Skip to main content
Log in

Bilayer borophene: an efficient catalyst for hydrogen evolution reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The electrocatalytic hydrogen evolution reaction is a crucial technique for green hydrogen production. However, finding affordable, stable, and efficient catalyst materials to replace noble metal catalysts remains a significant challenge. Recent experimental breakthroughs in the synthesis of two-dimensional bilayer borophene provide a theoretical framework for exploring their physical and chemical properties. In this study, we systematically considered nine types of bilayer borophenes as potential electrocatalysts for the hydrogen evolution reaction. Our first-principles calculations revealed that bilayer borophenes exhibit high stability and excellent conductivity, possessing a relatively large specific surface area with abundant active sites. Both surface boron atoms and the bridge sites between two boron atoms can serve as active sites, displaying high activity for the hydrogen evolution reaction. Notably, the Gibbs free energy change associated with adsorption for these bilayer borophenes can reach as low as −0.002 eV, and the Tafel reaction energy barriers are lower (0.70 eV) than those on Pt. Moreover, the hydrogen evolution reaction activity of these two-dimensional bilayer borophenes can be described by engineering their work function. Additionally, we considered the effect of pH on hydrogen evolution reaction activity, with significant activity observed in an acidic environment. These theoretical results reveal the excellent catalytic performance of two-dimensional bilayer borophenes and provide crucial guidance for the experimental exploration of multilayer boron for various energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bhavsar S, Najera M, Solunke R, Veser G. Chemical looping: to combustion and beyond. Catalysis Today, 2014, 228: 96–105

    Article  CAS  Google Scholar 

  4. Liu J, Yu G, Huang X, Chen W. The crucial role of strained ring in enhancing the hydrogen evolution catalytic activity for the 2D carbon allotropes: a high-throughput first-principles investigation. 2D Materials, 2020, 7(1): 15015

    Article  CAS  Google Scholar 

  5. Adamska L, Sadasivam S, Foley J J IV, Darancet P, Sharifzadeh S. First-principles investigation of borophene as a monolayer transparent conductor. Journal of Physical Chemistry C, 2018, 122(7): 4037–4045

    Article  CAS  Google Scholar 

  6. Huang Y, Shirodkar S N, Yakobson B I. Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration. Journal of the American Chemical Society, 2017, 139(47): 17181–17185

    Article  CAS  PubMed  Google Scholar 

  7. Fan F, Wang R, Zhang H, Wu W. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50(19): 10983–11031

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Hou L, Ciesielski A, Samori P. 2D materials beyond graphene for high-performance energy storage applications. Advanced Energy Materials, 2016, 6(23): 1600671

    Article  Google Scholar 

  9. Feng B, Zhang J, Ito S, Arita M, Cheng C, Chen L, Wu K, Komori F, Sugino O, Miyamoto K, et al. Discovery of 2D anisotropic dirac cones. Advanced Materials, 2018, 30(2): 1704025

    Article  Google Scholar 

  10. Yang X, Shang C, Zhou S, Zhao J. MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horizons, 2020, 5(7): 1106–1115

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhang X, Wu T, Wang H, Zhao R, Chen H, Wang T, Wei P, Luo Y, Zhang Y, Sun X. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catalysis, 2019, 9(5): 4609–4615

    Article  CAS  Google Scholar 

  12. Tai G, Xu M, Hou C, Liu R, Liang X, Wu Z. Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2021, 13(51): 60987–60994

    Article  CAS  Google Scholar 

  13. Qun F, Choi C, Yan C, Liu Y, Qiu J, Hong S, Jung Y, Sun Z. High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction. Chemical Communications, 2019, 55(29): 4246–4249

    Article  Google Scholar 

  14. De la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, et al. Tuning lsing superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nature Communications, 2018, 9(1): 14–27

    Article  Google Scholar 

  15. Kumar P, Liu J, Motlag M, Tong L, Hu Y, Huang X, Bandopadhyay A, Pati S K, Ye L, Irudayaraj J, et al. Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moiré superlattices. Nano Letters, 2019, 19(1): 283–291

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Gao N, Wu X, Jiang X, Bai Y, Zhao J. Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem, 2018, 7: 48–54

    Article  CAS  Google Scholar 

  17. Li D, Tang Q, He J, Li B, Ding G, Feng C, Zhou H, Zhang G. From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega, 2019, 4(5): 8015–8021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Y, Xuan X, Yang T, Zhang Z, Li S, Guo W. Quasi-freestanding bilayer borophene on Ag (111). Nano Letters, 2022, 22(8): 3488–3494

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Liu X, Li Q, Ruan Q, Rahn M S, Yakobson B I, Hersam M C. Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2022, 21(1): 35–40

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P, et al. Synthesis of bilayer borophene. Nature Chemistry, 2022, 14(1): 25–31

    Article  ADS  PubMed  Google Scholar 

  21. Sutter P, Sutter E. Large-scale layer-by-layer synthesis of borophene on Ru (0001). Chemistry of Materials, 2021, 33(22): 8838–8843

    Article  CAS  Google Scholar 

  22. Gao N, Ye P, Chen J, Xiao J, Yang X. Density functional theory study of bilayer borophene-based anode material for rechargeable lithium ion batteries. Langmuir, 2023, 39(29): 10270–10279

    Article  CAS  PubMed  Google Scholar 

  23. Gao N, Li J, Chen J, Yang X. Interaction between bilayer borophene and metal or inert substrates. Applied Surface Science, 2023, 626: 157157

    Article  CAS  Google Scholar 

  24. Chang Y, Liu J, Liu H, Zhang Y W, Gao J, Zhao J. Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Advanced Energy Materials, 2023, 13(29): 2301331

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775

    Article  ADS  CAS  Google Scholar 

  27. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132(15): 154104

    Article  ADS  PubMed  Google Scholar 

  29. Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nature Materials, 2012, 11(8): 667–674

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Dalsaniya M H, Gajaria T K, Som N N, Jha P K. Electron density modulation of a metallic GeSb monolayer by pnictogen doping for excellent hydrogen evolution. Physical Chemistry Chemical Physics, 2020, 22(35): 19823–19836

    Article  PubMed  Google Scholar 

  31. Guha A, Veettil Vineesh T, Sekar A, Narayanaru S, Sahoo M, Nayak S, Chakraborty S, Narayanan T N. Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catalysis, 2018, 8(7): 6636–6644

    Article  CAS  Google Scholar 

  32. Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904

    Article  ADS  CAS  Google Scholar 

  33. Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354–360

    Article  Google Scholar 

  34. Parrinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics. Physical Review Letters, 1980, 45(14): 1196–1199

    Article  ADS  CAS  Google Scholar 

  35. Chodvadiya D, Dalsaniya M H, Som N N, Chakraborty B, Kurzydlowski D, Kurzydlowski K J, Jha P K. Defects and doping engineered two-dimensional o-B2N2 for hydrogen evolution reaction catalyst: insights from DFT simulation. International Journal of Hydrogen Energy, 2023, 48(13): 5138–5151

    Article  CAS  Google Scholar 

  36. Hansen J N, Prats H, Toudahl K K, Morch Secher N, Chan K, Kibsgaard J, Chorkendorff I. Is there anything better than Pt for HER? ACS Energy Letters, 2021, 6(4): 1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo Y, Zhang Z, Yang F, Li J, Liu Z, Ren W, Zhang S, Liu B. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy & Environmental Science, 2021, 14(8): 4610–4619

    Article  CAS  Google Scholar 

  38. Luo M, Yang J, Li X, Eguchi M, Yamauchi Y, Wang Z. Insights into alloy/oxide or hydroxide interfaces in Ni-Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chemical Science, 2023, 14(13): 3400–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fajin J L. DS Cordeiro M N, Gomes J R. Density functional theory study of the water dissociation on platinum surfaces: general trends. Journal of Physical Chemistry A, 2014, 118(31): 5832–5840

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Nie S, Feibelman P J, Bartelt N C, Thürmer K. Pentagons and heptagons in the first water layer on Pt (111). Physical Review Letters, 2010, 105(2): 026102

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Donadio D, Ghiringhelli L M, Delle Site L. Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. Journal of the American Chemical Society, 2012, 134(46): 19217–19222

    Article  CAS  PubMed  Google Scholar 

  42. Zhang P, Sun L. Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chinese Journal of Chemistry, 2020, 38(9): 996–1004

    Article  CAS  Google Scholar 

  43. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140(8): 084106

    Article  ADS  PubMed  Google Scholar 

  44. Zhang Q, Asthagiri A. Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today, 2019, 323: 35–43

    Article  CAS  Google Scholar 

  45. Yang X, Gao N, Zhou S, Zhao J. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Physical Chemistry Chemical Physics, 2018, 20(29): 19390–19397

    Article  CAS  PubMed  Google Scholar 

  46. Skúlason E, Tripkovic V, Björketun M E, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Norskov J K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C, 2010, 114(42): 18182–18197

    Article  Google Scholar 

  47. Michaelson H B. The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729–4733

    Article  ADS  CAS  Google Scholar 

  48. Qian Y, Zheng B, Xie Y, He J, Chen J, Yang L, Lu X, Yu H. Imparting a-borophene with high work function by fluorine adsorption: a first-principles investigation. Langmuir, 2021, 37(37): 11027–11040

    Article  CAS  PubMed  Google Scholar 

  49. Liu N, Zhao Y, Zhou S, Zhao J. CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(11): 5688–5698

    Article  CAS  Google Scholar 

  50. Shan B, Cho K. First principles study of work functions of single wall carbon nanotubes. Physical Review Letters, 2005, 94(23): 236602

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12264043 and 11864033) and the Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Yang or Haifeng Wang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, N., Gao, N., Ye, P. et al. Bilayer borophene: an efficient catalyst for hydrogen evolution reaction. Front. Chem. Sci. Eng. 18, 26 (2024). https://doi.org/10.1007/s11705-024-2389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2389-1

Keywords

Navigation