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ABSTRACT Modeling and prediction of bed loads is an important but difficult issue in river engineering. The
introduced empirical equations due to restricted applicability even in similar conditions provide different accuracies with
each other and measured data. In this paper, three different artificial neural networks (ANNs) including multilayer
percepterons, radial based function (RBF), and generalized feed forward neural network using five dominant parameters
of bed load transport formulas for the Main Fork Red River in Idaho-USA were developed. The optimum models were
found through 102 data sets of flow discharge, flow velocity, water surface slopes, flow depth, and mean grain size. The
deficiency of empirical equations for this river by conducted comparison between measured and predicted values was
approved where the ANN models presented more consistence and closer estimation to observed data. The coefficient of
determination between measured and predicted values for empirical equations varied from 0.10 to 0.21 against the 0.93 to
0.98 in ANN models. The accuracy performance of all models was evaluated and interpreted using different statistical
error criteria, analytical graphs and confusion matrixes. Although the ANN models predicted compatible outputs but the
RBF with 79% correct classification rate corresponding to 0.191 network error was outperform than others.

KEYWORDS bed load prediction, artificial neural network, modeling, empirical equations

1 Introduction

Prediction of sediment transported loads due to nonlinear
relationships and complicated interaction of involved
parameters is a very difficult task. Moreover, the
importance of accurate prediction and corresponding
extracted information of sediment transport in providing
more concise interpretation in different objectives such as
morphological and sedimentological features [1,2], water
engineering purposes [3–5], maintaining the channel
geometry [6], and economic damage of sediment loads
[7], as well as river basin management [8,9], has been
approved.
Direct measurements or using the proposed empirical

relations are the common methods in calculating the
transported sediment loads. Due to possible unfeasible and
uneconomical aspects in equipped all desired locations for
long time direct measurement [4,10], the simple but

accurate enough approaches for modeling of sediment
loads is preferred. It is approved that the information on the
channel, flow and sediment characteristics are essential
elements on development of sediment load relations [11].
However, because of wide range of flow conditions as well
as dependency of involved parameters to river and
sediment characteristics the adopted equations are not
unique [12–14]. Moreover, the sophisticated nonlinear
relation between flow and sediment loads due to lack of
accepted fundamental principles and increased demand of
practical application as well as considering the effect of
different auxiliary factors cannot be properly modeled by
statistical and regression techniques [15–17]. Therefore, it
can be expectable that the same formulation not only
provide dissimilar scores of accuracy but also usually do
not fit with the observed data. This reason implies why
significant attempts for improvement of the existing
equations should be made.
Due to approved difficulties in direct bed load measure-

ments and involvement of several factors (e.g., change theArticle history: Received Nov 21, 2018; Accepted Mar 24, 2019
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flow properties, modifying the bed geometry, friction,
roughness, producing bed forms) integrating reliable bed
load prediction into hydraulic calculations is a challenging
task [18–20]. Furthermore, the associating of bed load
measurements with slopes [21–23], make it not only more
complicated and expensive than suspended load but also
more interest in developing equations for the predictive
models [16,24].
In such situations, by applying the soft computing

approach and in particular artificial neural network (ANNs)
techniques the complex nonlinear behavior can be captured
[25,26]. The literatures show that the ANN techniques due
to producing the results faster than most conventional
methods have successfully been employed in sediment
load predictions in hydrological sciences [14,27–37].
In this paper, different optimum multilayer percepterons

(MLP), generalized feed forward neural network (GFFN),
and radial based function (RBF) models subjected to
various training algorithms and activation functions with
the aim of bed load sediment prediction in the Main Fork
Red River-Idaho, USA are introduced. Among the
acquired data by United State Geological Survey (USGS)
and United States Department of Agriculture (USDA), the
five predominant parameters in empirical bed load
transport formulas including flow discharge (Q), flow
velocity (V), water surface slopes (S), flow depth (d), and
mean grain size (D50) were used. The results of developed
models then were compared with previous proposed
equations and evaluated using error criteria. The models
then were ranked and the best accuracy in fitting with
measured data was observed for RBF and GFFN,
respectively.

2 Compiled datacenter of study area

The Main Fork Red River as part of the Spokane River
Basin watershed is located in the Panhandle National
Forest of northern Idaho (Fig. 1(a)). The records of stream
flow for 1986 to 2000 and transported sediments for 1986
to 1999 including 200 and 136 measurements of
transported bed and suspended loads has been extracted
and compiled from USGS and USDA. The recorded data
sets as well as information on channel profile, cross section
and transported material can be found in URL link of US
Forest service of USDA. The variation of river cross
section at the measurement station for 3 years (1995–1998)
is presented in Fig. 1(b). According to previous studies
[2,4,14,19]; Q, V, S, d, and D50 due highest influence on
bed load sediment transport were selected and analyzed.
These factors can be categorized into hydrological, channel
geometry, geomorphological and hydraulic characteristics.
By sorting the time series of recorded data, a uniform
processed data sets including 102 sets of five mentioned
parameters were provided and statistically analyzed (Table
1). The wide range of observed variation in selected
parameters can be referred to amount of precipitations in
each water year during the measurements. The used data

sets due to different units using
x – xmin

xmax – xmin
were normal-

ized within the range of [0, 1] to provide dimensionless
input data which are necessary to improve the learning
speed and model stability. The created data sets was then
randomized into 55%, 25%, and 20% to organize training,
testing and validation of ANN-based models. Therefore
training procedure implies that the models are run with

Fig. 1 Digital elevation map (DEM) of (a) studied area and (b) variation of cross section of river using USDA information for 3 years interval
of the measurements.
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similar data sets which provide more facilities in evaluat-
ing and comparison of the performance criteria.

3 ANN predictive models

ANNs as an information processing paradigm is one of the
main tools used in machine learning and connectionist
computing systems which aim to simulate brain structure
and mimic the way that humans learn. Typically, the
embedded neurons (processing units) in ANNs are
arranged in a series of layers including input, hidden,
and output. Input (xi), weights (wi.j), bias (bi), activation
function (fact), and output (Oi,j) are the components of an
artificial neuron. In human brain, the received inputs in
each level of neurons provide insight and then the
information gets passed on to the next, more senior level.
This is precisely the mechanism that ANNs as fully
connected and weighted network layers try to replicate.
The input layer receives various forms of data which
network aims to process or learn about. The data according
to weighted connections then are passed through one or
more hidden layers. The hidden layer is responsible to data
processing and then transfer to output unit. The feed
forward ANNs are those type of neural nets in which
information travels in only one direction from input to
output. The MLPs as typical feed forward networks are
trained slowly but easy to use and can approximate any
input/output map. The jth network output (netj) contain a
set of adaptive weight of wi,j and is expressed as:

netj ¼
X

x2X
ðOi⋅wi,jÞ þ bi, (1)

where bi denotes the bias as a type of connection weight
with a constant nonzero value which is set up into the all
neurons in the back-propagation and transfer functions
except for the input layer. The bias is much like a weight
but with a constant input of 1, while the transfer function
shifts the summed signals received from this neuron. The
assigned activation state then by use of threshold value (qj)
transforms the netj from initial activation state aj(t – 1) into
new aj(t) by:

ajðtÞ ¼ factðnetjðtÞ,ajðt – 1Þ,�jÞ: (2)

The output value Oj of the neuron j is then calculated
from corresponding activation state aj as:

foutðajÞ ¼ 0: (3)

The error of each sample (Ep) and root mean square error
(RMSE) between the input (x) and the actual output (y) for
the kth output neuron is defined by:

Ep ¼
1

2

X
k 2O

ðxk – ykÞ2, (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k 2Oðxk – ykÞ2
jOj

s
: (5)

The optimum weights then can be found using and
updating procedure for (n + 1)th pattern subjected to:

Δwi,k ¼ – η
∂ErrðW Þ
∂wi,k

, (6)

wi,kðnþ 1Þ ¼ wi,kðnÞ þ rwi,kðnÞ, (7)

where h is the learning rate.
The GFFN due to ability in jumping over one or more

layers showed more facilities in both selecting the
optimum topology and increasing the computational
potency [38–40]. Moreover, it was found that the in the
same number of neurons the performance of GFFN is more
efficient than MLPs [40]. The GFFN classifier uses a
generalized shunting neuron (GSN) model which allows
neurons to operate as adaptive nonlinear filters [38,40]. To
produce the output in GFFN, all input is summed and
passed through an activation function similar to a
perceptron neuron (Eq. (8)).

xj ¼
bj þ f ðPiwjiIj þ wjoÞ
aj þ gðPicjiIi þ cjoÞ

, (8)

where xj: output (activity) of the jth neuron; Ij and Ii: inputs
to the ith and jth neurons; aj: passive decay rate of the
neuron (positive constant); wji and cji: connection weight
from the ith inputs to the jth neuron; aj and bj: constant
biases; g and f: activation functions.

Table 1 Statistical description of input parameters for prediction of sediment loads

variable mean standard error standard deviation variation range

Q (ft3/s) 154.7 11.8 117.9 9.88–645.0

S (ft/ft) 0.002 0.0001 0.0011 0.0058–0.0003

V (ft/s) 2.851 0.095 0.949 0.56–5.01

d (ft) 1.428 0.049 0.490 0.34–3.13

D50 (mm) 8.852 0.929 9.38 0.40–45.50

Note: units of data: US measurement system.
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The RBFs is a hybrid network with three layers (input
layer, a hidden layer, and a linear output layer) in which
uses nonlinear Gaussian activation transfer functions rather
than the standard sigmoidal functions and tend to learn
much faster than MLPs.

hj xð Þ ¼ exp –
ðx – cjÞTðx – cjÞ

r2 , (9)

where cj denotes the center, r is the width and ($)T

expresses the transpose of the argument.
Each input xi at each hidden neuron j is weighted by wh

as:

Sj ¼ ½x1wh
1,j,x2w

h
2,j,:::,xnw

h
n,j,:::,xNw

h
N ,j�, (10)

where xn is the nth input; wh
n,j is the input weight between

input n and hidden neuron j. Accordingly the output of
hidden neuron (fj(sj)) and the network output (Om) is
calculated by:

fj Sj
� � ¼ exp

jjSj – cjjj2
�j

 !
, (11)

Om ¼
XJ

i¼1
fjðSjÞwo

j,m þ wo
0,m, (12)

where the activation function φj($) for hidden neuron j is
normally chosen as Gaussian function; cj and sj denote the
center and width of hidden neuron j, respectively. wo

j,m

expresses the output weight between hidden neuron j and
output neuron m and wo

0,m is the bias weight of output
neuron m.
The approximating function expresses a sum of N radial

basis functions associated with a different center xi and
appropriate weighted coefficients. The approximating
function is linear and thus can be estimated using the
matrix methods of linear least squares.
Therefore, producing optimum ANNs structure due to

prevent the over-fitting problem and dependency to
internal characteristics (e.g., training algorithm, number
of neurons, learning rate, activation function, architecture,
regularization) is a difficult but important task. Despite of
different proposed relations for number of hidden neurons
[41], no unique method for network configuration is
accepted [42,43]. In this paper the optimum models and
corresponding adjusted internal characteristics were found
through an iterative procedure integrated with a developed
code based on constructive technique (Fig. 2).

4 Results of modeling process

The data were randomized as 55%, 25%, and 20% for
training, testing and validation. In optimizing process not
only different training algorithms and activation functions
but also various arrangements of neurons in hidden layers
were examined. To find the optimum model, seven training

algorithms (quick propagation, QP; conjugate gradient
descent, CGD; step, S; momentum, MO; quasi-Newton,
QN; limited memory quasi-Newton, LMQN; Levenberg-
Marquardt, LM) and six activation function (logistic, Log;
hyperbolic tangent, HyT; linear, Lin; softmax axon, SoA;
bias axon, BiA; squash, Sq) were examined. The sum of
squares and cross-entropy were utilized as output error
function, respectively.
To decrease the network variables, the learning rate of

used algorithms and the domain of changes in step size for
hidden layers was set 0.7 and [1.0–0.001], respectively.
The process is terminated using two different termination
criteria. The first priority is to satisfy the target root mean
square error (RMSE) and if not achieved the number of
iterations will use. The maximum iteration number in this
study was set for 1000 which means that if cannot attain
the desired RMSE then the minimum observed network
error of each examined structure among 1000 repeated
epochs will be considered. With this condition even the
structures which couldn’t show the target error but provide

Fig. 2 The proposed block procedure to find the optimum
architecture topology.

Reza ASHEGHI et al. Prediction of bed load sediments 377



lower RMSE than previous examined model were also
captured. According to embedded loop in defined
procedure (Fig. 2) numerous structures even with similar
architecture but different internal characteristics were
generated. As a description of executed effort (Fig. 2),
the process with one neuron in hidden layer (J) is begun
with one of the training algorithms (T) and activation
functions (F). In the loop, T and F are fixed and only J is
varying and while t< 7, the loop for 6 different F (Log,
Hyt, Lin, SoA, BiA, Sq) is repeated. Therefore the process is
repeated up to F = 6 and thus the condition F≥6 will break
the internal iteration and goes to changing the J and the
process with new number of neurons again is repeated.
During this process, by achieving the minimum RMSE, the
loop is terminated and the obtained number of neurons
needs to be managed in appropriate layers to find the
optimum network structure (e.g., topology characteristics,
model regularization and new topology as presented in
Fig. 2). The maximum number of neurons as a user option
can be set by after neuron increment in which in this study
using while command was managed for 17. Obviously, by
changing the condition different number of neurons can be
checked. In this step different arrangement of obtained
neurons subjected to learning rate from 1 to 0.01 for each
generated structure is examined and those topologies with
the minimum observed RMSE as candidate of optimum
models were considered. To have a similar condition in
model evaluation, all models were trained subjected to
initial randomized data sets.
Accordingly, the calculated minimum RMSE and the

maximum network coefficient of determination (R2) of
each structure after 3 runs were considered. Structures refer
to numerous generated topologies which have been
obtained from different neurons arrangement in layers.
Using described procedure more than 1200 different
models even in similar structure but different internal
characteristics were examined. Diverse training algorithms
and activation functions under different step sizes for
learning rate were used to avoid the over fitting problem
and escape from local minima. For example replacing the
gradient descent by the momentum optimizer with step
size 0.001 minimizes the chances that it gets stuck in a
local minimum. Furthermore, the results of 3 runs for each
structure and investigation of error improvements were
also monitored to be ensured that the examined models
were not over fitted and trapped in local minima. The
results of selected optimum models as well as example of

tested network errors against the number of neurons for
MLP, GFFN, and RBF subjected to different training
algorithms are given in Table 2 and Fig. 3, respectively.

5 Discussion and validation

The confusion matrix is a specific table layout to analyze
and visualize the performance of an algorithm in
classification purposes of ANN models [44]. The rows
(i) and columns (j) of this square matrix represent the used
data sets in predicted and actual classes to display if the
system is confusing two classes [45]. The value in the (i,j)
position is the number of records for the target column in
the ith category and corresponding network output in the
jth category. The perfect classification would have 0
everywhere except on the diagonal entries. The confusion
matrixes of all obtained optimum models with 10 rows and
target value step of 1.04 were calculated. As an example,
the results of RBF (Table 3) showed that the system have
trouble in distinguishing the real values in the range of
1.08–2.11, 7.29–8.33, and 9.37–10.4, but can make proper
distinction between other defined classes. The rows with 0
means that there is no input in this range and also the
network perform appropriate prediction which there is no
data to confuse with other categories. Similar interpretation
for GFFN and MLP was also carried out. Then correct
classification rate (CCR) as a qualitative characteristic in
classification tasks (Eq. (13)) is employed to show the
portion (in %) of data correctly recognized within the
general data set [46]. The CCR and classification error
(CE) were calculated for all optimized models in which for
RBF can be found in Table 3. Furthermore, a comparison
between the averages of CCR for all models were carried
out and reflected in Table 4, respectively.

CCR ¼ correctly  predicted   class

total   testing   class
↕ ↓

CE ¼ 1 –CCR: (13)

In the literatures, several empirical equations subjected
to different parameters for determining the bed load have
been proposed. In this paper the developed equations by
[47–56], were investigated. The dimensionless bed load
rate was calculated by the empirical equations in the
spreadsheet software with the replacement of the flow and
geometric characteristics of the river and the characteristics

Table 2 Results of implemented training algorithms to assess the optimized ANN based model

ANN type training
algorithm

min
RMSE

no. of
neuron

corresponding
topology

layer activation
transfer function

R2 for randomized
data sets

hidden output train test validate

MLP QN 0.289 9 5-5-4-1 Log HyT 0.91 0.92 0.93

GFFN MO 0. 201 9 5-4-5-1 HyT HyT 0.94 0.96 0.97

RBF LM 0.191 7 5-7-1 Log Log 0.96 0.97 0.98
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Fig. 3 Variation of calculated network RMSE for different training algorithms based on the number of neurons (the range of neurons for
minimum observed error as well as used activation functions are given in rectangles and parentheses, respectively). (a) GFFN; (b) RBF;
(c) MLP; (d) example of some tested structure to find the optimum GFFN model subjected to MO training algorithm and HyT activation
function; (e) performance of optimized models corresponding to used learning rule in training stage in GFFN, (f) Performance of
optimized models corresponding to used learning rule in training stage in RBF; (g) performance of optimized models corresponding to
used learning rule in training stage in MLP.
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of the river bed materials. This replacement in empirical
relationships in spreadsheet software can easily be done.
The performance of these equations can be compared with
ANN models using validation data sets which randomly
selected and didn’t previously have been fed to network in
training and testing stages [42]. Due to specified conditions
in development of each equation as well as inherent
approved limitation of implemented statistical techniques
not only high scattering in produced outputs can be
observed but also some of them even couldn’t provide
estimation for all fed validation sets (Table 5). Therefore
the comparisons between those equations without mis-
estimated outputs were conducted and reflected in Fig. 4.
The imperfect predictability of empirical equations showed
that in similar condition the accuracy and fitting to actual
data are not uniform and thus appropriate results cannot be
expected. As presented in Table 5 the coefficient of
determination (R2) of estimated bed loads using empirical
predictors vary from 0.08 [48] to 0.21 [56], whereas in
ANN models more consistency and closer values from
0.93 in MLP to 0.98 for RBF model were obtained. It was

observed that proposed equation by Ref. [54] provide
under estimate values whereas other formulas exhibited
over estimate in predicted values.
Despite of approved applicability of statistical error

criteria in evaluating the performance of predictive models,
the associated interpretation in assessment of low-volume
data across multiple items should be considered [40,43].
Here, the accuracy performance of models were evaluated
suing the mean absolute percentage error (MAPE),
variance account for (VAF), RMSE, mean squared devia-
tion (MSD), mean absolute deviation (MAD), R2, calcu-
lated residuals (CR) and absolute error (AE) criteria.MAPE
as the most common used index of forecast error represents
the accuracy using the average of the unsigned percentage
error.MAD is the average distance between each data point
and the mean. This statistic gives an idea about the
variability in a data set for size of the error in units and
calculates the average of the unsigned errors. MSD as a
nonnegative index measures the quality and accuracy of a
predictor in fitted values and also express a risk function,
corresponding to the expected values of the squared error
loss. AE as an indicator of physical error and the
uncertainty in a measurement expresses the quality of
model and defines the deviation between predicted and
measured values. CR is the differences between the
measured and predicted values. In performance analyzing,
higher values of VAF and R2 as well as smaller and lower
values of MAPE, CR, AE, MAD, MSD, and RMSE is of
interested. According to reflected results in Table 6 and
Fig. 5, in the studied area the equation proposed by

Table 4 Comparison of CCR and classification error of optimized
models for validation and test data sets
model CCR (%) CE (%)

test validate test validate

RBF 80 84 20 16

GFFN 80 79 20 21

MLP 65 68 35 32

Table 5 Some of the tested bed load empirical equations in this study

researcher(s) equation misestimated
data

R2

Nielsen [47] φb ¼ ½12ð� – 0:05Þð�0:5Þ� 0 0.11

Ackers and White [48] φb ¼ ½�1:25Logð16:5�=SÞ� 0 0.10

Wong and Parker [49] φb ¼ 3:97ð� – 0:0495Þ1:5 7/19 –

Wilson [50] φb ¼ 12ð� – �cÞ1:5 7/19 –

Paintal [51] φb ¼ 6:56� 1018�16 0 0.14

Madsen [52] φb ¼ ½kð� – �cÞð�0:5 – 0:7�0:5c Þ� 0 0.11

Meyer-Peiter and Muler [53] φb ¼ 8ðf � – �cÞ1:5 12/19 –

Rottner [54]
φb ¼

V

ðgðGS – 1ÞD50Þ0:5
� �

0:667
D50

d

� �0:67

þ 0:14

� �
– 0:778

D50

d

� �0:67	 
3 0 0.13

Van-Rijn [55]

φb ¼
0:053

D50
gðGS – 1Þ

�2

� � 1
3

� �
0
BBBB@

1
CCCCA

�

�c
– 1

� �2:1

2
66664

3
77775

12/19 –

Kalinske [56] qb ¼
ffiffiffiffiffiffiffiffi
gdS

p
D50f

τC
τ

� �
0 0.21

Note: � ¼ RS

ðGS – 1Þ
; φb ¼

qb

½gD3
50ðGS – 1Þ�

1
2

� � .
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Ref. [56] was ranked as the most appropriate predictors
whereas Ref. [48], represented the most improper result.
The applicability of sensitivity analysis methods in

determining the influence of input parameters on predicted
outputs has been approved [57–59]. Using sensitivity
analysis methods not only simplified but robust calibrated
model from large number of parameters can be utilized but
also important connections between observations and
model output as well as evaluating the impacts of the
uncertainties in the output can be determined [58–63]. In
partial derivative algorithm (PaD) as one of the most
known ANN-based sensitivity analysis technique [64,65],
the contribution of inputs is analyzed using Jacobian
matrix of the partial derivatives of outputs (Eq. (14)) with
respect to inputs [66].

contribution  of   ith  variable ¼ SSDiP
iSSDi

,

SSDi ¼
X

p

∂opk
∂xpi

� �2

, (14)

where Ok
p and xi

p are output and input values for pattern P
the SSDi is sum of the squares of the partial derivatives,
respectively.

Therefore, PaD is able to assess the sensitivity of the
output against slight changes in inputs. The results of
calculated influence of fed inputs on predicted output using
PaD method is reflected in Fig. 6.
It can be seen that the Q and V as tow of the main

hydraulic parameters are ranked as the most effective
parameters whereas the d which also can be categorized
into hydraulic factors is placed in lowest rank. However
the values of Q and V are approximately similar and their
differences are not significant. The contribution of D50 as
one of the main important sediment characteristics in
predicted bed loads is ranked in the third position. The
influence of Swhich is a geomorphological related factor is
scored in fourth place but both D50 and S are recognized
with moderate influences more than d.

6 Conclusions

ANN models are able to reveal hidden laws of natural
phenomena such as sediment transport process. In the
current study, different MLP, GFFN, and RBF models for
the purpose of bed load prediction in the Main Fork Red
River in Idaho, USA were successfully developed and
examined. The models were optimized based on the

Fig. 4 (a) Comparing the predicted bed load values using ANN and empirical models; (b) scattering of predicted bed loads using ANN
models regarding 1:1 line; (c) predicted bed loads using empirical equations.
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variability of internal characteristics through an organized
iterative procedure using 102 sets of five dominant
implemented hydraulic variables and sediment data (Q,
V, S, d, and D50). The calculated network RMSE and R2

revealed that the optimized RBF (RMSE = 0.191) due to
more compatible results between measured and predicted
bed load transport slightly outperforms than GFFN. It was
also observed that in similar number of neurons the GFFN
(RMSE = 0.201) reflect much more robust results than

MLP (RMSE = 0.289). The summary of predicted results
for ANN models using validation and test data sets were
presented in separated confusion matrixes which gave
insight into the errors by classifier and showed the CCR
probability. The corresponding level of CCR for RBF,
GFFN, and MLP was 79%, 74% and 67%, respectively.
Furthermore the predictability of several empirical bed
load equations respect to ANN models for the study area
was analyzed. In compare to ANN models which their

Table 6 Results of statistical criteria to evaluate the performance of used models

Model MAPE RMSE MAD MSD VAF R2

MLP 6.98 0.289 0.93 0.127 81.56 0.93

GFFN 5.23 0.201 0.80 0.025 96.49 0.97

RBF 5.27 0.191 0.77 0.018 95.77 0.98

Nielsen [47] 18.08 7.673 1.75 0.463 26.38 0.11

Ackers and White [48] 20.82 8.517 2.09 1.05 23.16 0.10

Paintal [51] 14.07 4.291 1.73 0.365 35.22 0.14

Madsen [52] 17.20 6.424 1.73 0.533 27.06 0.11

Rottner [54] 15.92 4.348 1.72 0.517 30.88 0.13

Kalinske [56] 11.38 3.562 1.45 0.316 54.24 0.21

Fig. 5 (a) Comparison of CR for ANN and empirical models; (b) comparison of AE for ANN and empirical models; (c) variation of CR
values based on the used data sets in ANNmodels; (d) variation of AE values based on the used data sets in ANNmodels (The used colors
are similar to those defined in Fig. 4).
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corresponding R2 values varied from 0.93 to 0.98, the
empirical equations using similar fed data provided diverse
predicted scatters with R2 values between 0.10 and 0.21.
Comparison between the empirical formulas also demon-
strated an overall unsatisfactory predictions of the bed
loads for a wide range of hydrodynamic and sediment
conditions. This issue can be considered as one of the main
shortcomings of the empirical equations that in a same
condition exhibit different accuracy scores and thus the
performance of such relations were found comparatively
insufficient. The accuracy performance of the ANNmodels
and empirical equations were then assessed and ranked
using MAPE, RMSE, MAD, VAF, R2, CR, and AE error
criteria. It was observed that RBF due to satisfied more
criteria (RMSE, 0.191; MAD, 0.77; MSD, 0.018; R2, 0.98)
than GFFN (MAPE, 5.23; VAF, 96.49) demonstrated more
accurate performance. Moreover, the comparative analy-
tical graphs of variations of CR and AE showed lower
values in ANN models than empirical equations in which
the lowest variation was tracked in RBF. The Q, V, and d
using the PaD method were recognized as the most and
least effective factors on predicted bed loads.
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