Skip to main content
Log in

Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

As a kind of essential hydrated salt phase change energy storage materials, mirabilite with high energy storage density and mild phase-transition temperature has excellent application potential in the problems of solar time and space mismatch. However, there are some disadvantages such as supercooling, substantial phase stratification and leakage problem, limiting its further applications. In this work, for the preparation of shaped mirabilite phase change materials (MPCMs), graphene (GO), sodium carboxymethyl cellulose (CMC), and carbon nanofibers (CNFs) were used as starting materials to prepare lightweight CMC/rGO/CNFs carbon aerogel (CGCA) as support with stable shape, high specific surface area, and well-arranged hierarchically porous structure. The results show that CGCA has regular layered plentiful pores and stable foam structure, and the pore and sheet interspersed structure in CGCA stabilizes PCMs via capillary force and surface tension. The hydrophilic aerogels supported MPCMs decrease mirabilite leaking and reduce supercooling to around 0.7–1 °C. The latent heats of melting and crystallization of CGCA-supported mirabilite phase change materials (CGCA-PCMs) are 157.1 and 114.8 J·g−1, respectively. Furthermore, after 1500 solid—liquid cycles, there is no leakage, and the retention rate of crystallization latent heat is 45.32%, exhibiting remarkable thermal cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anam M Z, Bari A B M M, Paul S K, et al. Modelling the drivers of solar energy development in an emerging economy: implications for sustainable development goals. Resources, Conservation & Recycling Advances, 2022, 13(2): 200068

    Article  Google Scholar 

  2. Jacobson M Z, von Krauland A K, Coughlin S J, et al. Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U. S. with 100% wind—water—solar and storage. Renewable Energy, 2022, 184(12): 430–442

    Article  CAS  Google Scholar 

  3. Sodano D, Decarolis J F, Rodrigo de Queiroz A, et al. The symbiotic relationship of solar power and energy storage in providing capacity value. Renewable Energy, 2021, 177(6): 823–832

    Article  Google Scholar 

  4. Mohammad A N, Malekib A, Mamdouh E H A, et al. A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy, 2021, 228(11): 725–743

    Google Scholar 

  5. Chen Y, Jiang Q, Xin J, et al. Research status and application of phase change materials. Journal of Materials Engineering, 2019, 47(7): 1–10

    Google Scholar 

  6. Qiu X, Lu L, Tang G, et al. Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials. Journal of Thermal Analysis and Calorimetry, 2020, 143(5): 3023–3032

    Google Scholar 

  7. Wang J, Li Y, Zheng D, et al. Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage. Renewable & Sustainable Energy Reviews, 2021, 151(11): 111541

    Article  CAS  Google Scholar 

  8. Aslfattahi N, Saidur R, Arifutzzaman A, et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/mxene as a new class of nanocomposites. Journal of Energy Storage, 2020, 27(2): 101115

    Article  Google Scholar 

  9. Li Y Z, Kumar N, Hirschey J, et al. Stable salt hydrate-based thermal energy storage materials. Composites Part B: Engineering, 2022, 233(3): 109621

    Article  CAS  Google Scholar 

  10. Díez N, Fuertes A B, Sevilla M. Molten salt strategies towards carbon materials for energy storage and conversion. Energy Storage Materials, 2021, 38(6): 50–69

    Article  Google Scholar 

  11. Saito A, Okawa S, Shintani T, et al. On the heat removal characteristics and the analytical model of a thermal energy storage capsule using gelled Glauber’s salt as the PCM. International Journal of Heat and Mass Transfer, 2001, 44(24): 4693–4701

    Article  CAS  Google Scholar 

  12. Khaleghi Dehghan A, Manteghian M, Sadrameli S M. A turbidity titration procedure for the nucleation mechanism determination of sodium sulfate decahydrate (Glauber salt) in unseeded aqueous solution. Journal of Materials Research and Technology, 2021, 11(3): 285–300

    Article  CAS  Google Scholar 

  13. Li M, Wang W, Zhang Z, et al. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage. Industrial & Engineering Chemistry Research, 2017, 56(12): 3297–3308

    Article  CAS  Google Scholar 

  14. García-Romero A, Diarce G, Ibarretxe J, et al. Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Solar Energy Materials and Solar Cells, 2012, 102(7): 189–195

    Article  Google Scholar 

  15. García-Romero A, Delgado A, Urresti A, et al. Corrosion behaviour of several aluminium alloys in contact with a thermal storage phase change material based on Glauber’s salt. Corrosion Science, 2009, 51(6): 1263–1272

    Article  Google Scholar 

  16. Liu X, Tie J, Tie S N. Corrosion on metal packaging materials by sodium sulfate decahydrate composite phase change material. Journal of Synthetic Crystals, 2016, 4(54): 986–994

    Google Scholar 

  17. Tie S N, Liu X. Research progress on corrosion of phase change energy storage materials and encapsulation materials. Materials Guide, 2015, 29(6): 138–142

    CAS  Google Scholar 

  18. Liu X, Tie J, Wang Z, et al. Improved thermal conductivity and stability of Na2SO4·10H2O PCMs system by incorporation of Al/C hybrid nanoparticles. Journal of Materials Research and Technology, 2021, 12(6): 982–988

    Article  CAS  Google Scholar 

  19. Qian Y, Han N, Zhang Z, et al. Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Applied Materials & Interfaces, 2019, 11(49): 45832–45843

    Article  CAS  Google Scholar 

  20. Xin G, Sun H, Scott S M, et al. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Applied Materials & Interfaces, 2014, 6(17): 15262–15271

    Article  CAS  Google Scholar 

  21. Liu X, Tie J, Tie S N. Energy storage properties of mans nitro phase transition materials of multiwalled carbon nano tubes of greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 226–231

    Google Scholar 

  22. Jiang Z P, Tie S N. Study on the thermal conductivity of 2-D graphene enhance Glauber’s salt-based composites PCMs. Journal of Synthetic Crystals, 2016, 45(7): 1820–1825

    CAS  Google Scholar 

  23. Ding C, Liu L, Ma F, et al. Enhancing the heat storage performance of a Na2HPO4·12H2O system via introducing multiwalled carbon nanotubes. ACS Omega, 2021, 6(43): 29091–29099

    Article  CAS  Google Scholar 

  24. Zhou Y, Sun W, Ling Z, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799–14806

    Article  CAS  Google Scholar 

  25. Oh K, Kwon S, Xu W, et al. Effect of micro- and nanofibrillated cellulose on the phase stability of sodium sulfate decahydrate based phase change material. Cellulose, 2020, 27(9): 5003–5016

    Article  CAS  Google Scholar 

  26. Huang K, Li J, Luan X, et al. Effect of graphene oxide on phase change materials based on disodium hydrogen phosphate dodecahydrate for thermal storage. ACS Omega, 2020, 5(25): 15210–15217

    Article  CAS  Google Scholar 

  27. Tran N, Zhao W, Carlson F, et al. Metal nanoparticle—carbon matrix composites with tunable melting temperature as phase-change materials for thermal energy storage. ACS Applied Nano Materials, 2018, 1(4): 1894–1903

    Article  CAS  Google Scholar 

  28. Ahmet A A, Gizem T. Synthesis and characterization of new organic phase change materials (PCMs): diesters of suberic acid. Solar Energy Materials and Solar Cells, 2021, 220(1): 110822

    Google Scholar 

  29. Zhang Z, Lian Y, Xu X, et al. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials. Applied Energy, 2019, 255(12): 113830

    Article  CAS  Google Scholar 

  30. Xi S, Wang L, Xie H, et al. Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage. ACS Nano, 2022, 16(3): 3843–3851

    Article  CAS  Google Scholar 

  31. An J, Liang W, Mu P, et al. Novel sugar alcohol/carbonized kapok fiber composites as form-stable phase-change materials with exceptionally high latent heat for thermal energy storage. ACS Omega, 2019, 4(3): 4848–4855

    Article  CAS  Google Scholar 

  32. Cheng Z, Li J, Wang B, et al. Scalable and robust bacterial cellulose carbon aerogels as reusable absorbents for high-efficiency oil/water separation. ACS Applied Bio Materials, 2020, 3(11): 7483–7491

    Article  CAS  Google Scholar 

  33. Du X, Qiu J, Deng S, et al. Alkylated nanofibrillated cellulose/carbon nanotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity. ACS Applied Materials & Interfaces, 2020, 12(5): 5695–5703

    Article  CAS  Google Scholar 

  34. Li A, Dong C, Dong W, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance. ACS Applied Materials & Interfaces, 2018, 10(38): 32093–32101

    Article  CAS  Google Scholar 

  35. Ren Y, Xu Q, Zhang J, et al. Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors. ACS Applied Materials & Interfaces, 2014, 6(12): 9689–9697

    Article  CAS  Google Scholar 

  36. Song M, Jiang J, Qin H, et al. Flexible and super thermal insulating cellulose nanofibril/emulsion composite aerogel with quasi-closed pores. ACS Applied Materials & Interfaces, 2020, 12(40): 45363–45372

    Article  CAS  Google Scholar 

  37. Wang B, Li G, Xu L, et al. Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano, 2020, 14(12): 16590–16599

    Article  CAS  Google Scholar 

  38. Yang L, Yang J, Tang L S, et al. Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity. Energy & Fuels, 2020, 34(2): 2471–2479

    Article  CAS  Google Scholar 

  39. Zhao J, Luo W, Kim J K, et al. Graphene oxide aerogel beads filled with phase change material for latent heat storage and release. ACS Applied Energy Materials, 2019, 2(5): 3657–3664

    Article  CAS  Google Scholar 

  40. Xie L Y, Gan B C. Application and study situation of sodium carboxymethyl cellulose in food industry. Academic Periodical of Farm Products Processing, 2007(1): 51–54

  41. Li W, Zhao X H, Ji Y H, et al. Progresses in preparation and production technology for carboxymethycellulose. Petrochemical Technology, 2013, 42(6): 693–700

    CAS  Google Scholar 

  42. Huang T, Shao Y W, Zhang Q, et al. Chitosan-cross-linked graphene oxide/carboxymethyl cellulose aerogel globules with high structure stability in liquid and extremely high adsorption ability. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8775–8788

    Article  CAS  Google Scholar 

  43. Xu W L, Chen S, Zhang J H, et al. Preparation and adsorption of carboxymethyl cellulose graphene composite aerogels. Journal of Materials Engineering, 2020, 9(48): 77–85

    Google Scholar 

  44. Jiang W, Yao C, Chen W, et al. A super-resilient and highly sensitive graphene oxide/cellulose-derived carbon aerogel. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(35): 18376

    Article  CAS  Google Scholar 

  45. Chen Q, Chu Y H. Graphene oxide prepared by Hummers method. Sichuan Chemistry Industry, 2016, 19(2): 14–16 (in Chinese)

    Google Scholar 

  46. Wu G, Bing N, Li Y, et al. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion. Energy Conversion and Management, 2022, 256(2): 115361

    Article  CAS  Google Scholar 

  47. Wang J, Wang P J, Gao P, et al. Distinguishing channel-type crystal structure from dispersed structure in β-cyclodextrin based polyrotaxanes via FTIR spectroscopy. Frontiers of Materials Science, 2011, 5(3): 329–334

    Article  Google Scholar 

  48. Wu J, Shi C, Zhang Y, et al. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (0 0 1) facets from molecular-atomic scale: HRTEM and Raman studies. Frontiers of Materials Science, 2017, 11(4): 358–365

    Article  Google Scholar 

  49. Qian M, Li Z, Fan L, et al. Ultra-light graphene tile-based phase-change material for efficient thermal and solar energy harvest. ACS Applied Energy Materials, 2020, 3(6): 5517–5522

    Article  CAS  Google Scholar 

  50. Zhang R Y, et al. Phase Change Materials and Phase Change Energy Storage Materials. Beijing, China: Science Press, 2008 (in Chinese)

    Google Scholar 

  51. Man Y H, Wu W J. Calculation of Na2SO4·10H2O phase transition process and latent heat of phase change. Journal of National University of Defense Technology, 2009, 31(2): 41–43

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from the Natural Science Foundation of Qinghai Province (Grant Nos. 2020-ZJ-909 and 2021-ZJ-906), the Qinghai Thousand Talents Program (Grant No. 724112), and the Opening Project of State Key Laboratory of the New Technologies for Material Composites, Wuhan University of Technology (Grant No. 2020-KF-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengnian Tie or Chang-An Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Liu, X., Wang, Z. et al. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage. Front. Mater. Sci. 16, 220619 (2022). https://doi.org/10.1007/s11706-022-0619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0619-3

Keywords

Navigation