Skip to main content

Advertisement

Log in

Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The effect of oxygen vacancies on the adsorption and activation of CO2 on the surface of different phases of ZrO2 is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2. The adsorption energy of CO2 on the c-ZrO2, t-ZrO2 and, m-ZrO2 surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO2 dissociation on the defective surfaces of c-ZrO2, t-ZrO2, and m-ZrO2 is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO2 on the ZrO2 surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO2 both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO2 at an atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tollefson J. World looks ahead post-Copenhagen. Nature, 2009, 462(7276): 966–967

    Article  Google Scholar 

  2. Tollefson J. Copenhagen: The scientists’ view. Nature, 2009, 462(7274): 714–715

    Article  Google Scholar 

  3. Wang W, Wang S, Ma X, et al. Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011, 40(7): 3703–3727

    Article  Google Scholar 

  4. Valluri S, Claremboux V, Kawatra S. Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences (China), 2022, 113(3): 322–344

    Article  Google Scholar 

  5. Wang X, Pan C, Romero C E, et al. Thermo-economic analysis of a direct supercritical CO2 electric power generation system using geothermal heat. Frontiers in Energy, 2022, 16(2): 246–262

    Article  Google Scholar 

  6. Wang H, He J. China’s pre-2020 CO2 emission reduction potential and its influence. Frontiers in Energy, 2019, 13(3): 571–578

    Article  Google Scholar 

  7. Honda M, Tamura M, Nakagawa Y, et al. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. ChemSusChem, 2013, 6(8): 1341–1344

    Article  Google Scholar 

  8. Díez-Ramírez J, Díaz J A, Sánchez P, et al. Optimization of the Pd/Cu ratio in Pd-Cu-Zn/SiC catalysts for the CO2 hydrogenation to methanol at atmospheric pressure. Journal of CO2 Utilization, 2017, 22: 71–80

    Article  Google Scholar 

  9. Frei M S, Mondelli C, Cesarini A, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catalysis, 2020, 10(2): 1133–1145

    Article  Google Scholar 

  10. Temvuttirojn C, Poo-arporn Y, Chanlek N, et al. Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts. Industrial & Engineering Chemistry Research, 2020, 59(13): 5525–5535

    Article  Google Scholar 

  11. Numpilai T, Kidkhunthod P, Cheng C K, et al. CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ZrO2 catalysts: Influence of calcination temperatures of ZrO2 support. Catalysis Today, 2021, 375: 298–306

    Article  Google Scholar 

  12. Witoon T, Chalorngtham J, Dumrongbunditkul P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chemical Engineering Journal, 2016, 293: 327–336

    Article  Google Scholar 

  13. Witoon T, Numpilai T, Nijpanich S, et al. Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalysts. Chemical Engineering Journal, 2022, 431: 133211

    Article  Google Scholar 

  14. Witoon T, Lapkeatseree V, Numpilai T, et al. CO2 hydrogenation to light olefins over mixed Fe-Co-K-Al oxides catalysts prepared via precipitation and reduction methods. Chemical Engineering Journal, 2022, 428: 131389

    Article  Google Scholar 

  15. Stroud T, Smith T J, Le Saché E, et al. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Applied Catalysis B: Environmental, 2018, 224: 125–135

    Article  Google Scholar 

  16. Rubin E S, Cooper R N, Frosch R A, et al. Realistic mitigation options for global warming. Science, 1992, 257(5067): 148–266

    Article  Google Scholar 

  17. Anderson R B. Fischer-Tropsch Synthesis. New York: Academic Press, 1984

    Google Scholar 

  18. Schulz H. Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A: General, 1999, 186(1–2): 3–12

    Article  Google Scholar 

  19. Zhang C, Li Y, He Z, et al. Microtubular Fe/Mn-promoted CaO-Ca12Al14O33 bi-functional material for H2 production from sorption enhanced water gas shift. Applied Catalysis B: Environmental, 2022, 314: 121474

    Article  Google Scholar 

  20. Van de Loosdrecht J, Botes F G, Ciobica I M, et al. Fischer-Tropsch synthesis: Catalysts and chemistry. In: Reedijk J, Poeppelmeier K, eds. Comprehensive Inorganic Chemistry II: From Elements to Applications. Elsevier, 2013: 525–557

  21. Chen Y, Wei J, Duyar M S, et al. Carbon-based catalysts for Fischer-Tropsch synthesis. Chemical Society Reviews, 2021, 50(4): 2337–2366

    Article  Google Scholar 

  22. Ashrafi M, Pröll T, Pfeifer C, et al. Experimental study of model biogas catalytic steam reforming: 1. Thermodynamic optimization. Energy & Fuels, 2008, 22(6): 4182–4189

    Article  Google Scholar 

  23. Xu Y, Lausche A C, Wang S, et al. In silico search for novel methane steam reforming catalysts. New Journal of Physics, 2013, 15(12): 125021

    Article  Google Scholar 

  24. Fattahi A, McCarthy R E, Ahmad M R, et al. Why does cyclopropene have the acidity of an acetylene but the bond energy of methane? Journal of the American Chemical Society, 2003, 125(38): 11746–11750

    Article  Google Scholar 

  25. Lv J, Wang D, Wei B, et al. Integrated process of coal pyrolysis with dry reforming of low carbon alkane over Ni/La2O3-ZrO2 with different La/Zr ratio. Fuel, 2021, 292: 120412

    Article  Google Scholar 

  26. Fakeeha A H, Kurdi A, Al-Baqmaa Y A, et al. Performance study of methane dry reforming on Ni/ZrO2 catalyst. Energies, 2022, 15(10): 3841

    Article  Google Scholar 

  27. Lu Y, Guo D, Zhao Y, et al. Enhanced catalytic performance of Nix-V@HSS catalysts for the DRM reaction: The study of interfacial effects on Ni-VOx structure with a unique yolk-shell structure. Journal of Catalysis, 2021, 396: 65–80

    Article  Google Scholar 

  28. Qin Z, Chen L, Chen J, et al. Ni/CeO2 prepared by improved polyol method for DRM with highly dispersed Ni. Greenhouse Gases. Science and Technology, 2021, 11(6): 1245–1264

    Article  MathSciNet  Google Scholar 

  29. Gao X, Lin Z, Li T, et al. Recent developments in dielectric barrier discharge plasma-assisted catalytic dry reforming of methane over Ni-based catalysts. Catalysts, 2021, 11(4): 455

    Article  Google Scholar 

  30. Zhang L, Meng Y, Yang J, et al. Theoretical study on dry reforming of methane catalyzed by Cu12M (M= Cu, Fe, Co, Ni) core-shell bimetallic clusters. Fuel, 2021, 303: 121263

    Article  Google Scholar 

  31. Qiu H, Ran J, Niu J, et al. Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: A DFT study. Molecular Catalysis, 2021, 502: 111360

    Article  Google Scholar 

  32. Ou Z, Ran J, Qiu H, et al. Uncovering the effect of surface basicity on the carbon deposition of Ni/CeO2 catalyst modified by oxides in DRM. Fuel, 2023, 335: 126994

    Article  Google Scholar 

  33. Hao S, Zhang H. High catalytic performance of nitrate reduction by synergistic effect of zero-valent iron (FeO) and bimetallic composite carrier catalyst. Journal of Cleaner Production, 2017, 167: 192–200

    Article  Google Scholar 

  34. Yang W, Zhao H, Wang K, et al. Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion. Proceedings of the Combustion Institute, 2015, 35(3): 2811–2818

    Article  MathSciNet  Google Scholar 

  35. Nagappagari L R, Samanta S, Sharma N, et al. Synergistic effect of a noble metal free Ni(OH)2 co-catalyst and a ternary ZnIn2S4/g-C3N4 heterojunction for enhanced visible light photocatalytic hydrogen evolution. Sustainable Energy & Fuels, 2020, 4(2): 750–759

    Article  Google Scholar 

  36. Chen H Y T, Tosoni S, Pacchioni G. A DFT study of the acid-base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules. Surface Science, 2016, 652: 163–171

    Article  Google Scholar 

  37. Liang Z, Wang W, Zhang M, et al. Structural, mechanical and thermodynamic properties of ZrO2 polymorphs by first-principles calculation. Physica B, Condensed Matter, 2017, 511: 10–19

    Google Scholar 

  38. Murota T, Hasegawa T, Aozasa S, et al. Production method of cerium oxide with high storage capacity of oxygen and its mechanism. Journal of Alloys and Compounds, 1993, 193(1–2): 298–299

    Article  Google Scholar 

  39. Chen C, Ruan C, Zhan Y, et al. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water—gas-shift performance. International Journal of Hydrogen Energy, 2014, 39(1): 317–324

    Article  Google Scholar 

  40. Han X, Yang J, Han B, et al. Density functional theory study of the mechanism of CO methanation on Ni4/t-ZrO2 catalysts: Roles of surface oxygen vacancies and hydroxyl groups. International Journal of Hydrogen Energy, 2017, 42(1): 177–192

    Article  MathSciNet  Google Scholar 

  41. Petchmark M, Ruangpornvisuti V. Hydrogen adsorption on c-ZrO2(111), t-ZrO2(101), and m-ZrO2(111) surfaces and their oxygen-vacancy defect for hydrogen sensing and storage: A first-principles investigation. Materials Letters, 2021, 301: 130243

    Article  Google Scholar 

  42. Alioui O, Badawi M, Erto A, et al. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: A review. Catalysis Reviews-Science and Engineering, 2022, online, https://doi.org/10.1080/01614940.2021.2020518

  43. Zhu Z, Tao H, Zhou Y. Using density functional theory to unravel the size-dependent effect of Au nanoparticles and au single atoms adsorbed on carbon nitride for the hydrogenation of nitrobenzene. ACS Applied Nano Materials, 2022, 5(12): 18753–18760

    Article  Google Scholar 

  44. Niu J, Chen S, Zheng X, et al. Understanding the effect of Ni cluster size on methane activation and dehydrogenation. International Journal of Hydrogen Energy, 2022, online, https://doi.org/10.1016/j.ijhydene.2022.12.174

  45. Fakeeha A H, Kurdi A, Al-Baqmaa Y A, et al. Performance study of methane dry reforming on Ni/ZrO2 catalyst. Energies, 2022, 15(10): 3841

    Article  Google Scholar 

  46. Hu X, Jia X, Zhang X, et al. Improvement in the activity of Ni/ZrO2 by cold plasma decomposition for dry reforming of methane. Catalysis Communications, 2019, 128: 105720

    Article  Google Scholar 

  47. Niu J, Liu H, Jin Y, et al. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis. International Journal of Hydrogen Energy, 2022, 47(15): 9183–9200

    Article  Google Scholar 

  48. Niu J, Liu H, Jin Y, et al. A density functional theory study of methane activation on MgO supported Ni9M1 cluster: Role of M on C-H activation. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1485–1492

    Article  Google Scholar 

  49. Han L, Jing F, Zhang J, et al. Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction. Applied Catalysis B: Environmental, 2021, 282: 119602

    Article  Google Scholar 

  50. Chen J, Abazari R, Adegoke K A, et al. Metal—organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coordination Chemistry Reviews, 2022, 469: 214664

    Article  Google Scholar 

  51. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517

    Article  Google Scholar 

  52. Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

    Article  Google Scholar 

  53. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  Google Scholar 

  54. Gerald K. X-Ray diffraction powder pattern of metastable cubic ZrO2. Journal of the American Ceramic Society, 1971, 54(10): 531–531

    Article  Google Scholar 

  55. Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society, 1984, 67(6): 119–121

    Article  Google Scholar 

  56. Christensen A, Carter E A. First-principles study of the surfaces of zirconia. Physical Review B: Condensed Matter, 1998, 58(12): 8050–8064

    Article  Google Scholar 

  57. Arce-Ramos J M, Grabow L C, Handy B E, et al. Nature of acid sites in silica-supported zirconium oxide: a combined experimental and periodic DFT study. Journal of Physical Chemistry C, 2015, 119(27): 15150–15159

    Article  Google Scholar 

  58. Taoudi A, Laval J P, Frit B. Synthesis and crystal structure of three new rare earth oxyfluorides related to baddeleyite [LnOF; Ln= Tm, Yb, Lu]. Materials Research Bulletin, 1994, 29(11): 1137–1147

    Article  Google Scholar 

  59. Steib M, Lou Y, Jentys A, et al. Enhanced activity in methane dry reforming by carbon dioxide induced metal-oxide interface restructuring of nickel/zirconia. ChemCatChem, 2017, 9(20): 3809–3813

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52106179) and the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302124017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntian Niu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Zhang, C., Liu, H. et al. Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2. Front. Energy 17, 545–554 (2023). https://doi.org/10.1007/s11708-023-0867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0867-7

Keywords

Navigation