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ABSTRACT This study modeled the moving-vehicle-induced forcing excitation on a single-span prismatic bridge as a
multiple frequency-multiplication harmonic load on the modal coordinates of a linear elastic simple Euler—Bernoulli
beam, and investigated the forced modal oscillation and resonance behavior of this type of dynamic system. The forced
modal responses consist of multiple frequency-multiplication steady-state harmonics and one damped mono-frequency
complementary harmonic. The analysis revealed that a moving load induces high-harmonic forced resonance
amplification when the moving speed is low. To verify the occurrence of high-harmonic forced resonance, numerical
tests were conducted on single-span simple beams based on structural modeling using the finite element method (FEM)
and a moving sprung-mass oscillator vehicle model. The forced resonance amplification characteristics of the
fundamental mode for beam response estimation are presented with consideration to different end restraint conditions.
The results reveal that the high-harmonic forced resonance may be significant for the investigated beams subjected to
vehicle loads moving at specific low speeds. For the investigated single-span simple beams, the moving vehicle carriage
heaving oscillation modulates the beam modal frequency, but does not induce notable variation of the modal oscillation
harmonic structure for the cases that vehicle of small mass moves in low speed.
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1 Introduction Moving vehicle loads are the most common load type
for bridges and traffic infrastructure. The excitation of

The dynamic behavior of bridges and spanning structures different moving vehicle loads on the supporting

during operation is the subject of ongoing research in the
field of structural and infrastructure engineering. Most
existing studies on this subject have focused on the free
vibration behavior of structures. For beams with general
boundary restraints, modal characteristic equations have
been formulated, and the modal frequencies and mode
shapes have been analyzed [1-3]. Under the different
actions and mechanisms of interaction of the operation
and environmental loads with bridges, structural
vibrations exhibit various patterns. Therefore, it is
important to understand the vibration behavior patterns
and characteristics for bridge design and behavior
manipulation.
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structures may induce various resonances [4—16] and
diverse spatial-temporal shapes and patterns [17-21]
under different operation scenarios. If each moving
vehicle load is simplified as a concentrated force, the
governing equations in the modal domain will be
uncoupled and the analytical solutions of the modal
response can be derived. A classical analytical solution
has been derived for a single-span simply supported
uniform beam [22]. According to this derivation, when
forced resonance occurs, the critical moving speed is
equal to twice the beam span length divided by the period
of the fundamental mode. Pesterev et al. [23] analytically
derived the maximum response function for a simply
supported beam and numerically constructed this function
for a clamped—clamped beam based on the assumption
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that the beam’s maximum response can be approximated
using the fundamental mode. Mamandi et al. [24]
investigated the longitudinal-transverse nonlinear coup-
led dynamic behavior of an inclined uniform pinned—
pinned beam under the simultaneous action of an axial
force and transverse moving force with consideration to
mid-plane stretching. Piccardo and Tubino [25] analyzed
the amplitude modulation characteristics and maximum
response of Euler—Bernoulli beams under resonant
harmonic moving loads. Johansson et al. [26] derived a
closed-form solution for the vibration of a multi-span
beam under moving loads by solving the governing
equation of motion in the frequency domain using
Laplace transformation. Gasi¢ et al. [27] conducted a
study based on assumed modes with polynomial shape
functions to approximately determine the dynamic
response of a flexible L-shaped structure with a lumped
tip mass subjected to a moving load. Tan et al. [28]
analyzed the natural frequency and mode shapes of a
continuous beam bridge under different vehicle loading
conditions. Maximov and Dunchev [29] analytically
investigated the dynamic response of a bridge crane to the
telpher moving load based on the multi-harmonic
interpolation of the structural deflection shape. Jeong
et al. [30] analyzed the vibration of a multi-span beam
subjected to a moving point force using the frequency
domain spectral element method.

This study analytically investigated the moving-
vehicle-induced multiple frequency-multiplication modal
forced oscillation (MFMFO) behavior of supporting
single-span Euler—Bernoulli beams with end rotation
linear elastic restraints (ERLERs). A unified load model
is proposed to represent the moving-load-induced forcing
excitation on the modal coordinates as multiple
frequency-multiplication harmonic forces. The forced
resonance occurrence condition is discussed, and the
closed-form modal oscillation and resonance responses
are derived. Case studies were conducted using finite
element method (FEM) structural modeling based on
numerical integration to verify the analytical pattern and
accuracy of the derived solution. Based on the analytical
solutions, the modal oscillation amplitude magnification
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2 Formulation
2.1 System modeling

The investigated structure is a single-span beam with
ERLER of length L and uniform cross-section, as shown
in Fig. 1. The considered loads are the two-axle vehicle
loads with an axle spacing of /, in a series with a uniform
spacing distance [/, traveling at constant speed s. Under
the assumptions that the bridge conforms to the basic
hypothesis of a linear elastic Euler—Bernoulli beam with
Rayleigh damping and each vehicle load can be
simplified as a moving sprung-mass oscillator to account
for its heaving oscillation, the governing equations of
motion (EOM) for the vertical vibration of the bridge and
the vehicles are expressed as follows:

EI(?“V (x,1) N Fvix,t) _0v(x,0) e ov(x, 1)
ox g or "y
N,
=Zi=1F15(X—Sli), (1a)

mvév,i + kv [QV,J‘ - V(Sti’ t)] = 07 (lb)

Fi=k,q.;—v(st,D)]+mg, (1c)
where El, m = pA, ¢y, ¢;, and v(x,1) denote the flexural
rigidity, mass of the unit length, mass proportional
Rayleigh damping factor, stiffness proportional Rayleigh
damping factor, and vertical deformation of the beam
bridge, respectively; t,=t—(i—1)T (T = l—o) denotes the
traveling time of the ith moving force F,«s on the beam
bridge owing to the ith vehicle; ¢ is Dirac’s delta
function; x is the longitudinal coordinate of the beam
bridge, which is counted from the origin at the left end-
support of the beam bridge; m,, k,, and ¢,,; are the mass,
stiffness, and vertical motion of the ith vehicle sprung
mass oscillator, respectively; ‘-’ denotes differentiation
with respect to time #; g is the gravitational acceleration.
The associated boundary conditions of the beam are
expressed as follows:

and phase angle characteristics for single-span generally EIE)ZV(O,t) = H.Eav ©.9 v(0,1=0, (2a)
supported simple beams were computed. ox? "L ox ’ ’
X
f—
ly
kv ...... kv k\
kg EL pA, L f@' Ky

Fig. 1

Bridge consisting of single-span prismatic linear elastic Euler beam subjected to moving vehicle loads.
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EI EI . .
where ky,— and k,;— are the rotational spring constants

at the left and right ends of the beam bridge, respectively.
For simplicity, the cases wherein [, = L are considered in
the following derivation.

2.2 Beam eigen-mode analysis

To interpolate the beam response, the beam modal
information ¢, and w,, that is, the mass-normalized mode
shape and resonance frequency of the rth beam mode, are
analyzed. The governing equation for the eigenmode
analysis of the beam is expressed as follows.

The solution to Eq. (3) can be expressed as follows:

983
d'g, (0 _ _
EI o —mo,¢,(x) =0, (3a)
@4,(0) _ ki dg, (0) )
=T $.0=0, (3b)
CoL)_ _Kdh D)o oy

dx? L dx °’

¢, (x) = Cy,sin[(4,L) X] + C,,cos[(4,L) X]
+ Cs,sinh[(A,L) xX] + C,,cosh[(1,L)X], (4)

X
where ¥ = I C,» G, Gy, and C,, are constants deter-

mined from the boundary conditions using the following
equations:

ko: AL ko: -A.L
0 1 0 1 G,
( kyjcos(A,L) ) ( —ky;sin(A,L) ) ko;cosh(A,L) ( kq,;sinh(A,L) ) g“ =0, 5)
—A,Lsin(A,L) —A,Lcos(A,.L) +A,Lsinh(A,L) +A,Lcosh(A,L) 3r
sin(A,L) cos(4,L) sinh(A,L) cosh(4,L) b

4= 2
mawo: . .
and A,L = / E_Ir is the frequency parameter. To obtain a

nontrivial solution, the determinant of the coefficient
matrix of the above equations must be set to zero.
Because the investigated beams have rigid
displacement restraints at both ends, the mode shape
function ¢, (x) can be considered as one cycle of a

periodic continuous function, which can be expressed as
the following Fourier series:

o 2nmx o . 2nmx
¢.x = a,, + anlam,cos 7 + anlbn,,s1nT, 6)

where ay,, a,,, and b,, are the Fourier coefficients
expressed using C, , C, ,, G5, C , and (1L),, as follows:

1,

AL AL
2C,,sin” 7 +C,,sin(4,L) +2C5,sinh’ 2 +C,,sinh(4,L)
aO,r = /l L ’ (73.)
2C sinhZE +C,,sinh(1,L)
AL C,,cos(1,L)—C,,—C,,sin(4,L) 3 2 4r 4 (7b)
an r = T 9
’ 42 — (A,L) 4nm2 + (A, L)
C,,sinh(1,L) +2C,,sinh’ AL
b, = —dnn C,,sin(A,L) + C,,co8(A,L) - C,, 3 4rSIA = -

4n*m® — (A, L)

Please see Appendix A for further details.

2.3 Forced vibration analysis

By expressing the structural vibration at any instant using

42w + (A, L)

the modal coordinates, the EOM can be transformed into
uncoupled ordinary differential equations to compute the
modal response using the Galerkin method. For the rth
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modal coordinate, the governing equation of motion is
expressed as follows:

My, () +Cv. () +K,v, (1) = F¢,(s1), ®)

where v, (¢) is the response of the rth mode; M,, C,, and
K, are the modal mass, damping, and stiffness coefficient
expressed as M, =M,, C,=2M,¢{ 0, K, =M,0?;, M,=

fgrh (x)dx; & = is the proportional damping

Ci,
20, + ——

2
ratio of the rth mode. As can be seen, if the vehicle

heaving oscillation acceleration is controlled to be
significantly smaller than the vehicle gravity force m,g,
the main oscillation response component of the beam
modal coordinates can be considered as the response
under a moving concentrated force with magnitude m,g.
The term on the right-hand side of Eq. (8) can now be
treated as multiple frequency-multiplication harmonic
excitations on the modal coordinates; multiple forced

. 2ms ,
resonances will occur when w= A approaches — for
n

each mode.

If the beam is considered to be in static initially, the
modal oscillation can be obtained according to Duhamel’s
integral, as follows:

1
M, P

V(1) = fOF(;s (s7)e e Isin[oP (t—1)]dr,  (9)

where wP = w, 4/1 —£? is the damped frequency of the rth
mode. By substituting Eq. (6) into Eq. (9), the modal
response can be further expressed in the following form
with multiple frequency-multiplication forced steady-

state response components and a mono-frequency
transient response component, as follows:

F
v ==

Z On,sin(not +,,)

K,
+ Ag,sin(@)t+y.,)exp(=£.0,0),  (10)
where p, = max(¢, (x)),
Ai’l r
o, = : . (1a)
J B | | B |
Do Al1- (n—) ) + (Zné’,—)
’ ( ﬁr ﬁr
B B
W, = 6,, —arctan (2n§,—, 1-n"—1|, (11b)
B B
where A,, = /a2, +D2,, 6,, =arctan(a,,, b,,), B= 2,
b

10) .
B.=—, w,=w, A, and ¢, are constants determined
1)

b
from the given initial conditions of the modal coordinates
v,(0) and v,(0). Specifically, under the undamped
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condition, the forced modal resonance response when
_
o= can be expressed as follows:

F n#l
v ()= =2 N, sin(nivi + )

K,
FAl,r
2K,

(12)

w,tcos(w,t+ ) + A sin(w.t+.,).

Then, the structural displacement response can be
calculated by mode summation, as follows:
VD= 4,0 (13)

By differentiating Eq. (13) with respect to time, the

structural velocity and acceleration responses can be
calculated.

3 Case studies

According to the proposed theoretical model and derived
analytical solutions, the following computations were
carried out to verify the proposed method and analyze the
MFMFO amplitude magnification and phase angle
characteristics.

3.1 Modal characteristics

For a single-span beam with arbitrary ERLER stiffness,
the modal frequency parameters and mode shape
coefficients were first determined. Figure 2 shows the
frequency parameters computed for the first two modes
when ky; and ky; vary in the range of 107°-10". As can be
seen, the distributions computed for both modes are
symmetric about line ky =ky;, and consist of four
platforms and in-between transition regions. These four

4.730

107

107

10

Fig. 2 Computed frequency parameters (1,L) for fundamental
mode of bridge consisting of single-span beam with varying end
rotation linear elastic stiffness.
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platforms correspond to four case classes with the
idealized end restraints. For the platform with
AL =3.142 and A,L = 6.283, the corresponding boundary
conditions can be approximated as a hinged-hinged
restraint. For the platform with A4,L=3.927 and
AL =17.069, the corresponding boundary conditions can
be approximated as clamped-hinged or hinged—clamped
restraints. For the platform with A,L=4.730 and
A, L =7.853, the corresponding boundary conditions can
be approximated as clamped—clamped restraints. As
shown in Fig. 3, the mode shape parameter distributions
computed for the first two modes also consist of four
platforms and in-between transition regions.
Subsequently, the magnitudes and phase angles of the
mode-shaped Fourier series multi-harmonic components
were computed. Figures 4 and 5 show the results for the
first four Fourier series components of the fundamental
mode. As can be seen, for this mode, the Oth expansion
term, which is a constant term, and the Ist harmonic
component are the most important. The presented high-
harmonic magnitudes exhibit a monotonically decreasing
trend. For higher modes, as the number of inflection
points increases, some high-harmonic components

10° 107

0.1
—0.3
—0.7

=l.1
107

G,

10° 107

107
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become more important for the composition of the
corresponding mode shapes. For example, for the second
mode, because there is one point of inflection in the
related mode shape, the 1st harmonic is the most
important.

3.2 Verification of analytical solution

To verify the analytical solution, numerical tests based on
FEM structural modeling were conducted for cases
wherein ky =ky; = 107, & =&, =0%. The bridge was
modeled using 20 2-node 4-degree of freedom (DOF)
Euler—Bernoulli beam elements to account for the
stiffness of the ERLERs. The considered sprung-mass
vehicle oscillator has mass m, =0.1M, and frequency
w, =0.23w,. The initial displacement, velocity, and
acceleration of each sprung-mass oscillator are set to zero
when the oscillator enters the beam. The force vector at
each step is updated according to the magnitude and on-
element location of the load. The Newmark method was
used to compute the dimensionless displacement and
velocity responses, which are defined as follows for the
given end constraints:

107

10° 107

107 107

10° 107

Fig.3 Computed mode shape parameters for fundamental mode of bridge consisting of single-span beam with varying end rotation linear

elastic stiffness.



986

0.2

0.1
~

107

10 10°

Al,l

107

Front. Struct. Civ. Eng. 2023, 17(7): 981-993

0.786

0.9

0.7

0.5

107 107

10° 107

10° 107

Fig. 4 Magnitude of multi-harmonic components for fundamental mode shape of bridge consisting of single-span beam with varying end

rotation linear elastic stiffness.
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Based on the MFMFO moving load model, the
dynamic amplification and phase angle curves for the first
nine forced oscillation components (n=0-8) of the
fundamental mode of the single-span beam bridge with
ki = ko; = 107 and &, = 1% were computed as shown in
Fig. 6. As can be seen, the importance of frequency-
multiplication harmonic oscillations decreases as n
increases. Around the resonance peak of each high-
harmonic component, the amplification and in-phase to
out-of-phase transition of the related harmonic oscillation
will give rise to the secondary oscillation of modal
responses, as shown in Figs. 7 and 8.

Figure 7 shows the analytical solutions computed for
the MFMFO model and the moving oscillator numerical
integration results obtained for the FEM model when
B =0.3. As can be seen, there is good agreement between
the dimensionless displacement and velocity responses in

L
the 5T durations (where T = —) of the physical and modal
s

coordinates in the MFMFO model analytical derivation
and FEM model numerical integration results. The
amplitude spectra, which are shown relative to the

Q
dimensionless frequency Q = Y of the ¥ responses

confirm the accuracy of the analytical solution of the
MFMFO model, and are in good agreement with the
numerical integration results of the FEM model.
Moreover, the amplitude spectrum indicates that the
structural modal oscillation of the fundamental mode
consists of multiple frequency-multiplication components
at Q =n, which are the forced oscillations of this mode,

1
and one component at Q = /—3 = 3.3, which corresponds to

the complementary oscillation of this mode. For the
second mode, the amplitude spectrum reveals that the
structural modal oscillation for this mode consists of one
component at Q=1 and one component at Q=13.3.
Considering that the mode shape parameters have only
one nonzero term (b,,) for the second mode when
ko = ko; = 107, the forced oscillation in this case,
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Fig. 5 Phase angle of multi-harmonic components for fundamental mode shape of bridge consisting of single-span beam with varying end

rotation linear elastic stiffness.
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Fig. 6 Multi-harmonic dynamic amplification: (a) phase angle; (b) curves computed for fundamental mode of bridge consisting of single-

span beam with ky; = ko; = 107, & = 1%.

including one harmonic at n =1, is reasonable. For the
component at =133, because €,=4Q, when
ky; = ko; =107, this component is the second-mode
complementary oscillation, according to the derived
analytical solution.

To verify the undamped resonance solution, Fig. 8
shows the analytical solutions obtained for the MFMFO

moving load model and the numerical integration results
obtained for the FEM moving oscillator model when

L . .
B=033or s= a;;‘ As can be seen, the dimensionless

displacement and z/relocity responses of the cross section
at x=0.4L and those of the first two modes obtained
from both methods are in good agreement. At 8 =0.33,
the resonance of the third and complementary
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Fig. 7 Moving-load-induced forced non-resonance vibration displacement and velocity responses of structure, and amplitude spectrum of:

(a) cross-section at x = 0.4L; (b) mode 1; (c) mode 2 for bridge consisting of single-span beam with kg; = kg; =

1075, B=03, & =& =0%,

obtained by numerical integration of FEM moving oscillator model and analytical solution of MFMFO model.

components of the fundamental mode occurs. The forced
resonance divergent oscillation is so powerful that the
structural displacement and velocity response are
significantly amplified just after five cycles, although A;,
is quite small, as shown in Fig. 4. The amplitude spectra
also indicate the occurrence of this resonance in the
fundamental mode, with a main peak at Q=3.
Considering the single-frequency forced oscillation
pattern, the second mode does not exhibit a divergent
time-domain oscillation shape. The amplitude spectrum
shows that the modal oscillation of this mode consists of
one component at Q=1 and one component at

Q_ﬁ2_12.
B

3.3 Damped resonance amplification characteristics

Based on the verified analytical solution, the MFMFO
dynamic amplification and phase angle characteristics of
the multiple modulated-harmonic modal forced resonance
oscillations were computed using Eqs. (11a) and (11b) for
single-span beams with varying end-rotational restraints.
In this paper, only cases with ¢ = 1% are presented. For

the Oth modal forcing excitation, which is actually a step
excitation, magnitude amplification does not occur
because the forced response is also a step function with
the magnitude of the corresponding static response. For
non-constant oscillating excitations, forced resonance
occurs in different frequency regions and may induce
significant magnitude amplifications for the damped
steady-state response under multiple periods of forcing
excitation.

Figure 9 shows the peak resonance amplifications with
consideration to the high-harmonic forcing excitation on
the fundamental mode when & = 1%. For this mode, the
first modulated-harmonic forced resonance is the most
important among the multiple forced resonances. The
corresponding p, ; value varies from 19.89 for the hinged—
hinged restraints to 24.75 for the clamped—clamped
restraints. For the high-harmonic forced resonances, p,
monotonically decreases as n increases from 1 to 4 for
any given pair of ky and ky;. When n =4, p,, is always
below 1 and varies from 0.066 for the clamped—clamped
restraints to 0.947 for the hinged-hinged restraints. For
the higher modes, the high-harmonic component is the
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Fig. 8 Moving-load-induced forced resonance displacement and velocity responses of structure, and amplitude spectrum of: (a) cross-

section at x = 0.4L; (b) mode 1; (c) mode 2 for bridge consisting of single-span beam with kg; = kg;

=107,
by numerical integration of FEM moving oscillator model and analytical solution of MFMFO model.

B=033, &

=& = 0%, obtained

primary harmonic of the excitation. Although the low
participation of the higher modes may diminish the
unfavorable dynamic loading effect, the high-harmonic
resonance amplification must be checked to ensure the
safety of the stress and stress resultant in the loading
period of one moving vehicle.

3.4 Vehicle heaving and frequency modulation

Obviously, vehicle oscillation may induce harmonic
structure variation and additional frequency and
amplitude modulations in the modal oscillation response
of the supporting beam. This study investigated the
vehicle carriage heaving oscillation effects based on
structural modeling using FEM and numerical integration
under a moving sprung-mass oscillator load. Because the
forced high-harmonic resonance oscillation in the low-
speed range has the most important theoretical and
application value, the numerical cases around S =0.33
were simulated for the investigated single-span
supporting beam of ky, = ko; = 10~° under five periods of
moving vehicle oscillator excitation.

To check the effective range of the derived harmonic
structure with consideration to the wvehicle heaving
oscillation effect, the multi-harmonic function expressed
by Eq. (12) was used as the baseline function to fit the
numerically computed fundamental mode response
obtained by the FEM structural model based on numerical
integration for the initially resting beam subjected to a
moving sprung-mass oscillator load in the range of
m, €[0.01,0.30]m, and w,€[0.02,1.00]w,. Five
MFMFO components (n=0-4) and one modal
complementary oscillation component were considered in
the curve-fitting baseline function. The amplitude,
frequency, and phase angle of these oscillation
components were set as the curve-fitting parameters. For
the fitting of the oscillation response curve, it is much
more important to set the initial value of the oscillation
frequencies than to set the oscillation amplitude and
phase angle. In this study, the optimizations from the
driving frequency and beam fundamental modal
frequency exhibit quick convergence, although vehicle
heaving will induce the modulation of modal frequencies.
Figure 10 shows the surface and contour plots of the
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107

10° 10°

Fig. 9 Peak resonance amplification characteristics of moving-load forced nth (n = 1, 2, 3, 4) multi-harmonic oscillations for fundamental
mode of bridge consisting of single-span beam with varying end rotation linear elastic stiffness when &; = 1%.
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Fig. 10 (a) Surface; (b) contour plots of relative squared 2-norm residual for fitting of curve of numerically computed fundamental mode

oscillation response of bridge,
(koi =koj =107, =033, £, = 0%).

with consideration

relative squared 2-norm residual R, which is defined as
follows:

2
sum [(VI.FEM - vl,MFMFO) ]

sum (v, pey)

R, = ; (15)

to vehicle

heaving oscillation by using derived MFMFO function

where v, ey and ¥, yrvro are the beam fundamental mode
responses, as computed by the numerical integration of
the FEM model under a moving sprung-mass and
obtained by fitting the curve of the MFMFO oscillation
structure. If the threshold of R,, is set to 1%, the contour
curve of 107 (Fig. 10) profiles the applicable range of the
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derived MFMFO oscillation structure with consideration
to the vehicle heaving oscillation perturbation. For
convenience, the applicable condition can be conserva-
tively set to m, < 0.30m, and w, < 0.60 w,.

The above-mentioned oscillation response curve fitting
process can also be used to track the frequency
modulation caused by the vehicle heaving oscillation, and
detect abnormal operation scenarios. Figure 11 summa-
rizes the fundamental modal frequency modulation
factors (3, obtained from the above-mentioned oscillation
response curve fitting optimization process with variation
in the vehicle mass m, and vehicle frequency w, within
the applicable range. As can be seen, the fundamental
mode frequency @, =g,w, of the modulated beam
exhibits a smooth monotonically increasing trend in the
observed region. The peak modal frequency shift ratio
caused by this modulation is 5.6%. Considering the shape
of the scatter distribution, the following frequency
modulation factor function can be obtained by curve

fitting to capture this trend for the considered
approximately hinged-hinged simple beam.
m, [ w :
By = 1.00+0.57—V(—V) . (16)
my \ Wy

For this fit, the relative ratio of the squared 2-norm of
the residual is 0.037%. The modulated modal frequency
can be used to estimate the modal response of the beam
under moving vehicle loads, with consideration to the
carriage heaving oscillation of the investigated beam.

case-by-case
FM value
1.06 |mmm FM function :

1.04
<& 1.02

1.00]

098] -

0.6

0.2

0.0 0.0 0@

Fig. 11 Fundamental mode frequency modulation (FM) of
bridge with consideration to vehicle heaving oscillation when
koi = ko; = 1075, B=10.33, ¢, = 0%.

4 Conclusions

Under the assumptions of the axle spacing of the vehicles
being far shorter than the beam span and the vehicle
carriage oscillation acceleration being far smaller than the
gravitational acceleration, this study interpreted the
moving-load-induced forcing excitation on the modal
coordinates as multiple frequency-multiplication
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harmonic forces, and analytically investigated the modal
forced oscillation characteristics for a supporting single-
span linear Euler—Bernoulli simple beam. Closed-form
modal forced non-resonance and resonance oscillations
under moving forces were derived. As a baseline for
comparison, structural modeling using FEM based on
numerical integration was conducted under a moving
oscillator. The applicable range of the derived MFMFO
structure with consideration to the vehicle-heaving
oscillation effect was computationally profiled. The
following results were obtained for the considered beam.

* The moving-load-induced forced modal oscillations
of the beam structure are generally considered to consist
of multiple frequency-multiplication steady-state oscilla-
tions and one mono-frequency complementary oscilla-
tion.

* The multiple frequency-multiplication pattern of the
modal forced oscillation results in forced resonance when
the nth high-harmonic forcing frequency nw approaches
w, for the rth mode.

* The fundamental harmonic of the forced modal
oscillation of the fundamental mode is the most important
oscillation for the investigated category of single-span
beams under the given moving load types.

* The derived MFMFO structure is effective within a
wide region of relatively small vehicle mass and
frequency with consideration to the vehicle carriage
heaving oscillation. For the investigated beam, moving
vehicle carriage heaving increased the fundamental
frequency by up to 5.6% in pattern-reservation cases.

High-harmonic resonances may induce significant
impact amplification and offset the peak response of the
resultant stress envelope during the vehicle passage
process [31]. When the beam shortening or stretching
nonlinearity of the bridge, pitching, and other types of
vehicle oscillation are considered, the vibration of beam
bridges under moving vehicle loads exhibits more
interesting spatial-temporal patterns, particularly in modal
fission and fusion scenarios. Related studies will benefit
bridge design and fatigue monitoring for engineering
applications.

Appendix A: Derivation of Eqs. (7a)-(7c)

Based on Egs. (4) and (6), the Fourier coefficients can be
derived as follows.

1 oL
ay, = I fo $, (x)dx
1 L
= Zf (C,sindx + C,cosAx + CssinhAx + C,coshAx) dx
0
AL AL
2C,sin’ > +C,sinAL+2C;sinh’ > +C,sinhAL

B AL ’
(A1)
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2 (L 2nnx
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2 L
= —f C,sin(Ax)cos
LJo

2 (L 2
ZI (Csin(Ax) + C,c08(Ax) + Cssinh(Ax) + C,cosh(Ax))cos nn
0

2 2 (L
n;rx dx+ I foCzcos(/lx)sin

2nmn 2nm\ 1"
cos|lA+—|x cos|{dA——|x
2C] L L
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L
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2
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