Skip to main content
Log in

Bimetallic Ni-Mo nitride@C3N4 for highly active and stable water catalysis

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Non-noble metal electrocatalysts for water cracking have excellent prospects for development of sustainable and clean energy. Highly efficient electrocatalysts for the oxygen evolution reaction (OER) are very important for various energy storage and conversion systems such as water splitting devices and metal-air batteries. This study prepared a NiMo4@C3N4 catalyst for OER and hydrogen evolution reaction (HER) by simple methods. The catalyst exhibited an excellent OER activity based on the response at a suitable temperature. To drive a current density of 10 mA·cm−2 for OER and HER, the overpotentials required for NiMo4@C3N4-800 (prepared at 800 °C) were 259 and 118 mV, respectively. A two-electrode system using NiMo4@C3N4-800 needed a very low cell potential of 1.572 V to reach a current density of 10 mA·cm−2. In addition, this catalyst showed excellent durability after long-term tests. It was seen to have good catalytic activity and broad application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X, Yan F, Ma X, et al. Regulation of morphology and electronic structure of FeCoNi layered double hydroxides for highly active and stable water oxidization catalysts. Advanced Energy Materials, 2021, 11(48): 2102141

    Article  CAS  Google Scholar 

  2. Gray H B. Powering the planet with solar fuel. Nature Chemistry, 2009, 1(2): 112

    Article  CAS  Google Scholar 

  3. Fan J, Wu J, Cui X, et al. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. Journal of the American Chemical Society, 2020, 142(7): 3645–3651

    Article  CAS  Google Scholar 

  4. Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

    Article  CAS  Google Scholar 

  5. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

    Article  CAS  Google Scholar 

  6. Anantharaj S, Ede S R, Karthick K, et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018, 11(4): 744–771

    Article  CAS  Google Scholar 

  7. Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075

    Article  CAS  Google Scholar 

  8. Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

    Article  CAS  Google Scholar 

  9. Ye S, Xiong W, Liao P, et al. Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. Journal of Materials Chemistry A, 2020, 8(22): 11246–11254

    Article  CAS  Google Scholar 

  10. Zhang B, Wang L, Cao Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3(12): 985–992

    Article  CAS  Google Scholar 

  11. Anantharaj S, Kundu S, Noda S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80: 105514

    Article  CAS  Google Scholar 

  12. Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44(8): 2060–2086

    Article  CAS  Google Scholar 

  13. Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414(6861): 332–337

    Article  CAS  Google Scholar 

  14. Li X, Hao X, Abudula A, et al. Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 2016, 4(31): 11973–12000

    Article  CAS  Google Scholar 

  15. Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catalysis, 2012, 2(8): 1765–1772

    Article  CAS  Google Scholar 

  16. Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8: 15437

    Article  CAS  Google Scholar 

  17. Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383–1385

    Article  CAS  Google Scholar 

  18. Singh A, Chang S L Y, Hocking R K, et al. Highly active nickel oxide water oxidation catalysts deposited from molecular complexes. Energy & Environmental Science, 2013, 6(2): 579–586

    Article  CAS  Google Scholar 

  19. Zhang B, Zheng X, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352(6283): 333–337

    Article  CAS  Google Scholar 

  20. Trotochaud L, Young S L, Ranney J K, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136(18): 6744–6753

    Article  CAS  Google Scholar 

  21. Gao M, Sheng W, Zhuang Z, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Journal of the American Chemical Society, 2014, 136(19): 7077–7084

    Article  CAS  Google Scholar 

  22. Song F, Hu X. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. Journal of the American Chemical Society, 2014, 136(47): 16481–16484

    Article  CAS  Google Scholar 

  23. Ping J, Wang Y, Lu Q, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Advanced Materials, 2016, 28(35): 7640–7645

    Article  CAS  Google Scholar 

  24. Zhu J, Sakaushi K, Clavel G, et al. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 2015, 137(16): 5480–5485

    Article  CAS  Google Scholar 

  25. Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49(79): 8896–8909

    Article  CAS  Google Scholar 

  26. Ham D, Lee J. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies, 2009, 2(4): 873–899

    Article  CAS  Google Scholar 

  27. Wan C, Leonard B M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chemistry of Materials, 2015, 27(12): 4281–4288

    Article  CAS  Google Scholar 

  28. Huang Y, Gong Q, Song X, et al. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano, 2016, 10(12): 11337–11343

    Article  CAS  Google Scholar 

  29. Wang Z C, Liu H L, Ge R X, et al. Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catalysis, 2018, 8(3): 2236–2241

    Article  CAS  Google Scholar 

  30. Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. Journal of the American Chemical Society, 2015, 137(12): 4119–4125

    Article  CAS  Google Scholar 

  31. Chen W F, Sasaki K, Ma C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angewandte Chemie International Edition, 2012, 51(25): 6131–6135

    Article  CAS  Google Scholar 

  32. Shalom M, Molinari V, Esposito D, et al. Sponge-like nickel and nickel nitride structures for catalytic applications. Advanced Materials, 2014, 26(8): 1272–1276

    Article  CAS  Google Scholar 

  33. Zhai M, Wang F, Du H. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Applied Materials & Interfaces, 2017, 9(46): 40171–40179

    Article  CAS  Google Scholar 

  34. Sun M, Liu H, Qu J, et al. Earth-rich transition metal phosphide for energy conversion and storage. Advanced Energy Materials, 2016, 6(13): 1600087

    Article  Google Scholar 

  35. Zhang G, Wang G, Liu Y, et al. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. Journal of the American Chemical Society, 2016, 138(44): 14686–14693

    Article  CAS  Google Scholar 

  36. Li S, Zhang G, Tu X, et al. Polycrystalline CoP/CoP2 structures for efficient full water splitting. ChemElectroChem, 2018, 5(4): 701–707

    Article  CAS  Google Scholar 

  37. Lacroix P G, Munoz M C, Gaspar A B, et al. Crystal structures, and solid state quadratic nonlinear optical properties of a series of stilbazolium cations combined with gold cyanide counter-ion. Journal of Materials Chemistry, 2011, 21(40): 15940–15949

    Article  CAS  Google Scholar 

  38. Masa J, Sinev I, Mistry H, et al. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Advanced Energy Materials, 2017, 7(17): 1700381

    Article  Google Scholar 

  39. Zhu H, Jiang R, Chen X, et al. 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution. Science Bulletin, 2017, 62(20): 1373–1379

    Article  CAS  Google Scholar 

  40. Shi Y, Zhou Y, Yang D R, et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. Journal of the American Chemical Society, 2017, 139(43): 15479–15485

    Article  CAS  Google Scholar 

  41. Zheng W, Sun H, Li X, et al. Fe-doped NiCo2O4 hollow hierarchical sphere as an efficient electrocatalyst for oxygen evolution reaction. Frontiers of Materials Science, 2021, 15(4): 577–588

    Article  Google Scholar 

  42. Wang Y, Xie C, Liu D, et al. Nanoparticle-stacked porous nickel-iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Applied Materials & Interfaces, 2016, 8(29): 18652–18657

    Article  CAS  Google Scholar 

  43. Wu H, Feng C, Zhang L, et al. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical Energy Reviews, 2021, 4(3): 473–507

    Article  CAS  Google Scholar 

  44. Yin Z, Sun Y, Jiang Y, et al. Hierarchical cobalt-doped molybdenum-nickel nitride nanowires as multifunctional electrocatalysts. ACS Applied Materials & Interfaces, 2019, 11(31): 27751–27759

    Article  CAS  Google Scholar 

  45. Friebel D, Louie M W, Bajdich M, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society, 2015, 137(3): 1305–1313

    Article  CAS  Google Scholar 

  46. Burke M S, Kast M G, Trotochaud L, et al. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Journal of the American Chemical Society, 2015, 137(10): 3638–3648

    Article  CAS  Google Scholar 

  47. Yin Z X, Zhang S, Chen W, et al. Hybrid-atom-doped NiMoO4 nanotubes for oxygen evolution reaction. New Journal of Chemistry, 2020, 44(40): 17477–17482

    Article  CAS  Google Scholar 

  48. Yin Z X, Zhang S, Li J L, et al. In-situ fabrication of Ni−Fe−S hollow hierarchical sphere: an efficient (pre)catalyst for OER and HER. New Journal of Chemistry, 2021, 45(29): 12996–13003

    Article  CAS  Google Scholar 

  49. Chen P, Xu K, Fang Z, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2015, 54(49): 14710–14714

    Article  CAS  Google Scholar 

  50. Xie J, Zhang J, Li S, et al. Correction to controllable disorder engineering in oxygen incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2014, 136(4): 1680

    Article  CAS  Google Scholar 

  51. Shalom M, Ressnig D, Yang X F, et al. Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(15): 8171–8177

    Article  CAS  Google Scholar 

  52. Xu X, Luo F, Tang W, et al. Enriching hot electrons via NIR-photon-excited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution. Advanced Functional Materials, 2018, 28(43): 1804055

    Article  Google Scholar 

  53. Wang F, Sun Y, He Y, et al. Highly efficient and durable MoNiNC catalyst for hydrogen evolution reaction. Nano Energy, 2017, 37: 1–6

    Article  Google Scholar 

  54. Wang T, Wu H, Feng C, et al. Ni, N-coped NiMoO4 grown on 3D nickel foam as bifunctional electrocatalysts for hydrogenproduction in urea-water electrolysis. Electrochimica Acta, 2021, 391: 138931

    Article  CAS  Google Scholar 

  55. Cao F, Zhao M, Yu Y, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. Journal of the American Chemical Society, 2016, 138(22): 6924–6927

    Article  CAS  Google Scholar 

  56. Faber M S, Park K, Cabán-Acevedo M, et al. Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. The Journal of Physical Chemistry Letters, 2013, 4(11): 1843–1849

    Article  CAS  Google Scholar 

  57. Xing W, Zhang Y, Xue Q, et al. Highly active catalyst of two-dimensional CoS2/graphene nanocomposites for hydrogen evolution reaction. Nanoscale Research Letters, 2015, 10: 488

    Article  Google Scholar 

  58. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  CAS  Google Scholar 

  59. Yang Y, Li F, Li W, et al. Porous CoS2 nanostructures based on ZIF-9 supported on reduced graphene oxide: favourable electrocatalysis for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42(10): 6665–6673

    Article  CAS  Google Scholar 

  60. Guo Z, Sun T, Li Y, et al. Large surface and pore structure of mesoporous WS2 and RGO nanosheets with small amount of Pt as a highly efficient electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43(51): 22905–22916

    Article  CAS  Google Scholar 

  61. Lu C, Tranca D, Zhang J, et al. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano, 2017, 11(4): 3933–3942

    Article  CAS  Google Scholar 

  62. Yin Z, Sun Y, Zhu C, et al. Bimetallic Ni-Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2017, 5(26): 13648–13658

    Article  CAS  Google Scholar 

  63. Zhu C, Yin Z, Lai W, et al. Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Advanced Energy Materials, 2018, 8(36): 1802327

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Education Basic Research Operating Costs of Heilongjiang Province, China (Grant No. 300663).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuoxun Yin, Xinzhi Ma or Yang Zhou.

Additional information

Disclosure of potential conflicts of interests

The authors declare no conflict of interest in the content of this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, M., Yin, Z. et al. Bimetallic Ni-Mo nitride@C3N4 for highly active and stable water catalysis. Front. Mater. Sci. 16, 220613 (2022). https://doi.org/10.1007/s11706-022-0613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0613-9

Keywords

Navigation