Skip to main content

Advertisement

Log in

MXene supported PtCo bimetallic catalyst for hydrogen evolution in acidic conditions

  • Research Article
  • Special Issue: Electrochemical Energy Storage and Conversion
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Using the electrochemical technology to split water molecules to produce hydrogen is the key to obtain green hydrogen for solving the energy crisis. The large-scale application of hydrogen evolution reaction (HER) in water dissociation requires a highly active catalyst. In this paper, the highly dispersed PtCo bimetallic nanoparticles loading on MXene (PtCo/MXene) were prepared by using a step-to-step reduction strategy. The mentioned PtCo/MXene catalyst exhibits a high current density of −100 mA/cm2 in an acidic medium with just a 152 mV overpotential. In addition, the PtCo/MXene catalyst also displays a superior stability. Computational analysis and experimental testing demonstrate that the electronic interaction between Pt and Co can effectively modify the electronic structure of the active site, thereby enhancing the inherent catalytic performance of the material. More importantly, MXene two-dimensional nanosheets can expose more active sites because of their large specific surface area. Furthermore, MXene substrate with excellent electrical conductivity and harmonious interfaces between PtCo and MXene enhance charge transfer efficiency and lower the reaction activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003

    Article  CAS  Google Scholar 

  2. Jin H, Wang X, Tang C, et al. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Advanced Materials, 2021, 33(13): 2007508

    Article  CAS  Google Scholar 

  3. Wang T, Tao L, Zhu X, et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2022, 5(1): 66–73

    Article  CAS  Google Scholar 

  4. Abdalla A M, Hossain S, Nisfindy O B, et al. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 2018, 165: 602–627

    Article  CAS  Google Scholar 

  5. Megía P J, Vizcaíno A J, Calles J A, et al. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy & Fuels, 2021, 35(20): 16403–16415

    Article  Google Scholar 

  6. Peng H, Zhou K, Jin Y, et al. Hierarchical nanostructure with ultrafine MoO3 particles-decorated Co(OH)2 nanosheet array on Ag nanowires for promoted hydrogen evolution reaction. Chemical Engineering Journal, 2022, 429: 132477

    Article  CAS  Google Scholar 

  7. Yang C, Zhong W, Shen K, et al. Electrochemically reconstructed Cu−FeOOH/Fe3O4 catalyst for efficient hydrogen evolution in alkaline media. Advanced Energy Materials, 2022, 12(16): 2200077

    Article  CAS  Google Scholar 

  8. Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis—A review. Materials Science for Energy Technologies, 2019, 2(3): 442–454

    Article  Google Scholar 

  9. Li L, Yu D, Li P, et al. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy & Environmental Science, 2021, 14(12): 6419–6427

    Article  CAS  Google Scholar 

  10. Wang J, Han L, Huang B, et al. Amorphization activated ruthenium–tellurium nanorods for efficient water splitting. Nature Communications, 2019, 10(1): 5692

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Fan J, Wu J, Cui X, et al. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. Journal of the American Chemical Society, 2020, 142(7): 3645–3651

    Article  CAS  PubMed  Google Scholar 

  12. Zhou K, Wang Z, Han C, et al. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12(1): 3783

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Bai Y, Liu Y, Liu M, et al. Near-equilibrium growth of chemically stable covalent organic framework/graphene oxide hybrid materials for the hydrogen evolution reaction. Angewandte Chemie, 2022, 134(2): e202113067

    Article  ADS  Google Scholar 

  14. Guo C, Jiao Y, Zheng Y, et al. Intermediate modulation on noble metal hybridized to 2D metal-organic framework for accelerated water electrocatalysis. Chem, 2019, 5(9): 2429–2441

    Article  CAS  Google Scholar 

  15. Ye S, Luo F, Xu T, et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy, 2020, 68: 104301

    Article  CAS  Google Scholar 

  16. Liu D, Li X, Chen S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nature Energy, 2019, 4(6): 512–518

    Article  CAS  ADS  Google Scholar 

  17. Park S J, Nguyen T H, Tran D T, et al. Delaminated MBene sheets beyond usual 2D transition metal materials for securing Pt single atoms to boost hydrogen evolution. Energy & Environmental Science, 2023, 16(9): 4093–4104

    Article  CAS  Google Scholar 

  18. Li L, Wang X, Li J, et al. One-pot synthesis of ultrafine Pt-decorated MoS2/N-doped carbon composite with sponge-like morphology for efficient hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 872: 159562

    Article  CAS  Google Scholar 

  19. Tan S, Ouyang W, Ji Y, et al. Carbon wrapped bimetallic NiCo nanospheres toward excellent HER and OER performance. Journal of Alloys and Compounds, 2021, 889: 161528

    Article  Google Scholar 

  20. Pan Q, Xu C, Li X, et al. Porous Ni−Mo bimetallic hybrid electrocatalyst by intermolecular forces in precursors for enhanced hydrogen generation. Chemical Engineering Journal, 2021, 405: 126962

    Article  CAS  Google Scholar 

  21. Fan J, Du H, Zhao Y, et al. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catalysis, 2020, 10(22): 13560–13583

    Article  CAS  Google Scholar 

  22. Chen X, Zhu H, Zhu J, et al. Indium-based bimetallic clusters anchored onto silicon-doped graphene as efficient multifunctional electrocatalysts for ORR, OER, and HER. Chemical Engineering Journal, 2023, 451(4): 138998

    Article  CAS  Google Scholar 

  23. Zhang J, Wang M, Wan T, et al. Novel (Pt−Ox)−(Co−Oy) nonbonding active structures on defective carbon from oxygen-rich coal tar pitch for efficient HER and ORR. Advanced Materials, 2022, 34(45): 2206960

    Article  CAS  Google Scholar 

  24. Zhang X, Meng H, Chen H, et al. Bimetallic PtCo alloyed nanodendritic assemblies as an advanced efficient and robust electrocatalyst for highly efficient hydrogen evolution and oxygen reduction. Journal of Alloys and Compounds, 2019, 786: 232–239

    Article  CAS  Google Scholar 

  25. Yu W, Zhang Y, Qin Y, et al. High-density frustrated Lewis pair for high-performance hydrogen evolution. Advanced Energy Materials, 2023, 13(2): 2203136

    Article  CAS  Google Scholar 

  26. Fu Z, Wang N, Legut D, et al. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chemical Reviews, 2019, 119(23): 11980–12031

    Article  CAS  PubMed  Google Scholar 

  27. Peng W, Luo M, Xu X, et al. Spontaneous atomicruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Advanced Energy Materials, 2020, 10(25): 2001364

    Article  CAS  Google Scholar 

  28. Liu H, Dong B. Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage. Materials Today Physics, 2021, 20: 100469

    Article  CAS  Google Scholar 

  29. Wang H, Lee J. Recent advances in structural engineering of MXene electrocatalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(21): 10604–10624

    Article  CAS  Google Scholar 

  30. Tang Y, Yang C, Xu X, et al. MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Advanced Energy Materials, 2022, 12(12): 2103867

    Article  CAS  Google Scholar 

  31. Wu Y, Wei W, Yu R, et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Advanced Functional Materials, 2022, 32(17): 2110910

    Article  CAS  Google Scholar 

  32. Wang L, Song L, Yang Z, et al. Electronic modulation of metal-organic frameworks by interfacial bridging for efficient pH-universal hydrogen evolution. Advanced Functional Materials, 2023, 33(1): 2210322

    Article  CAS  Google Scholar 

  33. Wang J, Liu Y, Yang Y, et al. A weldable MXene film assisted by water. Matter, 2022, 5(3): 1042–1055

    Article  CAS  Google Scholar 

  34. Hongzhiwei Technology, Device Studio, Version 2023A, China, 2023-5-8, available at the website of HZWTECH

  35. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Blöchl P E. Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979

    Article  PubMed  ADS  Google Scholar 

  37. Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Li J, Hou C, Chen C, et al. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano, 2023, 17(11): 10947–10957

    Article  CAS  PubMed  Google Scholar 

  39. Ding L, Wei Y, Li L, et al. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  40. Ke D, Wang J, Zhang H, et al. Fabrication of Pt−Co NPs supported on nanoporous graphene as high-efficient catalyst for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2017, 42(43): 26617–26625

    Article  CAS  Google Scholar 

  41. Fu F, Wang C, Wang Q, et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis. Journal of the American Chemical Society, 2018, 140(31): 10034–10042

    Article  CAS  PubMed  Google Scholar 

  42. Meng Y, Sun Q, Zhang T, et al. Cobalt-promoted noble-metal catalysts for efficient hydrogen generation from ammonia borane hydrolysis. Journal of the American Chemical Society, 2023, 145(9): 5486–5495

    Article  CAS  PubMed  Google Scholar 

  43. Kuang P, Ni Z, Zhu B, et al. Modulating the d-band center enables ultrafine Pt3Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Advanced Materials, 2023, 35(41): 2303030

    Article  CAS  Google Scholar 

  44. Wang Y, Chen L, Yu X, et al. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Advanced Energy Materials, 2017, 7(2): 1601390

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Urban Carbon Neutral Science Innovation Foundation of Beijing University of Technology, China (Nos. 048000514122664 and 048000514122656), the China Postdoctoral Science Foundation (No. 2022M710273), and the Beijing Postdoctoral Research Foundation, China (No. 2022-ZZ-043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Ling Zhou, Yang Yang, Yuhong Jin or Hao Wang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Zhang, Jh., Zhou, KL. et al. MXene supported PtCo bimetallic catalyst for hydrogen evolution in acidic conditions. Front. Energy (2024). https://doi.org/10.1007/s11708-024-0925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11708-024-0925-9

Keywords

Navigation