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ABSTRACT In recent years, great attention has focused on the development of automated procedures for
infrastructures control. Many efforts have aimed at greater speed and reliability compared to traditional methods of
assessing structural conditions. The paper proposes a multi-level strategy, designed and implemented on the basis of
periodic structural monitoring oriented to a cost- and time-efficient tunnel control plan. Such strategy leverages the high
capacity of convolutional neural networks to identify and classify potential critical situations. In a supervised learning
framework, Ground Penetrating Radar (GPR) profiles and the revealed structural phenomena have been used as input
and output to train and test such networks. Image-based analysis and integrative investigations involving video-
endoscopy, core drilling, jacking and pull-out testing have been exploited to define the structural conditions linked to
GPR profiles and to create the database. The degree of detail and accuracy achieved in identifying a structural condition
is high. As a result, this strategy appears of value to infrastructure managers who need to reduce the amount and
invasiveness of testing, and thus also to reduce the time and costs associated with inspections made by highly specialized

technicians.
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1 Introduction and related works

Structural assessment of civil infrastructure, such as
bridges and tunnels, is of paramount importance to ensure
a high level of safety and the optimal management of
economic resources. The development of engineering
tools for making this task automatic is crucial for owners
and managers of complex infrastructural assets.

Even limiting the analysis field to the Italian scenario,
we need to deal with an infrastructural heritage consisting
of approximately 33500 bridges and 2500 tunnels. Due to
the magnitude of this asset, there is a clear need for new
automatic control plans. The urgency of their
development and implementation is further accentuated
by the current level of infrastructure ageing. Indeed, most
of the infrastructures date back to the 1960s and thus are
extremely prone to deterioration due to ageing.

Focusing on tunnels, structural conditions may not
match the original design, due to several factors including
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1) structural deformations and damages, voids, material
deterioration [1], 2) water leakages as many tunnels are
not water-proof [2], 3) frost damage mechanisms [3-8§],
4) cracks from earthquakes [9], and 5) construction
defects.

Structural Health Monitoring (SHM) techniques based
on image recognition are often used to recognize the
presence and the nature of potential damage to
infrastructure [10]. Nowadays, Artificial Intelligence (Al)
is transforming the way in which a wide range of sectors
operate thanks to advanced learning architectures and the
capacity to transfer and collect a huge amount of data.
Most recently, deep learning techniques have been found
to be effective in carrying out complex classification
tasks for automatic image analysis. Notably,
convolutional neural network (CNN) and transfer
learning techniques have been exploited to obtain better
results through the use of pre-trained deep networks. One
of the main advantages of such Al networks is the direct
extraction of data features. Some applications of
structural damage classification based on transfer learning
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with convolutional networks can be found in Refs.
[11-17]. It is worth noting that in most literature studies
the types of categorized defects are somewhat limited,
and the data often correspond to mere ideal laboratory
conditions.

Among the non-destructive structural monitoring
techniques for tunnel control [18], Ground Penetrating
Radar (GPR) is one of the most used. It allows a multi-
defects interpretation of tunnel lining [19], improving
visual inspection techniques that are exclusively suitable
for detecting surface defects [20]. Nevertheless, the
process of GPR data interpretation is generally
computationally expensive [21] because data are usually
manually scaled and interpreted or stored and only
subsequently processed off-line.

This paper presents a new multi-level strategy, based
on deep CNNs, for automated concrete damage detection
and classification. Its main contribution is the creation of
a rapid and robust tool capable of providing a decision aid
for tunnels (DAT) during the maintenance phase. It
classifies GPR profiles into 14 categories, thus covering a
wide range of defects. The findings are considered
satisfactory both in terms of accuracy and robustness. In
addition, an investigation of the sample-wise double
descent phenomenon [22,23] has been carried out in an
optimization and improvement assessment of the results.

2 Convolutional neural network and
transfer learning

Neural networks are one of the most extensively utilized
image-based categorization approaches. In this study, the
automated attribution of a particular structural state to the
analyzed image has been obtained by training CNN. As
mentioned in the previous section, such networks avoid
the need for human-made feature extraction. Hundreds of
layers, analogous to the biological structure of the visual
cortex, define the network's structure. Each layer learns
some features from the images. The network architecture
is composed by four types of layers: convolution,
activation, pooling, and fully connected [24]. The first
one contains neurons placed in a feature map connected
to the adjacent ones of the next layer through convolution
kernels. The second one is introduced within the network
architecture to extract nonlinear features. The third one
reduces the size of the convolved feature to improve the
algorithm performance and decreases the computational
cost. The last one is the layer that interprets the
characteristics previously extracted and creates a vector
containing the probability of belonging to each class.

The use of deep learning without a huge dataset and a
very high training period is possible by means of the
transfer learning approach. It consists of re-training
existing networks on their dataset for different
classification scenarios. Transfer learning for the fine-
tuning of the network is quicker than training a network
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from the ground up, and it delivers excellent accuracy
even with fewer training data.

In this study a pretrained neural network exploiting
very large datasets was used for new classification
scenarios. Such a network was pre-trained on the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012-2017 image classification and local-
ization dataset. In this way, the network could classify
1000 object classes through 1281167 training images,
50000 validation images, and 100000 test images [25,26].

The chosen pretrained network was adapted to perform
binary classifications using the following hyperparameters
(Table 1).

Table 1 Hyperparameters

parameter value
learning rate 0.001
mini-bach size 32
max epoch 12

3 Instrumentation, database, algorithm,
and implementation details

The classification performance depends on several factors.
The environmental conditions and the instrumentation
typology, the database size, and some implementation
details can all play a relevant role. In this section, such
aspects are described.

3.1 Instrumentation: Ground Penetrating Radar

The images used for the damage classification were the
output of a GPR campaign. Such technology is a
generally non-destructive screening method [27] used in
civil engineering applications [28], specifically for
assessing a tunnel's structural conditions [29]. It is used in
a wide range of applications including concrete void
location [30], underground utility tracking [31], railway
ballast optimization and evaluation [32], and landmine
detection [33]. This instrument is known for its strong
penetration capacity and its ease of use and transport [34].
Such features make it a valuable tool for damage
detection and localization.

3.1.1 Operating principles and survey methodology

GPR is a geophysical [35] survey methodology and is
based on the transmission of high-frequency electromag-
netic wave impulses into a material by means of an
antenna with a frequency ranging from 10 to 2600 MHz.
The propagation of such an impulse depends on the
material dielectric properties. For this reason, the quality
of the representation is greatly influenced by some
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elements, e.g., water. This latter causes reflection and
attenuation of part of the signal producing a less clear and
meaningful rendering.

Two types of GPR were used in the presented survey
performed by the RINA company. The first involved the
use of a dual-frequency antenna, the second the use of a
high-frequency one. Tables 2 and 3 summarize the techni-
cal aspects of both.

The dual-frequency antenna was used to capture
longitudinal profiles, whose minimum number and layout
in the tunnel cross-section depended on the number of
lanes and on the tunnel size (Fig. 1). On the other hand,
GPR scans with a high-frequency antenna could be either
longitudinal or transversal. This depends on the degree of
required detail.

Table 2 Technical characteristics of GPR with dual frequency
antenna

characteristic value
minimum number of channels 4
pulse repetition frequency (kHz) 400
range (ns) 0-9999
min. number of scans (sfl) 400
power (V) 12
primary dual-frequency antenna (MHz) 400-900
secondary dual-frequency antenna (MHz) 200—600

Table 3 Technical characteristics of GPR with high-frequency
antenna

characteristic value
minimum number of channels 4
pulse repetition frequency (kHz) 400
range (ns) 0-9999
min. number of scans (sfl) 400
power (V) 12
high-frequency antenna (GHz) =2

%

@
Fig. 1
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3.2 Database: engineering judgement

The GPR campaign described so far was carried out in
tunnels belonging to several highway routes in Italy
where visual inspections had already revealed critical-
ities. Attention to them had been growing due to the age
of such tunnels, most dated between 1960 and 1980. To
assess the structural conditions of the linings, mapping of
tunnel lining thicknesses, identification of ribs, survey of
the presence of intrados reinforcement, verification of the
presence and position of possible voids, discontinuities,
situations of degradation or inhomogeneity and analysis
of the coating cortical state became the general objectives
of the assessment.

Interpretations of GPR longitudinal profiles were
performed by both image-based analysis (IBA), i.e.,
through visual recognition procedures of specific patterns
with trained inspectors, and a variety of supplemental
tests, such as transverse GPR, jack, pull-out, core drilling,
and video—endoscopy, which supported the classification
process.

GPR profiles are characterized by a vertical axis
representing the depth of investigated thickness and the
horizontal axis representing the progressive distance from
the beginning of the structure. An example of GPR
profile with interpretations is reported in Fig. 2.

3.3 Algorithm and implementation details

ResNet50, a supervised learning algorithm, was the core
of the developed methodology. As already stated, the
algorithm received the “basic/filtered” GPR longitudinal
profiles as the input and provided the corresponding
interpretations as the output.

3.3.1 Image pre-processing

The processed GPR longitudinal profiles were acquired
by means of B-scan visualization. To use them as input of
the algorithm, the axes (described in the Section 3.2)
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Fig. 2 Presence of voids and anomalies.

were removed.

GPR profiles are affected by noise, sound tails, and
interferences. Obviously, environmental noise can make
the interpretation of GPR profiles complicated, whether
this is done by experts or by an algorithm. For this
reason, several filters were applied by the RINA
company. In detail, four types of filters were used. The
first (“Move start time”’) was used to remove the portion
of the signal between air and the investigated medium to
correctly interpret the depth of the analysis. The second
(“Background removal”), the third (“Bandpass filter”),
and the fourth (“Smoothed gain”) attenuated the noise,
the high frequencies, and equalize the power,
respectively.

Starting from such filtered GRP profiles, the first-
performed pre-processing operation was the profile
cutting. Each profile was divided into elements varying in
size between 112—600 horizontal pixels and 110-564
vertical pixels. This operation was carried out using the
free online tools form PineTools. Then, to improve the

classification performance, a data augmentation technique
was used. As highlighted by several studies in the
literature [36], this technique turned out to be very
effective. The horizontal flip augmentation [37,38],
namely the rotation of images with respect to the vertical
axis, was performed. This operation was carried out using
the program: Microsoft Office Picture Manager. It was
executed for the images of all the classes, except for the
ones related to the healthy conditions. This choice was
justified by the presence of a high number of images
belonging to this class.

The database was created by associating the ith image
to its class. This operation was carried out by comparing
the filtered GPR profiles without interpretations with the
produced reports containing the GPR profiles with their
interpretations.

3.3.2 Pretrained neural network: ResNet-50

Of the available selection of pretrained neural networks
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(e.g., AlexNet, SqueezeNet, ShuffleNet, ResNet-18, Goog-
LeNet, ResNet-50, MobileNet-v2, and NASNetmobile)
ResNet-50 was chosen and used within the MATLAB-
2020b programming environment. It is a CNN designed
in 2015 by He et al. [39]. ResNet-50 has about 25 million
parameters. It is composed by 177 layers of which 49 are
convolutional and 1 is fully connected. It exploits the
Rectified Linear Unit (ReLu) and the softmax as
activation functions and it is defined as a “feed forward”
neural network with “residual/skip connections”.

It stemmed from the observation of a non-intuitive
phenomenon: “by increasing the depth of the network
layers there is a risk of making the network worse”. The
deeper neural networks intuitively should perform better
than the shallower ones, or at least, should show better
results in the training phase. Indeed, in this phase, the
overfitting phenomenon is not possible. Examples of deep
neural networks, showing excellent results, are present in
very recent studies [40,41]. However, it is known that, as
the depth of the network increases, the increase in
accuracy is not always verified and a degradation
problem occurs. The innovative element that makes
ResNet perform better than similar counterparts is the
possession of a residual unit (skip connection) that makes
it capable of learning the differences between the input
and output layers. In this way, it is possible to mitigate
the problems arising from excessive depth. The high
depth of the network and the relatively low computational
level are two of the reasons why ResNet was selected to
address the classification problems at hand [42].

4 Methodology: multi-level damage
classification

To perform tunnel lining condition rating, the proposed
methodology was developed in six levels, as depicted in
the flowchart in Fig. 3. Moving from the lower to the
higher levels, it is possible to achieve more detailed
knowledge about the presence and the type of structural
damage. This approach aimed to associate an increasing
level of attention to the criticalities that deserved an in-
depth examination of the ongoing structural decay. This
concept is the same as that reported in the “New
guidelines for the classification and management of risk,
safety assessment and monitoring of existing bridges”,
recently approved in Italy (2020).

When ith GPR profile is analyzed, it can be associated
with one of 14 classes, described below.

C1: Healthy and Reinforcement. This class is composed
by images associated with healthy structural condition
and with the possible presence of reinforcement, namely
covering centring.

C2: Damaged. This class is composed by images with
at least one or more types of damage.
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C3: Healthy. This class is formed by images associated
with healthy structural condition.

C4: Reinforcement. This class includes images with
reinforcement, namely covering centring.

C5: Warning mix. Images in this class are characterized
by the combination of two or more types of damages.

C6: Warning all. This class is composed by images
corresponding to the presence of a single type of damage.
The potential damages are anomalies, cracks, simply
voids, detachments or excavations.

C7: Crack. Images in this class are characterized by the
presence of cracks.

C8: Images in this class can present anomalies, simply
voids, detachment or excavation.

C9: Anomaly. Images in this class present anomalies,
namely inhomogeneity within the covering casting. Some
of the causes of this phenomenon are: aging of concrete,
temperature changes, presence of problems in the casting,
crawl spaces, and reduced injuries.

C10: Mixed voids. Images in this class show the
presence of voids of different nature.

C11: Simply voids. Images in this class are associated
to the presence of voids with medium size and depth.

C12: Images in this class are related to the detachment
and excavation phenomena. A more detailed description
is reported in the C13 and C14 class, respectively.

C13: Detachment. This phenomenon produces external
void, also presenting some cracks.

C14: Excavation. This phenomenon leads internal void
with large size.

5 Results and discussion

Tunnel linings dating from 1890 up to 1992 were
analyzed, following the procedure described so far. The
accuracy achieved for each level was satisfactory as it
was always greater than 90% and on average was equal to
94.5%. Tables 4 to 10 show the confusion matrices for
each level.

5.1 Subtotal results: confusion matrix for each level

To evaluate the algorithm classification performance for
each level, a confusion matrix and a value of accuracy
were used. The confusion matrix rows showed the actual
classes and the columns showed the predicted labels. The
values places on the diagonal of the matrix correspond to
a correct classification. The accuracy value was defined
as the ratio between the confusion matrix trace and the
total sum of the matrix values. The displayed confusion
matrices and the corresponding accuracies were relative
to an arithmetic mean based on the results from several
(10, as explained below) test folds obtained by means of a
K-fold validation technique. Besides, for each such test
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Fig. 3 Flowchart: Multi-level damage classification approach.
Table 4 Confusion matrix Level 1 Table 7 Confusion matrix Level 3
real class Cl1 (predicted label) C2 (predicted label) real class C7 (predicted label) C8 (predicted label)
C1 93.3% 6.7% Cc7 92.7% 7.3%
C2 8.1% 91.9% Cc8 0.9% 99.1%
Table 5 Confusion matrix Level 2a Table 8 Confusion matrix Level 4
real class C3 (predicted label) C4 (predicted label) real class C9 (predicted label) C10 (predicted label)
C3 98.4% 1.6% Cc9 94.9% 5.1%
Cc4 3.9% 96.1% C10 11.3% 88.7%
Table 6 Confusion matrix Level 2b Table 9 Confusion matrix Level 5
real class C5 (predicted label) C6 (predicted label) real class C11 (predicted label) C12 (predicted label)
C5 90.9% 9.1% C11 98.8% 1.2%
Cc6 10.1% 89.9% C12 2.2% 97.8%

fold, an error estimation through the RMSE (Root Mean
Square Error) index was performed and then their average
was calculated and used as final indicator.

It is worth noting that the same number of samples for
both classes was used in the training of the algorithm for

the six levels.

Such homogeneity avoided specific
methodologies that would otherwise have been required
to overcome problems of imbalance between classes [43].

Following the K-fold validation methodology as
previously mentioned, the data were randomly divided
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into k groups (folds) where one “fold” is used for testing,
one for validation, and (k-2) folds for training [44,45].

A split value of k equal to 10 was chosen to the cross-
validation. As empirically proven, such value produces
test error rate estimates that don’t suffer from either high
bias or large variance [46].

Finally, the convergence graph (loss/accuracy versus
number of iterations) was used as an additional tool to
evaluate the models. An example, representative of the
general behavior, is reported in Fig. 4. It shows the
loss/accuracy versus number of iterations for one of the
10 cases related to the Level 1 and highlights the
correspondence of the trend with respect to the expected
behavior.

5.1.1 Level 1

The total number of samples for class was equal to 4130.
The values of accuracy and RMSE were 92.6% and
24.5%, respectively.

5.1.2 Level 2

For Level 2a the number of samples per class and the
accuracy achieved were equal to 492 and 97.3% with an
RMSE of 15.7%. The respective values for 2b were 574
and 90.4% with an RMSE rate of 28.1%.

Table 10 Confusion matrix Level 6

real class C13 (predicted label) C14 (predicted label)
C13 96.6% 3.4%
Cl4 5.9% 94.1%
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5.1.3 Level 3

The total number of samples for class was equal to 900.
The values of accuracy and RMSE were 95.9% and
17.4%, respectively.

5.14 Level4

The total number of samples for class was equal to 936.
The values of accuracy and RMSE were 91.8% and
25.6%, respectively.

5.1.5 Level5

The total number of samples for class was equal to 1080.
The values of accuracy and RMSE were 98.3% and 5.2%,
respectively.

5.1.6 Level6

The total number of samples for class was equal to 408.
The values of accuracy and RMSE were 95.3% and
17.1%, respectively.

6 Optimization perspective: double
descent phenomenon

In an optimization and improvement perspective, an
investigation of the sample-wise double descent
phenomenon was carried out. To speed up the
investigation process, the analyses reported here were
based on splitting the overall dataset into only two parts:
training and testing. As is well known, for a fixed model

results
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Fig. 4 Training progress-loss/accuracy vs number of iterations.
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and training procedure, the variation of the number of the
training samples has an important effect on the error
found in the test set. As recently highlighted [22,23], the
behavior of such error is not monotonically descending as
the number of training samples increases. This is due to
the sample-wise double descent phenomenon. Such
behavior shows three phases: two decreasing (the first
and third) and one increasing (the second). Knowledge of
the phase to which the error belongs allows potential
improvement that is still to be understood.

Figures 5 and 6 show the trend of test error (expressed
as the complement of the accuracy) as a function of the
number of samples per class and of the training
percentage for Level 1 and Level 5, respectively. For
Level 1, using a number of samples per class close to that
used in Section 5.1.1, for training percentages from 50 to
90, the error is already descending in the third phase.
Consequently, by increasing the training set the expected
improvements will be slight. On the other hand, Level 5
shows a behavior that is not well defined due to the small
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number of available samples. A significant increase of the
number of available samples could produce substantial
improvements.

7 Conclusions

This paper proposes an automated multilevel strategy for
the identification and classification of damage in tunnel
linings. The potential outcomes, stemming from the use
of innovative pre-trained neural networks in this research,
are: 1) the automatic categorization of a wide range of
defects, 2) the decrease of the time and cost caused by
employing highly specialized inspectors in the
interpretation of GPR profiles, 3) the reduction of
additional invasive tests to be coupled to GPR for the
characterization of defects, with a consequent minimiza-
tion of assessment invasiveness, 4) the construction of a
methodology that can be integrated into an holistic
maintenance plan. Despite some intrinsic limitations of
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Fig. 5 Level 1. Error percentages as function of number of sample and training percentages.
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the methodology, linked to the training times and to the
accumulation of data associated with more categories of
defects, advances of the proposed approach are expected.
Future developments of the work foresee: 1) the
integration of the CNN results with laboratory tests for
the creation of a holistic tunnel control strategy, 2) the
database extension, 3) the increment of the damage
classes number, and 4) the comparison of the results with
the ones obtainable from other CNN architectures.
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