Skip to main content
Log in

Fabrication of h-MnO2@PDA composite nanocarriers for enhancement of anticancer cell performance by photo-chemical synergetic therapies

  • Letter
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gao J, Wang F, Wang S, et al. Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy. Advanced Science, 2020, 7(11): 1903642

    Article  CAS  Google Scholar 

  2. Wang X, Jiang G, Li X, et al. Synthesis of multi-responsive polymeric nanocarriers for controlled release of bioactive agents. Polymer Chemistry, 2013, 4(17): 4574–4577

    Article  CAS  Google Scholar 

  3. Song G, Jiang G, Liu T, et al. Separable microneedles for synergistic chemo-photothermal therapy against superficial skin tumors. ACS Biomaterials Science & Engineering, 2020, 6(7): 4116–4125

    Article  CAS  Google Scholar 

  4. Liu J, Zheng J, Nie H, et al. Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chemical Engineering Journal, 2020, 381: 122541

    Article  CAS  Google Scholar 

  5. Kobayashi H, Watanabe R, Choyke P L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2014, 4(1): 81–89

    Article  CAS  Google Scholar 

  6. Kalyane D, Raval N, Maheshwari R, et al. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering C, 2019, 98: 1252–1276

    Article  CAS  Google Scholar 

  7. Xu F, Liu M, Li X, et al. Loading of indocyanine green within polydopamine-coated laponite nanodisks for targeted cancer photothermal and photodynamic therapy. Nanomaterials, 2018, 8(5): 347

    Article  CAS  Google Scholar 

  8. Zhang S, Cao C, Lv X, et al. A H2O2 self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chemical Science, 2020, 11(7): 1926–1934

    Article  CAS  Google Scholar 

  9. Zhang M, Cao Y, Wang L, et al. Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2015, 7(8): 4650–4658

    Article  CAS  Google Scholar 

  10. Fan W, Bu W, Shen B, et al. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy. Advanced Materials, 2015, 27(28): 4155–4161

    Article  CAS  Google Scholar 

  11. Zhao Z, Fan H, Zhou G, et al. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. Journal of the American Chemical Society, 2014, 136(32): 11220–11223

    Article  CAS  Google Scholar 

  12. Sun P, Deng Q, Kang L, et al. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano, 2020, 14(10): 13894–13904

    Article  CAS  Google Scholar 

  13. Lin L S, Song J, Song L, et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906

    Article  CAS  Google Scholar 

  14. Zhang M, Xing L, Ke H, et al. MnO2-based nanoplatform serves as drug vehicle and MRI contrast agent for cancer. ACS Applied Materials & Interfaces, 2017, 9(13): 11337–11344

    Article  CAS  Google Scholar 

  15. Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: Preparation, diagnosis, and therapy. Nanoscale, 2020, 12(35): 17982–18003

    Article  CAS  Google Scholar 

  16. Zeng W, Zhang H, Deng Y, et al. Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chemical Engineering Journal, 2020, 389: 124494

    Article  CAS  Google Scholar 

  17. Yang G, Xu L, Chao Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nature Communications, 2017, 8(1): 902

    Article  CAS  Google Scholar 

  18. Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nano-spheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced Materials, 2013, 25(9): 1353–1359

    Article  CAS  Google Scholar 

  19. Ou C, Zhang Y, Pan D, et al. Zinc porphyrin-polydopamine core-shell nanostructures for enhanced photodynamic/photothermal cancer therapy. Materials Chemistry Frontiers, 2019, 3(9): 1786–1792

    Article  CAS  Google Scholar 

  20. Guo H, Sun H, Zhu H, et al. Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy. New Journal of Chemistry, 2018, 42(9): 7119–7124

    Article  CAS  Google Scholar 

  21. Gong C, Lu C, Li B, et al. Dopamine-modified poly(amino acid): An efficient near-infrared photothermal therapeutic agent for cancer therapy. Journal of Materials Science, 2017, 52(2): 955–967

    Article  CAS  Google Scholar 

  22. Liu C, Cao Y, Cheng Y, et al. An open source and reduce expenditure ROS generation strategy for chemodynamic/photo-dynamic synergistic therapy. Nature Communications, 2020, 11(1): 1735

    Article  CAS  Google Scholar 

  23. Zhao Z, Wang W, Li C, et al. Reactive oxygen species-activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies. Advanced Functional Materials, 2019, 29(44): 1905013

    Article  CAS  Google Scholar 

  24. Huang P, Bao L, Zhang C, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials, 2011, 32(36): 9796–9809

    Article  CAS  Google Scholar 

  25. Tang X, Zhao C, Li Z, et al. Hollow sandwich-structured N-doped carbon-silica-carbon nanocomposite anode materials for Li-ion batteries. Journal of Physics: Conference Series, 2020, 1520: 012012

    CAS  Google Scholar 

  26. Boyjoo Y, Wang M, Pareek V K, et al. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chemical Society Reviews, 2016, 45(21): 6013–6047

    Article  CAS  Google Scholar 

  27. Boyjoo Y, Rochard G, Giraudon J-M, et al. Mesoporous MnO2 hollow spheres for enhanced catalytic oxidation of formaldehyde. Sustainable Materials and Technology, 2019, 20: e00091

    Article  CAS  Google Scholar 

  28. Cheng M, Yu Y, Huang W, et al. Monodisperse hollow MnO2 with biodegradability for efficient targeted drug delivery. ACS Biomaterials Science & Engineering, 2020, 6(9): 4985–4992

    Article  CAS  Google Scholar 

  29. Lin B, Chen H, Liang D, et al. Acidic pH and high-H2O2 dual tumor microenvironment-responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Applied Materials & Interfaces, 2019, 11(12): 11157–11166

    Article  CAS  Google Scholar 

  30. Kirtane A R, Kalscheuer S M, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Advanced Drug Delivery Reviews, 2013, 65(13–14): 1731–1747

    Article  CAS  Google Scholar 

  31. Xiong X B, Huang Y, Lu W L, et al. Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. Journal of Pharmaceutical Sciences, 2005, 94(8): 1782–1793

    Article  CAS  Google Scholar 

  32. Li J, Cai D, Yao X, et al. Protective effect of ginsenoside Rg1 on hematopoietic stem/progenitor cells through attenuating oxidative stress and the Wnt/α-catenin signaling pathway in a mouse model of d-galactose-induced aging. International Journal of Molecular Sciences, 2016, 17(6): 849

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51373155 and 51873194) and the Natural Science Foundation of Zhejiang Province (LY18E030006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-hua Jiang or Yan-fang Sun.

Additional information

Disclosure of potential conflicts of interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xy., Jiang, Gh., Song, G. et al. Fabrication of h-MnO2@PDA composite nanocarriers for enhancement of anticancer cell performance by photo-chemical synergetic therapies. Front. Mater. Sci. 15, 291–298 (2021). https://doi.org/10.1007/s11706-021-0553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0553-9

Navigation