Skip to main content
Log in

Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In the field of bone defect repair, critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials. In this study, carbon nanotubes/polylactic acid/hydroxyapatite (CNTs/PLA/HA) scaffolds with different contents (0.5, 1, 1.5 and 2 wt.%) of CNTs were prepared by the thermally induced phase separation (TIPS) method. The results revealed that the composite scaffolds had uniform pores with high porosities over 68% and high through performances. The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA, in which the 1.5 wt.% CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of (868.5 ± 12.34) MPa, the tensile elastic modulus of (209.51 ± 12.73) MPa, and the tensile strength of (3.26 ± 0.61) MPa. Furthermore, L929 cells on the 1.5 wt.% CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility. Therefore, it is expected that the 1.5 wt.% CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong M H, Lee J H, Jung H S, et al. Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomaterials Research, 2022, 26(1): 42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Migliorini F, La Padula G, Torsiello E, et al. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. European Journal of Medical Research, 2021, 26(1): 118

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li C, Lv H, Du Y, et al. Biologically modified implantation as therapeutic bioabsorbable materials for bone defect repair. Regenerative Therapy, 2022, 19: 9–23

    Article  CAS  PubMed  Google Scholar 

  4. Xu C, Kang Y, Guan S, et al. Iron-based metal–organic framework as a dual cooperative release system for enhanced vascularization and bone regeneration. Chinese Chemical Letters, 2023, 34(5): 107825

    Article  CAS  Google Scholar 

  5. Lan W, Xu M, Qin M, et al. Physicochemical properties and biocompatibility of the bi-layer polyvinyl alcohol-based hydrogel for osteochondral tissue engineering. Materials & Design, 2021, 204: 109652

    Article  CAS  Google Scholar 

  6. Huey D J, Hu J C, Athanasiou K A. Unlike bone, cartilage regeneration remains elusive. Science, 2012, 338(6109): 917–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui Y, Liu H, Tian Y, et al. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Materials Today: Bio, 2022, 16: 100409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levingstone T J, Matsiko A, Dickson G R, et al. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomaterialia, 2014, 10(5): 1996–2004

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Tong D, Song H, et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Advanced Materials, 2022, 34(36): 2202044

    Article  CAS  Google Scholar 

  10. Peng Y, Zhuang Y, Liu Y, et al. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration, 2023, 3(4): 20210043

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peng Y, Zhuang Y, Zhang Y, et al. Dynamically adaptive scaffolds for cartilage tissue engineering. MedComm–Biomaterials and Applications, 2023, 2(3): e49

    Article  Google Scholar 

  12. Huang D, Niu L, Wei Y, et al. Interfacial and biological properties of the gradient coating on polyamide substrate for bone substitute. Journal of the Royal Society Interface, 2014, 11(99): 20140101

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zerankeshi M M, Mofakhami S, Salahinejad E. 3D porous HA/TCP composite scaffolds for bone tissue engineering. Ceramics International, 2022, 48(16): 22647–22663

    Article  Google Scholar 

  14. Zou Z, Wang L, Zhou Z, et al. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into chitosan/alginate hydrogels for efficient bone regeneration. Bioactive Materials, 2021, 6(6): 1839–1851

    Article  CAS  PubMed  Google Scholar 

  15. Wang Q, Luan J, Zhao Z, et al. Dentin-desensitizing biomaterials. Chinese Chemical Letters, 2023, 34(8): 108060

    Article  CAS  Google Scholar 

  16. Yan C, Ma G, Chen A, et al. Additive manufacturing of hydroxyapatite and its composite materials: a review. Journal of Micromechanics and Molecular Physics, 2020, 5(3): 2030002

    Article  CAS  Google Scholar 

  17. Sri A K, Arthi C, Neya N R, et al. Nano-hydroxyapatite/collagen composite as scaffold material for bone regeneration. Biomedical Materials, 2023, 18(3): 032002

    Article  Google Scholar 

  18. Zheng P, Ding J. Calcium ion nanomodulators for mitochondria-targeted multimodal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17(1): 1–3

    Article  PubMed  Google Scholar 

  19. Tian Z, Guo Y, Yang X, et al. Nano calcium-deficient hydroxyapatite/O-carboxymethyl chitosan-CaCl2 microspheres loaded with rhein for bone defect repair. Journal of Bionics Engineering, 2022, 19(4): 1087–1099

    Article  Google Scholar 

  20. Zhang B, Wang L, Song P, et al. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Materials & Design, 2021, 201: 109490

    Article  CAS  Google Scholar 

  21. Hartatiek H, Nasikhudin N, Putra A A D, et al. Study of surface morphology and porosity of composite scaffold nanofiber PVA/CS/HA with electrospinning method. Journal of Physical Science and Engineering, 2021, 6(1): 26–32

    Google Scholar 

  22. Yu L, Rowe D W, Perera I P, et al. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Applied Materials & Interfaces, 2020, 12(16): 18235–18249

    Article  CAS  Google Scholar 

  23. Osman M A, Virgilio N, Rouabhia M, et al. Polylactic acid (PLA) foaming: design of experiments for cell size control. Materials Sciences and Applications, 2022, 13(2): 63–77

    Article  CAS  Google Scholar 

  24. Surisaeng J, Kanabenja W, Passornraprasit N, et al. Polyhydroxybutyrate/polylactic acid blends: an alternative feedstock for 3D printed bone scaffold model. Journal of Physics: Conference Series, 2022, 2175(1): 012021

    Google Scholar 

  25. Salamanca E, Tsao T C, Hseuh H W, et al. Fabrication of polylactic acid/β-tricalcium phosphate FDM 3D printing fiber to enhance osteoblastic-like cell performance. Frontiers in Materials, 2021, 8: 683706

    Article  Google Scholar 

  26. Akindoyo J O, Beg M D H, Ghazali S, et al. Synergized high-load bearing bone replacement composite from poly(lactic acid) reinforced with hydroxyapatite/glass fiber hybrid filler — mechanical and dynamic mechanical properties. Polymer Composites, 2021, 42(1): 57–69

    Article  CAS  Google Scholar 

  27. Ko H S, Lee S, Lee D, et al. Mechanical properties and bioactivity of poly(lactic acid) composites containing poly(glycolic acid) fiber and hydroxyapatite particles. Nanomaterials, 2021, 11(1): 249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ko H S, Lee S, Jho J Y. Synthesis and modification of hydroxyapatite nanofiber for poly(lactic acid) composites with enhanced mechanical strength and bioactivity. Nanomaterials, 2021, 11(1): 213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao X, Chen X, Gui Z, et al. Carbon fiber reinforced hydroxyapatite composites with excellent mechanical properties and biological activities prepared by spark plasma sintering. Ceramics International, 2020, 46(17): 27446–27456

    Article  CAS  Google Scholar 

  30. Zhao X, Yang Z, Liu Q, et al. Potential load-bearing bone substitution material: carbon-fiber-reinforced magnesium-doped hydroxyapatite composites with excellent mechanical performance and tailored biological properties. ACS Biomaterials Science & Engineering, 2022, 8(2): 921–938

    Article  CAS  Google Scholar 

  31. Arumugam S, Ju Y. Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone — a review. Materials Today: Chemistry, 2021, 20: 100420

    CAS  Google Scholar 

  32. Xu J, Xie Y, Zhang H, et al. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells. Colloids and Surfaces B: Biointerfaces, 2014, 123: 907–915

    Article  CAS  PubMed  Google Scholar 

  33. Robert C, Thitasiri W B, Mamalis D, et al. Improving through-thickness conductivity of carbon fiber reinforced polymer using carbon nanotube/polyethylenimine at the interlaminar region. Journal of Applied Polymer Science, 2021, 138(5): e49749

    Article  Google Scholar 

  34. Salahuddin B, Faisal S N, Baigh T A, et al. Carbonaceous materials coated carbon fibre reinforced polymer matrix composites. Polymers, 2021, 13(16): 2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao Y, Han W, Pu Z, et al. Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation. RSC Advances, 2020, 10(44): 26319–26325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang H, Zuo Y, Zou Q, et al. Nano-hydroxyapatite/polyamide66 composite tissue-engineering scaffolds with anisotropy in morphology and mechanical behaviors. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(3): 658–669

    Article  CAS  Google Scholar 

  37. Radhakrishnan J, Muthuraj M, Gandham G S P D, et al. Nanohydroxyapatite–protein interface in composite sintered scaffold influences bone regeneration in rabbit ulnar segmental defect. Journal of Materials Science: Materials in Medicine, 2022, 33(4): 36

    CAS  PubMed  Google Scholar 

  38. Gómez-Cerezo M N, Peña J, Ivanovski S, et al. Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration. Materials Science and Engineering C, 2021, 120: 111706

    Article  PubMed  Google Scholar 

  39. Guastaferro M, Baldino L, Cardea S, et al. Supercritical processing of PCL and PCL–PEG blends to produce improved PCL-based porous scaffolds. Journal of Supercritical Fluids, 2022, 186: 105611

    Article  CAS  Google Scholar 

  40. Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International Journal of Oral Science, 2020, 12(1): 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wähnert D, Greiner J, Brianza S, et al. Strategies to improve bone healing: innovative surgical implants meet nano-/microtopography of bone scaffolds. Biomedicines, 2021, 9(7): 746

    Article  PubMed  PubMed Central  Google Scholar 

  42. Raja M, Ryu S H, Shanmugharaj A M. Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. European Polymer Journal, 2013, 49(11): 3492–3500

    Article  CAS  Google Scholar 

  43. Maadani A M, Salahinejad E. Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments. Journal of Controlled Release, 2022, 351: 1–7

    Article  CAS  PubMed  Google Scholar 

  44. Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomedical Engineering Online, 2020, 19(1): 69

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tafete G A, Thothadri G, Abera M K. A review on carbon nanotube-based composites for electrocatalyst applications. Fullerenes, Nanotubes, and Carbon Nanostructures, 2022, 30(11): 1075–1083

    Article  CAS  Google Scholar 

  46. Dixit K, Raichur A, Sinha N. Polymer-coated and nanofiber-reinforced functionally graded bioactive glass scaffolds fabricated using additive manufacturing. IEEE Transactions on Nanobioscience, 2022, 21(3): 380–386

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: respective featured applications and future prospects. Medicine in Novel Technology and Devices, 2022, 16: 100168

    Article  Google Scholar 

  48. Xiao J, Li H, Lu M, et al. Enhancing the interfacial shear strength and tensile strength of carbon fibers through chemical grafting of chitosan and carbon nanotubes. Polymers, 2023, 15(9): 2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lan W, Zhang X, Xu M, et al. Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Advances, 2019, 9(67): 38998–39010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Persaud A, Maus A, Strait L, et al. 3D bioprinting with live cells. Engineered Regeneration, 2022, 3(3): 292–309

    Article  Google Scholar 

  51. Campuzano S, Pelling A E. Scaffolds for 3D cell culture and cellular agriculture applications derived from non-animal sources. Frontiers in Sustainable Food Systems, 2019, 3: 38

    Article  Google Scholar 

  52. Patel D K, Dutta S D, Ganguly K, et al. Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering. Journal of Biomedical Materials Research Part A, 2021, 109(10): 1869–1880

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka M, Aoki K, Haniu H, et al. Applications of carbon nanotubes in bone regenerative medicine. Nanomaterials, 2020, 10(4): 659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12202302, 12272253, and 82103147). The support of the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Grant No. 20220006) was also acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions Weiwei Lan wrote the manuscript, analyzed the data, plotted the graphs, and provided funding for the experiments. Mingbo Wang wrote and revised the manuscript. Zhenjun Lv, Jun Li, and Fuying Chen operated the experiments. Ziwei Liang and Xiaochun Wei revised and checked the manuscript. Weiyi Chen provided funding for the experiments. Di Huang conceptualized and supervised the experiment, obtained funding, and managed the project.

Corresponding author

Correspondence to Di Huang.

Ethics declarations

Declaration of competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Wang, M., Lv, Z. et al. Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering. Front. Mater. Sci. 18, 240675 (2024). https://doi.org/10.1007/s11706-024-0675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-024-0675-y

Keywords

Navigation