Skip to main content
Log in

Progress in cancer therapy with functionalized Fe3O4 nanomaterials

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Malignant neoplasms represent a significant global health threat. To address the need for accurate diagnosis and effective treatment, research is underway to develop therapeutic nanoplatforms. Iron oxide nanoparticles (NPs), specifically Fe3O4 NPs have been extensively studied as potential therapeutic agents for cancer due to their unique properties including magnetic targeting, favorable biocompatibility, high magnetic response sensitivity, prolonged in vivo circulation time, stable performance, and high self-metabolism. Their ability to be integrated with magnetic hyperthermia, photodynamic therapy, and photothermal therapy has resulted in the widespread use of Fe3O4 NPs in cancer diagnosis and treatment, making them a popular choice for such applications. Various methods can be employed to synthesize magnetic Fe3O4 NPs, which can then be surface-modified with biocompatible materials or active targeting molecules. Multifunctional systems can be created by combining Fe3O4 NPs with polymers. By combining various therapeutic approaches, more effective biomedical materials can be developed. This paper discusses the synthesis of Fe3O4 NPs and the latest research advances in Fe3O4-based nanotherapeutic platforms, as well as their applications in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 2020, 70(1): 7–30

    Google Scholar 

  2. Veiseh O, Gunn J W, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010, 62(3): 284–304

    Article  CAS  Google Scholar 

  3. Xie J, Liu G, Eden H S, et al. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892

    Article  CAS  Google Scholar 

  4. Zhu K, Ju Y, Xu J, et al. Magnetic nanomaterials: chemical design, synthesis, and potential applications. Accounts of Chemical Research, 2018, 51(2): 404–413

    Article  CAS  Google Scholar 

  5. Zhou Z, Yang L, Gao J, et al. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Advanced Materials, 2019, 31(8): 1804567

    Article  Google Scholar 

  6. Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2013, 65(5): 732–743

    Article  CAS  Google Scholar 

  7. Qian X, Han X, Yu L, et al. Manganese-based functional nanoplatforms: nanosynthetic construction, physiochemical property, and theranostic applicability. Advanced Functional Materials, 2020, 30(3): 1907066

    Article  CAS  Google Scholar 

  8. Cardoso V F, Francesko A, Ribeiro C, et al. Advances in magnetic nanoparticles for biomedical applications. Advanced Healthcare Materials, 2018, 7(5): 1700845

    Article  Google Scholar 

  9. Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. BioImpacts, 2014, 4(1): 15–20

    CAS  Google Scholar 

  10. Salunkhe A B, Khot V M, Pawar S H. Magnetic hyperthermia with magnetic nanoparticles: a status review. Current Topics in Medicinal Chemistry, 2014, 14(5): 572–594

    Article  CAS  Google Scholar 

  11. Klein S, Sommer A, Distel L V R, et al. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochemical and Biophysical Research Communications, 2012, 425(2): 393–397

    Article  CAS  Google Scholar 

  12. Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chemical Reviews, 2015, 115(19): 10637–10689

    Article  CAS  Google Scholar 

  13. Qin M, Xu M, Niu L, et al. Multifunctional modification of Fe3O4 nanoparticles for diagnosis and treatment of diseases: a review. Frontiers of Materials Science, 2021, 15(1): 36–53

    Article  Google Scholar 

  14. Muthiah M, Park I K, Cho C S. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnology Advances, 2013, 31(8): 1224–1236

    Article  CAS  Google Scholar 

  15. Barrow M, Taylor A, Murray P, et al. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chemical Society Reviews, 2015, 44(19): 6733–6748

    Article  CAS  Google Scholar 

  16. Hou Z, Liu Y, Xu J, et al. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale, 2020, 12(28): 14957–14975

    Article  CAS  Google Scholar 

  17. McNamara K, Tofail S A M. Nanoparticles in biomedical applications. Advances in Physics: X, 2017, 2(1): 54–88

    CAS  Google Scholar 

  18. Mylkie K, Nowak P, Rybczynski P, et al. Polymer-coated magnetite nanoparticles for protein immobilization. Materials, 2021, 14(2): 248

    Article  CAS  Google Scholar 

  19. Campos I, Espindola A, Chagas C, et al. Biocompatible superparamagnetic nanoparticles with ibuprofen as potential drug carriers. SN Applied Sciences, 2020, 2(3): 456

    Article  CAS  Google Scholar 

  20. Zhang L, Xu H, Cheng Z, et al. Human cancer cell membrane-cloaked Fe3O4 nanocubes for homologous targeting improvement. The Journal of Physical Chemistry B, 2021, 125(27): 7417–7426

    Article  CAS  Google Scholar 

  21. Foroughi F, Hassanzadeh-Tabrizi S A, Bigham A. In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Materials Science and Engineering C, 2016, 68: 774–779

    Article  CAS  Google Scholar 

  22. Stojanović Z, Otoničar M, Lee J, et al. The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(L-lactide)-polyethyleneimine magnetic particles. Colloids and Surfaces B: Biointerfaces, 2013, 109: 236–243

    Article  Google Scholar 

  23. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008, 3(11): 397–415

    Article  CAS  Google Scholar 

  24. Qin M, Peng Y, Xu M, et al. Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging. Beilstein Journal of Nanotechnology, 2020, 11: 1000–1009

    Article  CAS  Google Scholar 

  25. Xu C, Xu K, Gu H, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. Journal of the American Chemical Society, 2004, 126(32): 9938–9939

    Article  CAS  Google Scholar 

  26. Gillich T, Acikgöz C, Isa L, et al. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano, 2013, 7(1): 316–329

    Article  CAS  Google Scholar 

  27. Zhang T, Wang L, He X, et al. Cytocompatibility of pH-sensitive, chitosan-coated Fe3O4 nanoparticles in gynecological cells. Frontiers in Medicine, 2022, 9: 799145

    Article  Google Scholar 

  28. de Oliveira P N, Moussa A, Milhau N, et al. In situ synthesis of Fe3O4 nanoparticles coated by chito-oligosaccharides: physicochemical characterizations and cytotoxicity evaluation for biomedical applications. Nanotechnology, 2020, 31(17): 175602

    Article  CAS  Google Scholar 

  29. Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnology, 2016, 7(1): 8

    Article  Google Scholar 

  30. Anuje M, Pawaskar P N, Khot V, et al. Synthesis, characterization, and cytotoxicity evaluation of polyethylene glycol-coated iron oxide nanoparticles for radiotherapy application. Journal of Medical Physics, 2021, 46(3): 154–161

    Google Scholar 

  31. Lin L, Li H, Su S, et al. Study on the structure and properties of Fe3O4@HMPDA@HA magnetic hollow mesoporous submicron drug-carrying system. Microporous and Mesoporous Materials, 2022, 330: 111582

    Article  CAS  Google Scholar 

  32. Wang Y, Ma S, Liu X, et al. Hyaluronic acid mediated Fe3O4 nanocubes reversing the EMT through targeted cancer stem cell. Colloids and Surfaces B: Biointerfaces, 2023, 222: 113071

    Article  CAS  Google Scholar 

  33. Liang Z, Wang Y, Wang J, et al. Multifunctional Fe3O4-PEI@HA nanoparticles in the ferroptosis treatment of hepatocellular carcinoma through modulating reactive oxygen species. Colloids and Surfaces B: Biointerfaces, 2023, 227: 113358

    Article  CAS  Google Scholar 

  34. Xing R, Zou Q, Yuan C, et al. Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics. Advanced Materials, 2019, 31(16): 1900822

    Article  Google Scholar 

  35. Li H, Jiang B, Li J. Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. Advances in Colloid and Interface Science, 2021, 295: 102489

    Article  CAS  Google Scholar 

  36. Zhu M, Shi Y, Shan Y, et al. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. Journal of Nanobiotechnology, 2021, 19(1): 387

    Article  CAS  Google Scholar 

  37. Li W, Cao Z, Yu L, et al. Hierarchical drug release designed Au@PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. Journal of Nanobiotechnology, 2021, 19(1): 143

    Article  CAS  Google Scholar 

  38. Chen Y, Su M, Jia L, et al. Synergistic chemo-photothermal and ferroptosis therapy of polydopamine nanoparticles for esophageal cancer. Nanomedicine, 2022, 17(16): 1115–1130

    Article  CAS  Google Scholar 

  39. Zhou X, Yang A, Huang Z, et al. Enhancement of neurite adhesion, alignment and elongation on conductive polypyrrole-poly(lactide acid) fibers with cell-derived extracellular matrix. Colloids and Surfaces B: Biointerfaces, 2017, 149: 217–225

    Article  CAS  Google Scholar 

  40. Liang Y, Mitriashkin A, Lim T T, et al. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 2021, 276: 121008

    Article  CAS  Google Scholar 

  41. Miar S, Ong J L, Bizios R, et al. Electrically stimulated tunable drug delivery from polypyrrole-coated polyvinylidene fluoride. Frontiers in Chemistry, 2021, 9: 599631

    Article  CAS  Google Scholar 

  42. Yu Z, Tong S, Wang C, et al. PPy@Fe3O4 nanoparticles inhibit the proliferation and metastasis of CRC via suppressing the NF-κB signaling pathway and promoting ferroptosis. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1001994

    Article  Google Scholar 

  43. Huang H, Wang X, Wang W, et al. Injectable hydrogel for postoperative synergistic photothermal-chemodynamic tumor and anti-infection therapy. Biomaterials, 2022, 280: 121289

    Article  CAS  Google Scholar 

  44. Askari M, Afzali Naniz M, Kouhi M, et al. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials Science, 2021, 9(3): 535–573

    Article  CAS  Google Scholar 

  45. Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15(8): 12687–12722

    Article  CAS  Google Scholar 

  46. Zhang D, Ouyang Q, Hu Z, et al. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. International Journal of Biological Macromolecules, 2021, 173: 591–606

    Article  CAS  Google Scholar 

  47. Tang Q, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials, 2022, 280: 121320

    Article  CAS  Google Scholar 

  48. Zhang L, Guan X, Xiao X, et al. Dual-phase injectable thermosensitive hydrogel incorporating Fe3O4@PDA with pH and NIR triggered drug release for synergistic tumor therapy. European Polymer Journal, 2022, 176: 111424

    Article  CAS  Google Scholar 

  49. Wang X, Niu D, Li P, et al. Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging. ACS Nano, 2015, 9(6): 5646–5656

    Article  CAS  Google Scholar 

  50. Abdollahi B B, Ghorbani M, Hamishehkar H, et al. Synthesis and characterization of actively HER-2 targeted Fe3O4@Au nanoparticles for molecular radiosensitization of breast cancer. BioImpacts, 2022 (in press), doi: https://doi.org/10.34172/bi.2022.23682

  51. Nassar M Y, El-Salhy H I, El-Shiwiny W H, et al. Composite nanoarchitectonics of magnetic silicon dioxide-modified chitosan for doxorubicin delivery and in vitro cytotoxicity assay. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33(1): 237–253

    Article  CAS  Google Scholar 

  52. Chen W, Yi P, Zhang Y, et al. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Applied Materials & Interfaces, 2011, 3(10): 4085–4091

    Article  CAS  Google Scholar 

  53. Katifelis H, Mukha I, Bouziotis P, et al. Ag/Au bimetallic nanoparticles inhibit tumor growth and prevent metastasis in a mouse model. International Journal of Nanomedicine, 2020, 15: 6019–6032

    Article  CAS  Google Scholar 

  54. Yang Y, Li F, Chen J, et al. Single Au atoms anchored on amino-group-enriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem, 2020, 13(8): 1979–1985

    Article  Google Scholar 

  55. Zhang Y, Zhang X, Zhang L, et al. Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: a pre-clinical study. Arabian Journal of Chemistry, 2021, 14(6): 103147

    Article  CAS  Google Scholar 

  56. Wang D, Yin F X, Cheng B, et al. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Metals, 2021, 40(9): 2369–2380

    Article  CAS  Google Scholar 

  57. Mai D N X, Danh L T X, Dang H D M, et al. Study on adenosine loading capacity of porous nanosilica for application in drug delivery. Science and Technology Development, 2020, doi: https://doi.org/10.32508/stdjns.v5i1.933

  58. Yuk S H, Oh K S, Cho S H, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules, 2011, 12(6): 2335–2343

    Article  CAS  Google Scholar 

  59. Barinov A, Malcioǧlu O B, Fabris S, et al. Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations. The Journal of Physical Chemistry C, 2009, 113(21): 9009–9013

    Article  CAS  Google Scholar 

  60. Hu W, Qi Q, Hu H, et al. Fe3O4 liposome for photothermal/chemo-synergistic inhibition of metastatic breast tumor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634: 127921

    Article  CAS  Google Scholar 

  61. Rao L, Bu L L, Xu J H, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small, 2015, 11(46): 6225–6236

    Article  CAS  Google Scholar 

  62. Bu L L, Rao L, Yu G T, et al. Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Advanced Functional Materials, 2019, 29(10): 1807733

    Article  Google Scholar 

  63. Malyutin A G, Cheng H, Sanchez-Felix O R, et al. Coat protein-dependent behavior of poly(ethylene glycol) tails in iron oxide core virus-like nanoparticles. ACS Applied Materials & Interfaces, 2015, 7(22): 12089–12098

    Article  CAS  Google Scholar 

  64. Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 2016, 11(11): 941–947

    Article  CAS  Google Scholar 

  65. Chen W, Wang Y, Qin M, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano, 2018, 12(6): 5995–6005

    Article  CAS  Google Scholar 

  66. Miller K D, Nogueira L, Mariotto A B, et al. Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians, 2019, 69(5): 363–385

    Google Scholar 

  67. Shi M, Lan S, Zhang C, et al. Biocompatible zinc gallogermanate persistent luminescent nanoparticles for fast tumor drainage lymph node imaging in vivo. Colloids and Surfaces B: Biointerfaces, 2021, 205: 111887

    Article  CAS  Google Scholar 

  68. Hu H, Wang J, Wang H, et al. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics, 2018, 8(13): 3597–3610

    Article  CAS  Google Scholar 

  69. Zhang Y, Tian Z, Zhao X, et al. Dual-modified bufalin loaded liposomes for enhanced tumor targeting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571: 72–79

    Article  CAS  Google Scholar 

  70. Meng T, Jiang R, Wang S, et al. Stem cell membrane-coated Au-Ag-PDA nanoparticle-guided photothermal acne therapy. Colloids and Surfaces B: Biointerfaces, 2020, 192: 111145

    Article  CAS  Google Scholar 

  71. Xu C H, Ye P J, Zhou Y C, et al. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomaterialia, 2020, 105: 1–14

    Article  CAS  Google Scholar 

  72. Wang C, Wu B, Wu Y, et al. Camouflaging nanoparticles with brain metastatic tumor cell membranes: a new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Advanced Functional Materials, 2020, 30(14): 1909369

    Article  CAS  Google Scholar 

  73. Fan J X, Peng M Y, Wang H, et al. Engineered bacterial bioreactor for tumor therapy via fenton-like reaction with localized H2O2 generation. Advanced Materials, 2019, 31(16): 1808278

    Article  Google Scholar 

  74. Qin M, Xu M, Huang D, et al. Iron oxide nanoparticles in the application of magnetic resonance imaging. Progress in Chemistry, 2020, 32(9): 1264–1273 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272253, 82103147, 12202302, 31800684, and 11802197), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 202203021221047, 20210302124007, and 20210302124405), the Shanxi Scholarship Council of China (HGKY2019037), the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-AT008 and 2021SX-AT009), the Central Guidance on Local Science and Technology Development Fund of Shanxi Province (YDZJSX2021A021), and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20220006) is also acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wei or Di Huang.

Ethics declarations

Disclosure of potential conflicts of interests The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, X., Ma, S. et al. Progress in cancer therapy with functionalized Fe3O4 nanomaterials. Front. Mater. Sci. 17, 230658 (2023). https://doi.org/10.1007/s11706-023-0658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0658-4

Keywords

Navigation