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ABSTRACT It is of great significance to quickly detect underwater cracks as they can seriously threaten the safety of
underwater structures. Research to date has mainly focused on the detection of above-water-level cracks and hasn’t
considered the large scale cracks. In this paper, a large-scale underwater crack examination method is proposed based on
image stitching and segmentation. In addition, a purpose of this paper is to design a new convolution method to segment
underwater images. An improved As-Projective-As-Possible (APAP) algorithm was designed to extract and stitch
keyframes from videos. The graph convolutional neural network (GCN) was used to segment the stitched image. The
GCN’s m-I0U is 24.02% higher than Fully convolutional networks (FCN), proving that GCN has great potential of
application in image segmentation and underwater image processing. The result shows that the improved APAP
algorithm and GCN can adapt to complex underwater environments and perform well in different study areas.

KEYWORDS underwater cracks, remote operated vehicle, image stitching, image segmentation, graph convolutional

neural network

1 Introduction

In recent decades, with the development of Ocean
Engineering, Hydraulic Engineering, Bridge and Tunnel
Engineering, etc., a series of new underwater structure
models has been formed [1,2]. However, due to the
effects of the external environment (such as wind and
wave, corrosion, hydraulic flushing, temperature stress,
etc.) or human factors (such as design errors or improper
selection of materials), underwater structures may have
various degrees of damage, which may lead to cracks
during long-term service [3]. At present, it is still difficult
to simulate the crack propagation and formation
mechanism [4]. Many scholars have proposed algorithms
to simulate crack propagation, such as NHPD [5] and
GCEM [6]. Cracks seriously damage the reliability and
longevity of the structure; they can exist not only at the
structure’s surface but can also extend into the interior
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[7,8]. Zhang and Zhuang [9,10] proposed a self-propa-
gating strong discontinuity embedded approach with the
statically optimal symmetric (SDA-SOS) formulation to
study the propagation law of cracks. Their computational
examples showed that cracks seriously degrade structure
durability. Rezaiee-Pajand and Tavakoli [11] thought
cracks are the external manifestations of the accumulation
of fatigue in the structure. Therefore, it is essential to
monitor structures in time to prevent crack expansion.
Due to the complexity of the underwater environment,
only a few technologies have been applied to underwater
crack detection, such as electrical exploration, elastic
wave testing, radar, etc. [12,13]. For example, Li et al. [1]
proposed a high sensitivity rotating alternating current
field to measure underwater cracks; Luo et al. [14]
detected concrete cracks using a tapered polymer fiber
sensor; Shi et al. [15] used sonar images to detect and
classify below-water-level cracks in dams. However,
these methods have shortcomings in common: shallow
measurement depth, inability to fully examine deep-water
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structures, large positioning errors, low efficiency, and
weak adaptability. Moreover, these methods are costly,
and neither convenient nor reliable [15,16]. Visual
estimation is more efficient and inexpensive for obtaining
crack information such as location and shape [17]. With
the rapid development of machine vision technology,
some crack detection methods based on image processing
have been proposed [18]. In the last century, Belytschko
et al. [19] began developing and designing the first
camera-based road damage detection vehicle GERPHO.
Ukai [20,21] proposed an image acquisition system using
a multi-eye line array camera to monitor tunnel cracks in
2000 and 2007. Since the start of the 21st century,
research on crack detection has been further deepened. Lu
et al. [22] proposed a road crack detection algorithm
based on adaptive threshold segmentation; Talab et al.
[23] used the Sobel filter and Otsu algorithm to detect
concrete cracks, which had an accuracy of 85% on their
data sets, but the algorithm was sensitive to changes in
shooting angle and light; Xiao and Li [24] combined the
adaptive Canny operator with seepage theory and
proposed a crack detection algorithm. However, these
methods were limited to traditional image processing
technology. The algorithms were susceptible to environ-
mental factors, had large errors, and had low generaliza-
tion ability [25].

Deep learning (DL) has an advantage of being little
affected by noise, being able to migrate to different
environments, and high accuracy. The rapid development
of DL provides different ideas for people to solve
problems. For example, Nguyen-Thanh et al. [26] solved
potential energy problems in parametric deep energy
methods based on physical information neural networks
(PINN). Nguyen-Thanh et al. [27] also presented a deep
energy method for finite deformation hyperelasticitiy
using deep neural networks (DNNs), which could avoid
entirely a discretization like FEM. Guo et al. [28]
proposed a deep collocation method (DCM) for thin plate
bending problems. Zhuang et al. [29] present a deep
autoencoder based energy method (DAEM) for bending,
vibration and buckling analysis of Kirchhoff plates; Guo
et al. [30] present a stochastic deep collocation method
(DCM) based on a neural architecture search (NAS) and
transfer learning for heterogeneous porous media. DL has
been widely used in many fields such as solving partial
differential equations in Computational Mechanics
[31,32], dam subsidence prediction [33,34], urban traffic
monitoring, etc. Many scholars have tried to use DL to
detect cracks. Cha et al. [35] used a five-layer convolu-
tional neural network (CNN) to detect concrete cracks
and processed gridded images based on sliding window
technology. Kim and Cho [36] used CNN with Alexnet as
the backbone for accurate classification of five obser-
vable entities such as cracks, plants and concrete. In
2015, Long et al. [37] proposed fully convolutional
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networks (FCN) by replacing the full connection layer of
CNN with convolution layer. FCN realizes semantic
segmentation in the real sense. Image semantics segmenta-
tion based on DL has also been widely used in crack
detection. Dung and Anh [38] realized the automatic
detection of concrete cracks by deep FCN. Their results
show that cracks are reasonably detected, and crack
density is also accurately evaluated. Bang et al. [17]
introduced an attention model into image semantics
segmentation and obtained good results in detecting road
cracks. Zhang et al. [39] proposed a neural network with
multiple convolution layers and combine context
information to detect cracks in structures. The method
adopted an end-to-end training approach, and could
realize pixel level processing of images of any size.
Zhang et al. [40] proposed a faster, simpler single-stage
detector based on YoLoV3 for detecting multiple
concrete bridge damages. Liu et al. [41] combined target
detection with semantic segmentation, and designed a
two-step network. Zhang and Yuen [42] designed a novel
crack detection system based on a broad learning system,
and their system can be accelerated without GPU during
training, which reduces the requirement of the computer
configuration.

However, cracks are usually continuous, long-distance,
and large-scale. It is difficult to get a complete crack in
the field of view of a single image, either above or below
water level [43,44]. Assessment of complete cracks is
significant for analyzing damage degree and true working
form of underwater structures. Therefore, it is necessary
to determine the complete shape of a crack by stitching of
multiple images. There are mainly two steps of image
stitching technology: registration and fusion. In the
1980s, Burt and Adelson [45] proposed an image fusion
method based on the Laplace Pyramid. The image pyra-
mid and scale transformation lay an important foundation
for subsequent research. In 2004, Lowe [46] proposed an
image registration method, SIFT, which performs image
registration based on the eigenvectors of the image’s
feature point. After Lowe, Bay et al. [47] proposed
SURF, which uses integrated images to achieve faster
image registration. Rublee et al. [48] proposed the ORB
algorithm, which has a strong advantage in registration
speed. In recent years, image stitching technology has
begun to be applied to structural health monitoring
(SHM). Zhu et al. [49] stitched different positions’
concrete column images based on traditional feature-
based image stitching technique. Won et al. [50]
automatically generated panoramic bridge images using
deep matching. Based on the SIFT algorithm, Wang et al.
[43] obtained the complete shapes of cracks in a dam. Wu
et al. [44] stitched large-scale panoramic cracks using
Oriented FAST and Rotated BRIEF feature matching
algorithm.

However, due to the complex underwater optical
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environment, underwater images have low contrast and
much noise. Moreover, due to the multi-interface
refraction of light when using a fisheye camera, the
collected images are often distorted [51,52], which means
that the underwater image is essentially in Non-Euclidean
Space compared to the above water image. The current
image stitching and semantics segmentation algorithms
are based on image data’s translation invariant, scale
invariant and rotation invariant. In other words, these
methods are aimed at data in Euclidean space, and they
may not accurately detect cracks from underwater
images.

The APAP algorithm proposed by Zaragoza et al. [53]
is an image fusion algorithm. The APAP algorithm first
grids the images, then spatially warps each grid cell using
its corresponding local homograph matrix, and finally
superimposes them on the canvas to complete the image
fusion. Because the APAP algorithm uses a local-global
fusion strategy, it can eliminate errors caused by image
distortion when image stitching. At present, APAP is
mainly used to stitch large-scale remote sensing images
[54], and it has not been studied for SHM.

Graph convolution neural network (GCN) is a new DL
model proposed for data in non-Euclidean space. It was
first proposed in 2017 and achieved the detection of high-
dimensional data features by constructing nodes and
edges. Landrieu and Simonovsky [55] proposed a large-
scale points-cloud segmentation algorithm based on
superpoint graphs. In 2018, the OCNet was proposed by
Yuan and Wang [56], which could apply a non-local
operator to segmentation. To date, GCN has had little
broad application and research, including in image
segmentation and underwater image processing, but it has
great potential.
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Based on the above discussion, our paper’s primary
work and purpose are to study the large-scale underwater
cracks detection method using image stitching and
semantic segmentation. Remote Operated Vehicles
(ROVs) were used to collect images of cracks in different
underwater structures. A dataset of underwater cracks in
three areas was created for training, validation, and other
GCN processes. Since the data collected by the ROV is
transmitted in the form of videos, an improved APAP
algorithm was designed, which can automatically extract
keyframes from the video and then stitch the images.
Then, an image segmentation algorithm based on GCN
was designed, which takes the pre-trained Resnet101 as
the backbone. In addition, our research also compared the
effect of GCN and traditional FCN in segmenting
underwater crack images.

2 Dataset and methods

In the work reported in this paper, an underwater cracks
detection method was designed, composed of the
proposed image stitching algorithm and GCN algorithm.
Our study can be divided into three parts: data acquisi-
tion, image stitching and image segmentation. The
detailed process of our study is shown in Fig. 1. Firstly,
the ROV was used to get underwater videos. Next, image
stitching was done directly on videos. The stitched image
of different study areas was obtained through the
improved APAP algorithm. Then, a dataset of underwater
cracks was created by framing videos. These images were
stochastically selected, and LabelMe was used to mark
crack areas on the image for training, validation and test
of GCN and FCN. The datasets were randomly divided
into training set, validation set, and test set according to
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the ratio of 8:1:1. Finally, the stitched images were
segmented and the large-scale underwater crack patterns
were reconstructed by invoking the final training results.

The above processes was performed on Matlab2020 and
Python 3.9. The computer specifications for code writing
and program running were as follows: OpenCV 2.4.2 was
used as the visual library for underwater crack detection.
Image stitching was mainly carried out on HP Starl4
X360 platform. PyTorch 3.8 was used as framework for
DL in our study, and LabelMe was used to mark images.
GCN and FCN were trained on NVIDIA Tesla V100
32GB GPU and NVIDIA GeForce RTX 2080Ti GPU.

2.1 Data acquisition

Data were collected from different underwater structures.
These structures were a dam in Hubei Province, China,
Tunnel A and Tunnel B, both in Hebei. Seabotix
vLBV300 was mainly used to detect underwater cracks of
the dam, and the camera used was a 650 TV line high-
definition color camera. Tunnel A and Tunnel B were
mainly detected by Dolphin One, and the camera used
was Shark Marine. The detailed parameters of ROVs and
cameras are shown in Table 1.

By framing the video, we obtained 4097 + 12701 +
8534 underwater images from the three sites, a total of
25332. After selection, a dataset containing 957 under-
water crack images was established. After processing, the
final dataset was obtained.

2.2 Image stitching

This paper proposes an improved APAP algorithm to
stitch underwater videos directly. This algorithm can be

Table 1 The detailed operating parameters of ROVs

ROV parameter value
Seabotix vLBV300 max diving depth (m) 300
max speed (km/h) 5.5
size (L x W x H) (mm) 625 x 390 x 390
weight (kg) 18.1
the visual angle of camera (° ) 65
image resolution 720 x 480
sensitivity 0.1lux@1£2.0
work area Dam
Dolphin One max diving depth (m) 100
max speed (km/h) 3.0

size (L x W x H) (mm) 457 x 338 x 254
weight (kg) 11
image resolution 1920 x 1080

work area Tunnel A and Tunnel B
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divided into three steps in the process: keyframes
detection, feature points matching, and image stitching, as
shown in Fig. 2.

The keyframes extraction was based on the frames’
similarity to ensure that the similarity of each keyframe is
not too low. In this study, the phash algorithm was used
to calculate the similarity between frames. By phash, the
Hamilton distance between two images could be obtained
[57]. The greater the Hamilton distance between frames,
the smaller their similarity.

Firstly, every frame was resized to the same pixel
dimensions, 32 x 32, and converted to grayscale images
(the purpose of which was to reduce the difference
between the size and proportion of these images, only
retaining the images’ basic information). In order to
decrease the calculated quantities and run the program
conveniently on the CPU, discrete cosine transform
(DCT) was used to transform gray images. The expre-
ssion of DCT is:

F(u) = c(u)Zf(i)cos WM] )
\/T
—, u=0,
cap={ "N @)

[2
N,uiO,

where f(i) is the original image data, F(u) is the
coefficient after DCT transformation, N is the points’
number of original image data, and c(u) is the
compensation factor that makes the DCT transformation
matrix orthogonal.

Next, based on the result of the DCT calculation, a hash
value composed of 64 bits was made. Then, the hash
value of two images was compared to calculate the
Hamilton distance between them. Hamilton distance
between frames was used as the criterion for extracting
keyframes in our study. The process of extracting
keyframes is shown in Fig. 3, with the frame n — 1 set as
image A, frame n set as image B, allowing calculation of
the Hamilton distance between image A and image B.
Image B (frame n) was considered as the keyframe when
the distance between B and A was larger than an
artificially set threshold. Then image B became image A
and the process was repeated. In this way, all keyframes
were extracted from videos.

For feature points matching, the method used in this
work was SIFT. There are three main processes for SIFT
algorithm to achieve feature matching [46]: extracting
some prominent feature points in two images; describing
these feature points (for example, the location, the
direction, and the number, etc.); matching them, as shown
in Fig. 4.
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where G (x,y,0) is a scale-varying Gaussian kernel
function; (x,y) is a spatial coordinate of pixel; o is the
scale coordinate that determines the images’ smoothness,
the overview characteristics of the image corresponding
to a large scale, and the detail characteristics of the image
corresponding to a small scale. o values correspond to
coarse scales (low resolution) and fine scales (high
resolution). Combining the original image with the
projection to get an image pyramid and a difference of
Gaussian scale (DOG), the DOG function is:

D(x,y,o')=L(x,y,k0')—L(x,y,0'), (5)

Feature points will be found on the DOG, and
described on the image pyramid. SIFT considers that the
feature points are essentially the extreme points of the
DOG function, which means feature points are composed
of local extreme points in the DOG. In SIFT, extreme
points of the DOG function are those points that are
larger or smaller than the surrounding pixel point in scale
domain.

To detect extreme points, local characteristics of the
image were used to assign a baseline direction to each
critical point. The gradient and direction distribution
characteristics of other neighborhood pixels were counted
with the feature point as the origin and 30 as the radius to
determine the gradient and direction of the feature point.
The formulas for calculating the pixel gradient and
direction are:

m(x,y) =
VLG 1)~ L= 1y)) + Ly + D~ Lixy- D),
®)
H(x,y)=CotL(x’y+l)_L(x’y_1) ™

L(x+1,y)—L(x—1,y)

Finally, a descriptor was created for each feature point,
a set of vectors was used to describe the feature point, and
a subset of descriptions containing all feature points was
created. Based on the subset of feature point descriptions,
the feature point in image A which was nearest to the
feature point in image B was searched and matched.

Since the study focused on the crack area, too many
matching points will affect the stitching effect of the
crack area. Therefore, the random sample consensus
(RANSAC) was used to remove some matching points
that may have affected the final stitching result. The core
idea of RANSAC is that: for a fitting problem, there are
two kinds of data points, one affects the fitting effect
(outer point) and the other is conducive to the fitting of
function (inner point). RANSAC aims to find out and
eliminate the outer points through continuous random
sampling.

Direct linear transform (DLT) was used to estimate the
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perspective transformation matrix for the remaining fea-
ture points, and a global homography matrix was obtai-
ned. The calculation method of homography matrix is:

Xp Xa hl h2 h3
Yo |=H|y. |, H=|hs hs hg], (8)
Wy Wa h; hs he
X, Xy
where H is the homography matrix; | ¥, | and | y, | are
Wy

w,
the camera model matrix of the two pictures to be
stitched. Then by dividing the images to be stitched into
grids and taking the center points of each grid, the
distance and weights between the interior points on the
source map and center points could be determined.
Putting the weightings into the 4 matrix of the DLT
algorithm and building a new W*A4 matrix, the local
homography matrix of the current grid could be naturally
obtained. Then, the stitched image was obtained by
traversing each grid and mapping it to the panoramic
canvas using the local homography matrix.

In practice, the video only needed to be imported
directly into the program. Our algorithm first divided the
video into frames, and then compared the distances
between frames. Setting the threshold, the program output
all key frames that met the requirements as shown in
Fig. 3. In the end, these key frames were stitched based
on SIFT.

2.3 Image segmentation

2.3.1 Fully convolutional networks

FCN, first proposed by Long et al. [37] in 2015, is the
first image semantic segmentation system based on DL.
FCN can accept any input size and produce appropriate
output through efficient reasoning and learning. The
network structure of FCN is divided into two parts: full
convolution and deconvolution. The full convolution part
replaces the last full connection layer of the CNN
network with convolution to extract features and form a
heatmap. The purpose of deconvolution part is to
upsample the heatmap so that the output results are
consistent with the original size. In this work, the
backbone of FCN was replaced with Resnet101 and the
attention mechanism was inserted in Resnet101 to ensure
reliability compared with GCN.

2.3.2  Graph convolutional network

This study used a new semantic segmentation algorithm,
GCN. Moving on from traditional semantics segmenta-
tion algorithms such as FCN, U-net, and Deeplab, a new
convolution method, graph convolutional, was used in
GCN, enabling the model to learn deeper information
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about the data [58]. In addition, the attention mechanism
was inserted into the backbone to make the GCN in this
work able to access more crack area information during
training. The GCN of this paper [58] can be divided into
two parts: backbone part and graph convolution part, as
shown in Fig. 5.

The backbone used in this paper is Resnet101, which
mainly consists of 33 convolution blocks, two pooling
layers, and one full connection layer. Each convolution
block of ResnetlO1 contains three convolution cores
connected by residuals to ensure that no network degrada-
tion or loss of information occurs during training. To
connect with the graph convolution part, the full
connection layer was removed so that the output of
Resnetl101 is a dense information feature map with 2048
channels. Also, considering the small proportion, by size,
of crack areas in images, the attention mechanism was
inserted into each convolution block, as shown in Fig. 6.
By inserting the attention mechanism, the feature map
information could mainly focus on the crack area. This
helped the graph convolution part to learn the key
information better.

The output of the backbone is a feature map with
multiple channels. This study considers that not only the
pixel of the feature map has correlation, but also those
different channels have correlation. Therefore, the graph
convolution part had two branches, which convoluted the
output of backbone from channel and feature. In the
channel branch, 2048 channels of the feature map were
convoluted to determine which channels were important
and which were unimportant, by two 1 x 1 graph

channel branch
(graph convolution to channels):
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convolution kernels. After further aggregation and
compression, the weightings of these channels were
obtained. In the feature branch, the pixel of the feature
map was convoluted by three 1 x 1 graph convolution
kernels, to obtain the coordinates and correlation informa-
tion of pixels in non-Euclidean space. Finally, the result
of two branches was aggregated with the output of
backbone to get the segment result of underwater crack.

Due to the underwater environment, the image data
collected was often distorted and did not have translation
invariance. Therefore, this paper made a hypothesis that
the underwater image data is better described with non-
Euclidean data. So, a new convolution method: graph
convolution was adopted in the graph convolution part.
Graph convolution is a special kind of convolution that
can handle data in non-Euclidean space and extract
deeper data features.

G =(V,E,W) was used to represent the data [59]. V is
node-set, £ is edge-set, and W is the weighted adjacency
matrix. The node corresponds to the pixel of the images,
which records the color, brightness and other information
of the object. In contrast, the edge corresponds to the
relationship between pixels and records the shape and
texture of the object. For normal images, the arrangement
of nodes and side rules can be achieved by smoothing the
data on the data and learning the deep information of the
data through convolution kernel. However, as shown in
Fig. 7, for non-Euclidean data, if the graph convolution is
processed in the same way, a lot of information is missed.

So, this study builds a graph convolution method based
on Fourier transformation. Graph convolution uses
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Fig. 6 The attention mechanism inserted in the convolution
block of backbone.
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Fig.7 Traditional convolution kernels convolute normal and
underwater images. (a) Normal image and its convolution
process; (b) underwater image and its convolution process. Note:
The gray node represents the pixel of the image; the black node
represents the missed node during convolution.

Fourier transformation and Laplace matrix to transform
non-Euclidean data into frequency domain, obtain the
graph’s spectrum, and convolve the spectrum of the
graph, as shown in Fig. 8. Furthermore, the graph
Laplacian could be diagonalized as L:

L=UAU", 9

where U = [u;,u,,...,u,] is the complete set of ortho-
normal eigenvectors; A = diag([4,,4,,...,4,]) is the non-
negative eigenvalues of L. Then, the data could be
transformed into the spectral domain by Fourier
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transformation:

£=U"x, (10)
where x is our data, and % is the projection of our data in
the spectral domain. Correspondingly, the process of
converting data from the spectral domain to graph could
be represented as:

x=U3X. (11)

According to convolution theorem, graph convolution
could be written as:

x.cy=U((U'x)o(U")), (12)

where (U"y) is the convolution filter in spectral domain.
We implemented GCN using Pytorch. The hyperpara-
meter information of our program is shown in Table 2. In
our program, we adopted a polynomial learning rate
decay schedule where the initial learning rate was

. 0.9
1
multiplied by (1 S er. ) . The loss function used in
total_iter
this paper was Cross Entropy Loss Function, the

activation function was ReLU. We also used synchronized
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Fig. 8 The graph data is transformed into frequency domain
based on Fourier transformation.

Table 2 The hyperparameters of GCN

hyperparameter value
the initial learning rate 0.001
momentum 0.9
weight decay coefficients 0.0001
epoch 3500
batchsize 8
classifier Softmax
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batch normalization for better estimation of the batch
statistics.

2.3.3 Evaluation index

This study mainly evaluated GCN and FCN from three
indices: m-IOU, F1, and accuracy. m-IOU was mainly
used to evaluate the segmentation effect of the trained
model in dealing with other data and judge the
generalization and stability of the model. The closer to 1,
the better the model effect. The calculation formula is:

TP

dJOU= ———
m-10U = o F P FN

(13)
where TP represents the number of correct pixels
extracted when calling the trained model to extract the
crack area; FP represents the number of error pixels
extracted; FN represents the number of pixels in the crack
area that have been misjudged.

F1 combines the indicators of Precision and Recall,
representing the model’s balance value with the
constraints of recall and prediction. It is often used to
compare the actual application of models. F1 could
reflect the overfitting phenomenon of the model. The
calculation formula is:

Fl= 2 X (PrecisionX Recall) 2XTP
~ (Precision+Recall) ~ 2TP+FP+FN’

(14

Accuracy indicates how many of all pixels are
accurately identified as crack areas. The calculation
formula is:

TP+TN
TP+FP+TN+FN’

Accuracy =

(15)

where TN represents the number of pixels in which the
non-crack area is divided into non crack areas.

3 Results and analysis
3.1 Image stitching results

Based on the improved APAP algorithm, the image of
collected videos were stitched.

522 keyframes were extracted from three videos. There
were 66 keyframes with underwater cracks to which
image stitching was done.

Through the SIFT algorithm, feature points of each
image were extracted and matched roughly. The SIFT
algorithm could extract many feature points, but most of
these feature points were useless. Therefore, only a few
fine matching point pairs were retained after RANSAC.
As shown in Table 3, Tunnel A had the highest number of
well-matching points and the longest stitching time. The

Front. Struct. Civ. Eng. 2022, 16(11): 1378-1396

Dam (a) area had the least number of well-matching
points and the shortest time. But this does not mean that
the stitching time was related to the number of well-
matching points. Tunnel B had only 625 well-matching
points, but its stitching time was longer than that of Dam
(b). We think that this was probably because the total
number of pixels in Tunnel B was more than that for Dam
(b).

Based on the exact matching result, the local
homograph matrix was used for image fusion. By
iteratively fusing these images, the final stitching result
was obtained after adjustment, as shown in Fig. 9.

3.2 Image semantic segmentation results

Unlike our improved APAP algorithm, the training of
GCN and FCN was carried out directly on frames. By
framing these videos, a total of 4097 + 12701 + 8534 =
25332 underwater images were obtained. After selection,
957 images containing underwater cracks were collected.
After cropping, de-ghosting, and secondary selection, a

Table 3 Image matching and stitching in different areas

area match points pairs time (s)

rough matched points pairs good match points pairs

Dam (a) 3911 316 37.75
Dam (b) 9093 1098 64.12
Tunnel A 4346 1893 187.94
Tunnel B 2984 625 98.12
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Fig. 9 The stitching result of large-scale underwater cracks in
different areas.
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dataset for GCN and FCN training, validation, and test
were obtained.

After training, the trained GCN and FCN models were
used to segment the stitched underwater image, and
results are shown in Fig. 10. The loss curves of GCN are
shown in the Fig. 11. The result indicates that GCN could
accurately segment the underwater crack in images and
was not affected by noises such as water, lighting
conditions, aquatic plants, shadows, floating dust, etc.
GCN detected most of the underwater cracks and
segmented the actual crack pixels as much as possible.
Compared with the segmentation result of FCN, the
segmentation result of GCN was finer, and GCN had
better effect on slim cracks. The segmentation result of
FCN was coarser, less sensitive to slim cracks, and
susceptible to the underwater environment.

Our study also calculated the proportion of the crack

Crack area

Crack area

Crack area
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area in whole images, and the proportion of the crack area
extracted by GCN and FCN in images, as shown in
Table 4. By comparison, it can be seen that the result of
GCN was closest to the actual value, and FCN was larger.
3.3 Image semantic segmentation evaluation

In order to more accurately evaluate the effect of GCN
and FCN, three indices on the test set were compared, as
shown in Table 5.

It can be seen that compared with FCN, GCN offered
significant improvement. The m-IOU value of GCN was
25.02% higher than that of FCN, and the F1 value was
15.71% higher than that of FCN. GCN showed better
generalization ability and practical application effect than
FCN. However, their accuracies were not much different—
both were more than 90%. This was probably due to the

Fig. 10 The segmentation results of GCN and FCN in different areas.

loss

validation loss i
training loss

0 350

700 1050 1400 1750 2100 2450 2800 3150 3500
epoch

Fig. 11 Loss curves for each epoch.
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calculation of accuracy. Table 4 shows that the proportion
of crack area in the whole image was tiny. That is, the
proportion of non-crack areas in the image was large.
When calculating accuracy, both TP and TN are included.
Because the non-crack area is large, the final 7N value is
also very high and far higher than TP, FP and FN. So, the
accuracy tends to be 1, which indicates that accuracy is
not an appropriate criterion for the scenario used in this

paper.

4 Discussion

4.1 Threshold selection in improved APAP algorithm
Since the difference (distance) between two adjacent
frames in the video is usually small (especially for ROV,
which moves slowly in water) [60], if images are stitched
directly frame by frame, it will not only increase the
running burden of the computer, but also affect the final
stitching result and decrease the efficiency.

Moreover, the ROV’s navigation is not uniform and
straight because of human operations and complex

Table 4 The proportion of crack area in images

Front. Struct. Civ. Eng. 2022, 16(11): 1378-1396

underwater environments. Therefore, the area scanned by
the camera is different in different time periods. So,
extracting keyframes should not be based on the video
timing but on the severity of scene changes in the video;
the more dramatic the scene changes, the larger area
scanned by the camera, the more keyframes should be
extracted. In our opinion, when the similarity between
two adjacent frames is small (the distance between two
adjacent frames is large), it means that the scene changes
violently in this time period (there are more keyframes in
this period).

As shown in Fig. 3, the improved APAP algorithm is
based on a threshold when extracting keyframes. This
threshold is set artificially, and it is different in different
videos. Our study compared the effect of different
thresholds on key frame extraction results. Figure 12(a)
shows that the number of keyframes extracted from the
video sequence decreases as the threshold increased. But
the keyframe was not extracted from the video when the
threshold was larger than a certain range.

The ratio of keyframes number extracted and the total
frames number in video could be identified as the
extraction rate. From Fig. 12(b), it can be seen that with
the increase of threshold, the extraction rate decreased,
and the threshold was different in different regions. The
lower the extraction rate, the fewer keyframes extracted,
and the fewer images to be stitched, the faster the
algorithm. However, this also meant that the distance
between two adjacent keyframes was greater.

As shown in Fig. 13, as the distance between images
increased, the number of matching points pairs reduced,
and the final stitching result could be gradually distorted.
In summary, the selection of thresholds was neither too
large nor too small. The threshold needed to be set

area original image FCN GCN
Dam (a) 5.60%o 10.65%o 6.39%0
Dam (b) 3.36%0 8.74%o 4.11%o
Tunnel A 6.76%0 7.76%0 6.49%0
Tunnel B 11.99%o 15.75%0 10.95%o
Table 5 Comparison of FCN and GCN on test set
method m-I0U F1 accuracy
FCN 51.18% 67.70% 99.40%
GCN 75.20% 83.41% 94.30%
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Fig. 12 Effect of threshold on keyframes detection. (a) Extracting keyframes from video based on different thresholds; (b) extraction rate

and threshold.
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4.2 Effect of the underwater environment on image
segmentation

Because the underwater environment is very complex,
acquired underwater crack images are affected by many
factors, which produces great difficulty in surveying
underwater cracks. If we use graph, G =(V,E,W), to
represent an image, the nodes correspond to the pixel of
the images, which records the color, brightness, etc. of
the underwater structure, and the edge corresponds to the
relationship between pixels and records the shape,
location, etc. of the underwater structure. Therefore, there
are two main impacts of the underwater environment on
data: the impact on nodes and the impact on edges.

For the impact of nodes, it is mainly manifested in that
the image does not reflect the true color of the underwater

original images
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points pairs = 234
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structure. Many studies [52,61,62] have shown that
scattering, refraction, and absorption are unavoidable
when light travels in water, as shown in Fig. 14. There is
a lot of floating dust in the water, and light is scattered by
these impurities. At the same time, underwater cameras
often have water shields. Moreover, the medium from the
lens to the imaging point is air, so the light will refract
when passing through the lens. Because water molecules
strongly resonate with photons in the infrared, yellow and
ultraviolet bands, there is a strong spectral effect when
light is transmitted in water. The energy in yellow,
ultraviolet, and infrared bands of light is largely absorbed
by water. Therefore, as shown in Fig. 15, underwater
structures are mainly imaged in the green band; the
underwater image brightness in the green band is higher
than that in the red and blue bands; the color information

results

underwater

absorbiedi

Fig. 14 The influence of underwater environment on images: scattering of light, refraction of light, absorption of light in different bands.
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Fig. 15 Underwater images are mainly imaged in green.

of images is incomplete.

The impact of edges is mainly manifested as image
distortion. For the underwater environment, due to the use
of wide-angle lenses, or fisheye lenses, and the refraction
of light caused by multiple media, underwater images are
often distorted. Our study tested the distortion of
underwater images in Tunnel A, Tunnel B and dam.
Figure 16 shows the distorted degree of any point on the
image relative to the image center. Moreover, the SMIA
TV Distortion of these underwater images were
calculated: the distortion of Tunnel A was —5.17%, the
distortion of Tunnel B was —2.3%, and the distortion of
dam was —29.5%. Significantly, Tunnel A and Tunnel B
were monitored by the same camera, but the distortion in
the two environments was different. These observations
indicate that the distortion of underwater image was
mainly barrel distortion, and different underwater
environments had different effects on image distortion.
Another factor is that the surface of some underwater
structures is sometimes a curved surface rather than flat.
Images are flat, which means curved surfaces are
compressed and distorted during imaging, as shown in
Fig. 17.

Generally speaking, image creation involves a structure-
to-plane projection. When collecting underwater images
with ROV, many factors affect the result, such as
refraction, scattering, type of lens, suspended solids, etc.

Calculable underwater structures are essentially projected
onto a distorted plane. Although the data is still image,
the pixel correlation has been distorted, as shown in
Fig. 18. So, it would be more appropriate to describe
them with non-Euclidean data. Therefore, GCN conver-
ged more easily than FCN during training, obtaining
higher m-IOU and F1 values.

In fact, there are other networks [63,64] besides
Resnet101 that can work as backbone for FCNs and
GCNs. As shown in Table 6, this study compared the
performance of GCN and FCN in different backbones and
the result shows that Resnet101 is indeed more effective
than other networks.

The segmentation results of FCN and GCN under
different water depths were also compared, and these
results are shown in Fig. 19. It can be seen that with the
increase of water depth, FCN was affected by the
surrounding environment, and the error increased; many
non-crack areas are divided into crack areas. GCN can
still maintain good segmentation results and fewer errors.
This indicates that GCN is less affected by water depth
change and has good stability.

4.3 The order of segmentation and stitching

According to some studies [43,54], stitching the
processed images can effectively reduce the stitching
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Fig. 17 Three-dimensional underwater structures are compressed into a flat surface during imaging.

time. This paper also compared the order of segmentation
and stitching when extracting large-scale cracks, as
shown in Fig. 20.

It can be seen that the final result of segmentation-first
was similar to that of stitching-first. Moreover, stitching
the segmented image can reduce the time-consuming.
However, in this paper, stitching and segmentation are
two steps of a process. Therefore, it is necessary to
analyze the total time consumption. As shown in Table 7,
although segmentation first reduced the time, it increased

the segmentation time. Overall, stitching first saves time.
The total time formula could be expressed as:

Ttolal = Tseg + Tstia (16)
where T\, represents the total time; T, represents the
segmentation time; 7T,; represents the stitching time.
Further, T, is determined by the model and the pixel
number. The larger the model size, the more pixels to be
processed, the longer the T, is. T; is determined by the
pixel number and the feature point number.
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Table 6 Comparison of different backbones

method backbone m-10U
GCN Resnet101 0.75
EfficientNet 0.55
MobilenetV3 0.49
FCN Resnet101 0.51
Vggl6 0.39

Although segmentation-first reduced the number of
feature points processed during stitching, it also increased
the segment pixel number. Due to the large size of GCN,
the segmentation time became longer and the total time
was increased. Stitching-first reduced the number of
pixels to be segmented, so the total time was shorter.
Therefore, the relationship between the order and T, is
uncertain, which needs to be determined according to the
model size and the number of image pixels.

5 Conclusions

Most underwater cracks are large-scale, but an
underwater camera has a small field of view and cannot

get the complete shape of underwater cracks; this paper
presents an underwater large-scale crack detection
method based on image stitching and image semantics
segmentation.

This paper proposes an improved APAP algorithm,
which can directly extract keyframes in the video for
image stitching. The experimental result shows that: the
improved APAP algorithm can adapt to different
underwater environments; the number of keyframes
extracted is far less than the total number of video frames,
which greatly simplifies the data; APAP can extract a
large number of feature points from complex underwater
pictures; the use of RANSAC algorithm can reduce
useless matching points; there is no obvious seam and
ghosting in the stitching result, and the result is ideal.

Based on previous studies, this study considers that:
due to the complexity of the underwater environment, the
irregularity of the underwater structure, the scattering and
absorption of light by water, the presence of suspended
matter, the refraction of light, the use of fisheye cameras,
and so on, the underwater images are essentially distorted
and the relationship between pixels is irregular.
Therefore, it is more appropriate to describe and process
underwater images using non-Euclidean data.

For image semantics segmentation, the use of GCN to
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Fig. 20 The effect of the order of segmentation and stitching on final results. (a) Segmentation first; (b) stitching first.

Table 7 Time-consuming comparison of segmentation first and

stitching first

the order Top (8) Ty (s) Tiotal (3)
segmentation first 71.42 2.49 7391
stitching first 55.95 6.88 62.83

segment underwater cracks is proposed in this study. By
inserting the attention mechanism into the Resnet101, the
backbone part could retain more crack information during
training. By inserting the dual channel graph convolution
module, GCN could process the non-Euclidean data and
extract the high-dimensional features of underwater
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images. The experimental results show that: GCN has
good effect in segmenting different underwater cracks;
after training, m-IOU and F1 have reached 75.20% and
83.41%; GCN always has high segmentation accuracy for
cracks in different areas, different water depths and
different degrees of distortion, which proves that GCN
has good generalization ability. Compared with FCN, this
study proves that GCN has better performance and
potential in underwater image processing.
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