
cases when robots laden with resource from depleted worksites travel to the base during the
Collection mission.6

The relationship between a reduction in uncertainty cost and an increase in displacement
cost reflects the extent to which robots that learn about a worksite are able to obtain reward
from it. We can characterise this relationship in terms of the displacement cost coefficient, d ,
as:

d = CD
∑NA

W=1(SW × r)
(11)

Note that the denominator inEq. 11 is the term that gets subtracted from theuncertainty cost
for the robots that know about worksites (see Eq. 7). When d = 0 and

∑NA
W=1(SW × r) > 0,

a decrease in uncertainty cost is fully realised as reward, i.e. CD = 0. When d = 1, all robots
that know about worksites are displaced from a reward generator and no reward is obtained,
i.e. CD = ∑NA

W=1(SW × r). Intermediate values of 0 < d < 1 indicate that some robots are
displaced and some are receiving reward.

The displacement cost coefficient is affected by the way in which a robot control strategy
utilises information, as well as by the location at which information is shared. Solitary robots
do not pay CD during the Consumption mission, since they do not recruit and consequently
scouts are already present at a worksite when they learn about it. In swarms that do com-
municate, CD is incurred by recruited robots until they reach a worksite advertised to them.
Additionally, in the bee swarms, scouts incur CD when they travel to the base and back in
order to recruit. Therefore, bee swarms have the highest displacement cost coefficient in
most environments (see Fig. 9 for results from 25-robot swarms and online supplementary
material, Figures S2.9 and S2.10 for results from 10- and 50-robot swarms, respectively).
However, when the number of worksites is small, most notably the Heap1 scenarios and

6 The number of laden, rather than subscribed robots, is used in the second right hand side term of Eq. 10, as a
robot that depletes a worksite during the Collection mission abandons it immediately (i.e. it is not subscribed
to it anymore), but it still needs to travel to the base in order to obtain reward.
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Fig. 9 Median displacement cost coefficient, d, of 25-robot swarms in the static Consumption mission. Bee
swarms usually have the highest d, apart from environments where the number of worksites and worksite
distance is small. The d of solitary swarms is always 0

when worksites are very close to the base, local broadcasters experience congestion and their
d is higher than, or similar to, that of bee swarms.

6.4 Misinformation cost

Onsomeoccasions, anunladen robot becomes subscribed to aworksite that has beendepleted.
Such robots incur a misinformation cost, CM:

CM =
ND∑

W=1

[(SW − LW) × r ] (12)

Recall that robots that are ladenwith resource from a depletedworksite pay a displacement
cost instead.

Solitary robots do not incur CM during the Consumption mission because they do not
recruit, meaning that when a worksite is depleted, all robots that are subscribed to it imme-
diately become aware of that fact and abandon the worksite (see Fig. 10 for results from
25-robot swarms and online supplementary material, Figures S2.11 and S2.12 for results
from 10- and 50-robot swarms, respectively). A similar trend can be observed for bee robots,
especially in Heap scenarios, since bee robots recruit in the base and, in the case of Con-
sumption missions, only when they initially discover a worksite, which means that recruits

Fig. 10 Misinformation cost, CM, of 25-robot swarms in the static Consumption mission. Local broadcasters
pay a larger CM than the other swarms in Heap environments, while in Scatter25 environments, CM of bee
swarms is the largest. Solitary swarms do not pay CM
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are usually already present at worksites when they become depleted. On the other hand, local
broadcasters pay a relatively high amount of CM in Heap environments, since they recruit
continuously until worksites become depleted, which increases the probability of recruits
travelling to worksites from which reward can no longer be gained.

Note that it only makes sense to consider misinformation cost while there are still active
worksites in the environment. Therefore, CM in static Heap1 environments is always equal
to zero.

7 The Information-Cost-Reward framework

The Information-Cost-Reward framework identifies the relationship between scouting effi-
ciency, information gain rate, the tendency of robots to incur costs and the reward that a
swarm obtains at a given point in time. If robots could immediately turn information into
reward, i.e. if they did not have to travel to worksites and did not suffer from contention for
the same unit of reward, the swarm could earn an expected reward R′:

R′ =
NW∑

W=1

(SW × r) (13)

where NW = NA + ND is the total number of worksites (active and depleted). The amount
of actual reward ΔR, that a swarm is earning at a given point in time, is defined as:

ΔR =
NW∑

W=1

(ρ × EW) (14)

where ρ is the reward intake rate (see Sect. 3.1). Equation 15 shows that a swarm cannot
utilise information about worksites and obtain the full expected reward for free—it has to
pay the displacement and misinformation costs associated with its control strategy, that are
directly proportional to the difference between the expected and the actual reward.

CD + CM =
[

NA∑

W=1

(SW × r) −
NA∑

W=1

(EW × r) +
ND∑

W=1

(LW × r)

−
ND∑

W=1

(EW × r)

]
+

[
ND∑

W=1

(SW × r) −
ND∑

W=1

(LW × r)

]

=
NW∑

W=1

(SW × r) −
NW∑

W=1

(EW × r)

= R′ − r

ρ
× ΔR

(15)

Additionally, by also considering all unemployed (i.e. non-subscribed) robots, we can
show how the sum of all three costs, uncertainty, displacement and misinformation, relates
to the swarm’s actual reward. First, we define the potential reward, R∗, as a sum of the
expected reward and the reward that could be achieved by all unemployed robots from all
active worksites, if the unemployed robots knew where the worksites were located:
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R∗ =
NW∑

W=1

[SW × r ] +
NA∑

W=1

[(NR − SW) × r ]

=
[

NA∑

W=1

(SW × r) +
ND∑

W=1

(SW × r)

]
+

[
NA∑

W=1

(NR × r) −
NA∑

W=1

(SW × r)

]

=
NA∑

W=1

(NR × r) +
ND∑

W=1

(SW × r)

(16)

The sum of all three costs is directly proportional to the difference between the potential
reward and the actual reward:

CU + CD + CM =
[

NA∑

W=1

(NR × r) −
NA∑

W=1

(SW × r)

]

+
[

NA∑

W=1

(SW × r) −
NA∑

W=1

(EW × r) +
ND∑

W=1

(LW × r)

−
ND∑

W=1

(EW × r)

]
+

[
ND∑

W=1

(SW × r) −
ND∑

W=1

(LW × r)

]

=
[

NA∑

W=1

(NR × r) +
ND∑

W=1

(SW × r)

]

−
[

NA∑

W=1

(EW × r) +
ND∑

W=1

(EW × r)

]

= R∗ − r

ρ
× ΔR

(17)

Figure 11 graphically summarises the Information-Cost-Reward framework formalised
above. A swarm is understood as a single entity that acts on its environment in order to obtain
reward. Reward, situated in worksites, is dispersed in the environment in a certain way, and
there is a certain probability, p(W ), associated with a worksite being located at a given
point in space. Scouts play the role of a swarm’s sensors. They find new information about
where worksites are, decreasing the amount of CU that the swarm pays. Since the swarm
has new information about worksites, expected reward, R′, is generated. Upon acquiring a
new piece of information, scouts can become workers, but they can also pass the information
that they have to other members of the swarm in order to recruit more workers. The swarm’s
information gain, ΔI , describes when information is gained and lost, while the information
gain rate, i , characterises how quickly robots can gain information about worksite locations
through scouting or recruitment.

Workers act as actuators of the swarm. They can share information with each other, and
they turn the information that they have into actual reward, R. However, there is a potential,
unique to each combination of a robot control strategy, environment structure, and swarm
mission that the workers incur displacement cost in order to utilise information and obtain
reward. Furthermore, by acting on the environment, workers eventually cause worksites to
become depleted. This can result in exploitational interference and in misinformation cost
being incurred. At the same time, depletion of worksites decreases p(W ), causing scouts to
become less successful over time.
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Fig. 11 Graphical representation of the Information-Cost-Reward framework. Arrows next to symbols that
point upwards (downwards) indicate that a particular cost or probability increases (decreases) compared to
the previous time step, as a result of an action that the swarm takes

Analyses supported by the ICR framework allow us not only to explain the observed
performance of a swarm, but also to form hypotheses about how swarms will perform in new
missions and environments. This is demonstrated in the following two sections.

8 Displacing the reward: Collection in static environments

Recall that during the Consumption mission, bee swarms are disadvantaged, as they pay an
unnecessary amount of displacement cost as a result of limiting their recruitment activity to
occur only in the base. However, in the Collection mission, robots need to periodically travel
between worksites and the base in order to drop off resource. In the terminology of the ICR
framework, a robot needs to periodically displace itself away from its worksite in order to
obtain reward. It is therefore hypothesised that:

Hypothesis 8.1 Provided that their information gain rate is comparable to that achieved
during Consumption tasks, bee swarms will outperform the other control strategies in the
Collection mission, since the higher displacement costs that result from recruitment in the
base will be compensated for by the fact that the Collection task requires all robots to travel
to the base.

An ICR analysis (see online supplementary material, Section S4) reveals that the scouting
efficiency and the information gain rate of swarms are indeed similar during Collection
and Consumption. This is because the structure of the environments remains the same. Bee
swarms usually have the highest information gain rate, followed by local broadcasters and
solitary swarms, but their scouting efficiency is negatively affected by worksite distance to a
higher degree than in the other swarms. On the other hand, displacement cost,CD, is incurred
by robots from all three swarms and during the majority of a robot’s work cycle.

Hypothesis 8.1 is supported in the Heap environments (Fig. 12), most notably in Heap1,
where bee swarms gain a significantly higher reward from Collection than other swarms. In
these environments, bee swarms can take advantage of their high i , while their displacement
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Fig. 12 Winning strategies that complete the static Collection mission the fastest in different environments
using a 10, b 25 and c 50 robots. Box plots of these results are shown in online supplementary material,
Figures S4.11–S4.13

cost becomes less relevant due to the nature of the mission. On the other hand, they cannot
outperform the other swarms in easy environments, where the number of worksites is high
(NW = 25) or when worksites are close to the base (D = 5 m). This is caused by the fact
that apart from information gain rate and displacement cost, misinformation cost affects the
swarm performance as well. Bee swarm robots incur the highest CM in most environments
(see online supplementary material, Section S4.4), i.e. they exhibit the highest exploitational
interference. This is very disadvantageous in environments like Scatter25, where the swarm
needs to spread out in order to explore and exploit the environment efficiently.

9 Missing opportunities: Working in dynamic environments

In the dynamic environments explored here, worksite locations change periodically over time.
Each experimental run is split into a number of change intervals. At the end of each interval,
undepleted worksites are removed from the environment and new worksites are added at
locations randomly generated according to the scenario type. There are two versions of each
dynamic mission, a slow and a fast version. The environment changes 10 times in the slow
and 20 times in the fast version, representing different degrees of challenge. Refer to the
online supplementary material, Section S5 for further details on how dynamic environments
were set up.

Unlike in static environments, swarms in dynamic environments need to re-discover work-
sites after the environment changes. Furthermore, reward from a given worksite is only
available temporarily, which means that it needs to be extracted as soon as possible, making
it more important for the swarm to spread itself evenly across worksites and to minimise its
displacement and misinformation costs. It is thus hypothesised that:

Hypothesis 9.1 Inefficient scouting behaviour of bee swarms will cause them to have lower
scouting efficiency relative to the other swarms in a greater number of dynamic, compared
to static, environments.
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Fig. 13 Median time of the first worksite discovery in each change interval in the slow dynamic Consumption
mission, Heap1 environments, using a 10, b 25 and c 50 robots. The negative effect of large worksite distance,
D, is larger in bee swarms, compared to the other control strategies. Note the different scales of the y-axis for
different values of NR

Fig. 14 Winning strategies in the slow dynamic Consumption mission using a 10, b 25 and c 50 robots. Box
plots of these results are shown in online supplementary material, Figures S5.45a, S.5.46a and S.5.47a

Hypothesis 9.2 Bee swarms, that have an unnecessarily high displacement cost coefficient in
the static Consumptionmission, will perform significantly worse than other control strategies
in the dynamic version of the mission.

Hypothesis 9.3 Solitary swarms, that have the lowest tendency to incur misinformation
cost, will achieve a performance benefit over other strategies in more scenarios when an
environment is dynamic. By extension, strategies that incur high misinformation cost will
perform poorly in dynamic environments.

Figure 13 shows the scouting efficiency of swarms in the slow dynamic Consumption
mission. Refer to online supplementary material, Section S5.1 for analysis of scouting effi-
ciency in other missions. In line with Hypothesis 9.1, bee swarms are not able to discover
new worksites after the environment changes as quickly as the other swarms. Their difficulty
is apparent regardless of worksite distance form the base, but it is stronger when worksites
are further away. This also negatively affects the ability of bee robots to gain and share infor-
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Fig. 15 Winning strategies in the slow dynamic Collection mission using a 10, b 25 and c 50 robots. Box
plots of these results are shown in online supplementary material, Figures S5.48a, S.5.49a and S.5.50a

mation, preventing bee swarms from reaching the highest i in many dynamic environments
(see online supplementary material, Section S5.2).

Figure 14 and Figure S5.43 in the online supplementary material depict winning strategies
in the slow and fast dynamic Consumption missions and support the expectations of Hypoth-
esis 9.2. Even though bee swarms perform similarly well compared to the other swarms in the
Heap1 environments during the static Consumption mission (see Fig. 3), their performance
is very rarely equivalent and never better than that of other swarms in the dynamic Consump-
tion mission. While their poor performance is caused partially by their inefficient scouting,
it is also low due to their inefficient use of information and extremely high displacement
cost coefficient (see online supplementary material, Section S5.3). On the other hand, in line
with Hypothesis 9.3, solitary swarms outperform the other swarms in a greater number of
environments compared to the static Consumption mission, due to the lower costs that they
incur (see online supplementary material, Sections S5.3 and S5.4).

According to Hypothesis 9.3, local broadcasters, which pay the highest amount of CM

in Heap environments (see online supplementary material, Section S5.4), should be outper-
formed by other swarms. This is, however, not true, and local broadcasters are a winning
strategy in most Heap environments in the dynamic Consumption mission. This is because
they are able to trade off high CM for a relatively fast information gain rate and a relatively
low displacement cost incurred (see online supplementary material, Sections S5.2 and S5.3).

Winning strategies in the dynamic Collection mission are depicted in Fig. 15 and in online
supplementary material, Figure S5.44. As was the case in the static Collection mission, bee
swarms are the winning strategy in the most difficult environments, such as Heap1 and
Heap2 with a large D, especially when the environment changes slowly. However, in line
with Hypothesis 9.3, bee swarms do not perform as well as in the static Collection mission
(see Fig. 12) in scenarios with intermediate and low difficulty, such as the Heap2, Heap4 and
Scatter25 scenarios with a small D. In these dynamic environments, bee swarm robots tend to
overcommit to worksites, incurring a higher amount ofCM than the other swarms (see online
supplementary material, Section S5.4). Their displacement cost is still “discounted” to some
extent by the nature of the Collection task, but to a lesser degree than was the case in static
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environments. The disadvantage of bee swarms is more pronounced when the environment
changes quickly (see online supplementary material, Figure S5.44).

The advantage of solitary swarms over the other swarms is smaller in the dynamic Col-
lection, compared to the dynamic Consumption mission, especially when the environment
changes slowly. However, Hypothesis 9.3 is still supported, as solitary swarms never outper-
form the other swarms when performing Collection in static environments (see Fig. 12). The
difficulty encountered by solitary swarms during dynamic Collection missions stems from
the fact that the robots need to travel between the base and worksites and are therefore not
able to sample the environment as quickly. This difficulty is also reflected by their lower
information gain rate (see online supplementary material, Section S5.2).

10 Discussion

10.1 Summary

We have performed simulated experiments with three types of homogeneous robot swarms
(solitary, local broadcaster and bee) in the context of collective foraging and have identi-
fied relevant metrics, under the umbrella of the Information-Cost-Reward framework, that
affect swarm performance. Scouting efficiency is related to the ability of swarms to discover
new worksites. Information gain rate, i , measures how well robots are able to obtain new
information and share it amongst themselves, decreasing the swarm’s uncertainty cost, CU.
Displacement cost, CD, and misinformation cost, CM, characterise how efficiently a swarm
can turn information about worksites into reward. Displacement cost is incurred by robots
that are informed about worksites but are spatially remote from them and are therefore unable
to immediately obtain reward. Misinformation cost is incurred by robots with outdated infor-
mation that are attempting to reach a worksite that has already been depleted by others.
Recruitment often leads to a tendency of robots to incur CD and CM, with the extent of these
costs depending on the structure of the environment and on scouting and recruitment strate-
gies of the robots. The sum of CD and CM accounts for the difference between the swarm’s
expected reward, which the swarm should be receiving based on the number of robots that
know about worksites, and the actual reward that the swarm receives at a given point in time.
The sum of all three costs, CU, CD and CM, is equal to the difference between the potential
reward available in the environment and the swarm’s actual reward.

The relationship between the characteristics of a robot control strategy and properties of
the environment is complex, and there is often a trade-off between being able to achieve a
high information gain rate, usually through recruitment, and having to pay costs associated
with discovering, sharing and using information about worksites. This trade-off is usually
described in terms of the “exploration versus exploitation” paradigm. As we have shown
here, exploration can further be divided into its scouting and recruitment aspects, and its
effectiveness measured by scouting efficiency and information gain rate. Exploitation has
various costs associated with it that manifest themselves to varying degrees depending on
the swarm’s control strategy and the nature of the swarm’s mission and of its environment.

Solitary swarms, that do not use recruitment and thus have a small i but also pay a small
amount of CD and CM, outperform the other swarms in the least difficult environments
where worksites are easy to find. This is especially true in dynamic environments, where
worksite locations change over time, and where worksites thus need to be discovered and
exploited quickly. Local broadcasters, that recruit each other near worksites, usually have a
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higher i and pay a higher amount of CD and CM than solitary swarms and are thus suitable in
environmentswhereworksites aremore difficult to discover.Bee swarms,where robots recruit
each other in the base, usually achieve the highest i , but they also incur high displacement
and misinformation costs. This is often disadvantageous in the Consumption mission and
in dynamic environments, where robots are required to spend as much time as possible
outside of the base exploring and exploiting the environment. On the other hand, the costs of
bee swarms are, to a certain extent, “discounted” during Collection, since the mission itself
required the robots to travel to the base, allowing bee swarms to outperform other control
strategies in many environments. Similar trends in relative performances of various robot
control algorithms with and without recruitment have been identified by other authors (e.g.
Krieger and Billeter 2000; Gutiérrez et al. 2010; Wawerla and Vaughan 2010; Sarker and
Dahl 2011; Lee et al. 2013; Hecker and Moses 2015).

10.2 The ICR framework and future work

The ICR framework is conceptually located between swarm analysis approaches, which are
based on information theory and measure entropy in observed collective behaviour, and
mathematical modelling approaches, which describe the behaviour of swarms as a whole by
using differential equations.

It has previously been suggested that swarms should be understood as information-
processing cognitive systems (Trianni et al. 2011;Reina et al. 2015b). In contrast to traditional
information-based approaches, the ICR framework characterises information flow not in
terms of transfer entropy, but in terms of the information gain rate, i . This approach has the
following three advantages. Firstly, transfer entropy is to some extent a proxy measure of
information flow, because it measures the coupling between “states” of two agents at two
different time steps, rather than measuring whether information was exchanged between
them. On the other hand, information gain, ΔI , the rate of which is used in this paper to
characterise information flow, is calculated as a change in the number of informed robots and
it thus directly captures information exchange. Secondly, sinceΔI is based on the number of
informed robots, it does not require us to define what a robot “state” is in relation to having
information about a worksite. Informed robots may be performing a number of different
operations, for example, gathering resources, travelling to the base, etc., as is typical for
foraging and other swarm tasks. Thirdly, unlike entropy, information gain can be directly
related to the amount of uncertainty cost that the swarm pays (see Sect. 6.2, Eqs. 8 and 9)
and thus to the ability of the swarm to turn information into reward (see Sect. 7, Eq. 17).

Unlike mathematical modelling approaches, the ICR framework is not suitable for mod-
elling the swarm per se. Because of this, it is not possible to use it for precisely predicting
or optimising swarm performance, or to study macroscopic robot population dynamics, as
can be done by using probabilistic finite state machines and differential equations (e.g. Liu
and Winfield 2010; Montes de Oca et al. 2011; Mather and Hsieh 2012; Reina et al. 2015b;
Scheidler et al. 2016; Valentini et al. 2016). Similarly, it is not possible to use the framework
to uncover behaviour rules of agents, as can be done by using Turing Learning (Li et al.
2016). The ICR framework is instead useful in the following two ways. Firstly, it allows us to
precisely identify what part of the robot work cycle leads to the observed swarm performance
by characterising information flow and various costs that robots incur. Secondly, it is useful
when forming hypotheses about the performance of swarms in newmissions, i.e. it can guide
algorithm selection, as it was demonstrated in Sects. 8 and 9. As a further example, consider
the following scenario.
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Consider a bee-inspired swarm that initially is optimised to discover and collect minerals.
When the same swarm is deployed to search for and rescue hikers, performance strongly
deteriorates. A parameter optimisation technique is used to determine a new set of parame-
ter values that satisfy the performance requirements of the new search-and-rescue mission.
However, it is likely that the newly optimised behaviour will deliver a poor performance again
in a different context, for example when hiker density or hiker movement patterns change
over the course of the year. Using the ICR framework to analyse the swarm performance
could reveal that bee-inspired swarms perform poorly in dynamic environments due to their
poor scouting efficiency and the high displacement and misinformation costs that they pay.
We could, for example, hypothesise that the scouting efficiency of the swarm will improve
when a number of bee scouts will always be active in the environment. Or, we could form
and test a hypothesis that a local broadcaster algorithm, where robots do not periodically
travel to a central location, will incur a lower costs and thus deliver a better performance. In
other words, we would be able to apply high-level knowledge about various robot control
algorithms to form hypotheses about their performance.

Because it can facilitate understanding of underlying mechanisms that lead to macro-
level behaviour, the ICR framework is the first step towards a swarm design methodology
where design principles can be separated from algorithm implementation and shared between
research groups andwith the robotics industry.Recent experiments have shown that bothman-
ual and automated swarm design methodologies significantly benefit from being constrained
to a set of possible robot behaviours, as opposed to being open-ended (Francesca et al. 2014).
Using the ICR framework, we could identify such behaviour sets by studying how different
parts of robot control algorithms affect the overall swarm performance. To this end, we are
currently working on a catalogue of “design patterns” for robot swarm foraging. We are also
performingmore simulated and real-world experiments with different robot control strategies
in order to verify the ICR framework and validate the simulation studies presented here.

In the future, the ICR framework has to be verified, and possibly refined, based on data
from a wider variety of swarm foraging tasks. These tasks could involve, for instance, costly
transitions betweenworksites, a changing number of robots orworksites, heterogeneous robot
swarms, or worksites that multiple robots have to cooperate on. It is probable that the ICR
framework will need to be extended to account for types of costs other than those discovered
in simulation studies presented here. For example, a “cooperation” cost might be incurred
when robots need to wait for each other in order to work together. Nevertheless, here we have
demonstrated a methodology for identifying these costs and for relating them to the swarm
information flow and performance. Finally, it is important to further understand the effect of
robot parameters, such as sensor range, communication range, wheel speed, sensory-motor
noise on information flow and costs.

11 Conclusion

Algorithms for swarm foraging are currently difficult to understand and design due to the
nonlinear nature of the emergent collective behaviour. The Information-Cost-Reward frame-
work developed in this paper demonstrates how information flow in swarms can be formally
related to the amount of reward that a swarm receives from the environment during forag-
ing. Because of its emphasis on a more high-level, information-centred understanding, the
framework allows us to not only explain existing behaviour, but also to hypothesise about
the relative performance of robot control strategies in new missions and environments. This
work is a step towards a design methodology where swarm control algorithms are created by
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selecting the appropriate robot behaviour, such as a certain scouting or recruitment strategy,
based on its effect on swarm performance. Unlike the existing swarm modelling methods,
that are often used for robot algorithm optimisation, the ICR framework is useful during
algorithm selection, complementing existing approaches.

The ICR framework also has implications for the field of swarm cognition (Trianni et al.
2011). By understanding a swarm as a single entity that gathers and processes information,
the framework can help us to gain insights into how collective intelligence emerges, since
it allows us to ask fundamental questions, such as what the importance of embodiment in
collective intelligence is, or what properties of information flow inside a distributed system
lead to a desired collective action.

Acknowledgements This work was supported by EPSRC Doctoral Training Centre grants EP/G03690X/1
and EP/N509747/1. All source code, data and ANOVA tables supporting this study are openly available from
the University of Southampton repository at http://eprints.soton.ac.uk/id/eprint/403544.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Amazon Prime Air. (2016). http://amzn.to/2af8Zcd. Accessed on August 17, 2017.
Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot group diversity.

Autonomous Robots, 8(3), 209–237.
Balch, T., & Arkin, R. C. (1994). Communication in reactive multiagent robotic systems. Autonomous Robots,

1(1), 27–52.
Bonani, M., Longchamp, V., Magnenat, S., Philippe, R., Burnier, D., et al. (2010). The MarXbot, a miniature

mobile robot opening new perspectives for the collective-robotic research. In Proceedings of the 2010
IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) (pp. 4187–4193).
Piscataway, NJ: IEEE Press.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm
engineering perspective. Swarm Intelligence, 7(1), 1–41.

Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for robot swarms: A
design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous
and Adaptive Systems, 9(4), Article no. 17.

Cartade, P., Lenain, R., Thuilot, B., Benet, B., & Berducat, M. (2012). Motion control of a heterogeneous fleet
of mobile robots: Formation control for achieving agriculture task. In Proceedings of the international
conference on agricultural engineering (CIGR-AgEng ’12).

Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2),
129–136.

Dahl, R. S., Mataric, M. J., & Sukhatme, G. S. (2009). Multi-robot task allocation through vacancy chain
scheduling. Robotics and Autonomous Systems, 57, 674–687.

Ducatelle, F., Di Caro, G. A., Pinciroli, C., & Gambardella, L. M. (2011). Self-organized cooperation between
robotic swarms. Swarm Intelligence, 5(2), 73–96.

Ducatelle, F., Di Caro, G. A., Forster, A., Bonani, M., Dorigo, M., Magnenat, S., et al. (2014). Cooperative
navigation in robotic swarms. Swarm Intelligence, 8(1), 1–33.

Fagen, R. (1987). A generalized habitat matching rule. Evolutionary Ecology, 1, 5–10. https://doi.org/10.
1007/BF02067264.

Fernandez-Marquez, J. L., Di Marzo, Serugendo G., Montagna, S., Viroli, M., & Arcos, J. L. (2013). Descrip-
tion and composition of bio-inspired design patterns: A complete overview. Natural Computing, 12(1),
43–67.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina, A., Soleymani,
T., Salvaro, M., Pinciroli, C., Trianni, V., & Birattari, M. (2014). An experiment in automatic design of
robot swarms. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, & T.

123

http://eprints.soton.ac.uk/id/eprint/403544
http://creativecommons.org/licenses/by/4.0/
http://amzn.to/2af8Zcd
https://doi.org/10.1007/BF02067264
https://doi.org/10.1007/BF02067264


Swarm Intell (2018) 12:71–96 95

Stützle (Eds.), Proceedings of the international conference on swarm intelligence (ANTS 2014). Lecture
Notes in Computer Science (Vol. 8667, pp 25–37). Berlin: Springer.

Gardelli, L., Viroli, M., & Omicini, A. (2007). Design patterns for self-organising systems. In H. D. Burkhard,
G. Lindemann,Verbrugge, et al. (Eds.),Proceedings of the 5th international central and easternEuropean
conference on multi-agent systems (CEEMAS 2007) (pp. 123–132). Berlin: Springer.

Gerkey, B., & Mataric, M. J. (2003). Multi-robot task allocation: Analyzing the complexity and optimality of
key architectures. In Proceedings of the 2003 IEEE international conference on robotics and automation
(ICRA 2003) (Vol. 3, pp. 3862–3868). Piscataway, NJ: IEEE Press.

Griswold, A. (2016). Uber’s self-driving cars are on the road. Quartz. http://bit.ly/2ogEPxN. Accessed on
August 17, 2017.

Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-
making based on social odometry. Neural Computing and Applications, 19(6), 807–823.

Hamann, H. (2013). Towards swarm calculus: Urn models of collective decisions and universal properties of
swarm performance. Swarm Intelligence, 7(2), 145–172.

Hecker, J. P., & Moses, M. E. (2015). Beyond pheromones: Evolving error-tolerant, flexible, and scalable
ant-inspired robot swarms. Swarm Intelligence, 9, 43–70.

Jevtic, A., Gutiérrez, Á., Andina, D., & Jamshidi, M. (2012). Distributed bees algorithm for task allocation in
swarm of robots. IEEE Systems Journal, 6(2), 296–304.

Krieger, M. J. B., & Billeter, J. B. (2000). The call of duty: Self-organised task allocation in a population of
up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84.

Labella, T. H., Dorigo, M., & Deneubourg, J. L. (2006). Division of labour in a group of robots inspired by
ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.

Lee, J. H., Ahn, C. W., & An, J. (2013). A honey bee swarm-inspired cooperation algorithm for foraging
swarm robots: An empirical analysis. In Proceedings of the 2013 IEEE/ASME international conference
on advanced intelligent mechatronics (AIM 2013) (pp. 489–493). Piscataway, NJ: IEEE Press.

Lemmens, N., de Jong, S., Tuyls, K., & Nowe, A. (2008). Bee behaviour in multi-agent systems. In K. Tuyls,
A. Nowe, Z. Guessoum, et al. (Eds.), Adaptive agents and multi-agent systems III. Adaptation and
multi-agent learning. Lecture notes in computer science (Vol. 4865, pp. 145–156). Berlin: Springer.

Lerman,K., Jones, C., Galstyan,A.,&Mataric,M. J. (2006).Analysis of dynamic task allocation inmulti-robot
systems. The International Journal of Robotic Research, 25, 225–242.

Li, W., Gauci, M., & Groß, R. (2016). Turing learning: A metric-free approach to inferring behavior and its
application to swarms. Swarm Intelligence, 10(3), 211–243.

Liu, W., & Winfield, A. F. T. (2010). Modelling and optimisation of adaptive foraging in swarm robotic
systems. The International Journal of Robotics Research, 29(14), 1743–1760.

Mataric, M. J., Sukhatme, G. S., & Ostergaard, E. H. (2003). Multi-robot task allocation in uncertain environ-
ments. Autonomous Robots, 14(2–3), 255–263.

Mather, T. W., & Hsieh, M. A. (2012). Ensemble modeling and control for congestion management in auto-
mated warehouses. In Proceedings of the 2012 IEEE international conference on automation science
and engineering (CASE 2012) (pp. 390–395). Piscataway, NJ: IEEE Press.

Matplotlib:Boxplots. (2017). https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot.Accessed
on August 17, 2017.

Miller, J.M.,Wang,X.R., Lizier, J. T., Prokopenko,M.,&Rossi, L. F. (2014).Measuring information dynamics
in swarms. In M. Prokopenko (Ed.), Guided self-organisation: Inception, Emergence, Complexity and
Computation (Vol. 9, pp. 343–364). Berlin: Springer.

Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-
rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-
making. Swarm Intelligence, 5(3–4), 305–327. https://doi.org/10.1007/s11721-011-0062-z.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., et al. (2012). ARGoS: A modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.

Pini, G., Brutschy, A., Pinciroli, C., Dorigo, M., & Birattari, M. (2013). Autonomous task partitioning in robot
foraging: An approach based on cost estimation. Adaptive Behavior, 21(2), 118–136.

Pitonakova, L., Crowder, R., & Bullock, S. (2014). Understanding the role of recruitment in collective robot
foraging. In H. Lipson, H. Sayama, J. Rieffel, et al. (Eds.), Proceedings of the fourteenth international
conference on the synthesis and simulation of living systems (ALIFE 14) (pp. 264–271). Idge, MA: MIT
Press.

Pitonakova, L., Crowder, R., & Bullock, S. (2016a). Information flow principles for plasticity in foraging robot
swarms. Swarm Intelligence, 10(1), 33–63.

Pitonakova, L., Crowder, R., & Bullock, S. (2016b). Task allocation in foraging robot swarms: The role of
information sharing. InG.Gershenson, T. Froese, J.M. Siqueiros, et al. (Eds.),Proceedings of the fifteenth

123

http://bit.ly/2ogEPxN
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot
https://doi.org/10.1007/s11721-011-0062-z


96 Swarm Intell (2018) 12:71–96

international conference on the synthesis and simulation of living systems (ALIFE XV) (pp. 306–313).
Cambridge, MA: MIT Press.

Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015a). A quantitative micro-macro link for collective
decisions: The shortest path discovery/selection example. Swarm Intelligence, 9(2), 75–102.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015b). A design pattern for decen-
tralised decision making. PLoS ONE, 10(10), e0140,950.

Sarker, M. O. F., & Dahl, T. S. (2011). Bio-inspired communication for self-regulated multi-robot systems.
In T. Yasuda (Ed.),Multi-robot systems, trends and development. (pp. 367–392). InTech. https://doi.org/
10.5772/13104.

Scheidler, A., Brutschy,A., Ferrante, E.,&Dorigo,M. (2016). The k-unanimity rule for self-organized decision
making in swarms of robots. IEEE Transactions on Cybernetics, 99, 1175–1188.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27,
379–423.

Sperati, V., Trianni, V., & Nolfi, S. (2011). Self-organised path formation in a swarm of robots. Swarm
Intelligence, 5(2), 97–119.

Stiefelhagen, M., Van Der Werff, K., Meijer, B. R., & Tomiyama, T. (2004). Distributed autonomous agents,
navigation and cooperation with minimum intelligence in a dynamic warehouse application. In Proceed-
ings of the 2004 IEEE international conference on systems, man and cybernetics (Vol. 6, pp. 5573–5578).
Piscataway, NJ: IEEE Press.

Trianni, V., Tuci, E., Passino, K. M., & Marshall, J. A. R. (2011). Swarm cognition: An interdisciplinary
approach to the study of self-organising biological collectives. Swarm Intelligence, 5(1), 3–18.

Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.
Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2016). Collective decision with 100 Kilobots: Speed

versus accuracy in binary discrimination problems. Autonomous Agents and Multi-Agent Systems, 30(3),
553–580.

Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2012). Quantifying and tracing
information cascades in swarms. PLoS ONE, 7(7), e40,084.

Wawerla, J., & Vaughan, R. T. (2010). A fast and frugal method for team-task allocation in a multi-robot trans-
portation system. In Proceedings of the 2010 IEEE international conference on robotics and automation
(ICRA 2010) (pp. 1432–1437). Piscataway, NJ: IEEE Press.

Yang, Y., Zhou, C., & Tian, Y. (2009). Swarm robots task allocation based on response threshold model. In
Proceedings of the 4th international conference on autonomous robots and agents (ICARA 2009) (pp.
171–176). Piscataway, NJ: IEEE Press.

123

https://doi.org/10.5772/13104
https://doi.org/10.5772/13104

	The Information-Cost-Reward framework for understanding robot swarm foraging
	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 Simulation environment and swarm missions
	3.2 Robots and robot control strategies
	3.3 Performance metrics and visualisation

	4 Consumption in static environments
	5 Information flow analysis
	5.1 Scouting efficiency
	5.2 Information gain
	5.3 Information gain rate

	6 Cost analysis
	6.1 The robot work cycle
	6.2 Uncertainty cost
	6.3 Displacement cost
	6.4 Misinformation cost

	7 The Information-Cost-Reward framework
	8 Displacing the reward: Collection in static environments
	9 Missing opportunities: Working in dynamic environments
	10 Discussion
	10.1 Summary
	10.2 The ICR framework and future work

	11 Conclusion
	Acknowledgements
	References




