Skip to main content
Log in

Oxidative coupling of methane by Mn-Na2WO4/γ-Al2O3 catalyst: effect of Mn/W ratio

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, Mn-Na2WO4/γ-Al2O3 catalysts with varying ratios of Mn/W were prepared using the dry impregnation method. These catalysts were then tested for their suitability in the oxidative coupling of methane reaction. The X-ray photoelectron results revealed the presence of the tetrahedral WO42− phase in all prepared catalysts. It is believed that the presence of this phase is associated with high catalyst activity, indicating the potential of the catalysts for the desired reaction. The activity results show that the catalyst with a high Mn/W ratio exhibited higher activity at 800 °C, whereas the catalyst with a low Mn/W ratio showed greater activity at 850 °C. This suggests that the Mn/W ratio influences the reaction temperature at which the catalyst is most active. Furthermore, the X-ray diffraction results of the treated catalysts revealed that the catalyst with a high Mn/W ratio exhibited more MnAl2O4 at 800 °C, whereas the catalyst with a low Mn/W ratio contained more MnWO4 at 850 °C. The results suggest that the presence of MnAl2O4 sites may promote a more facile Mn2+ ↔ Mn3+ cycle at lower temperatures than the MnWO4 site, potentially contributing to the enhanced catalyst activity in the oxidative coupling of methane reaction at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Heilig G K. The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Population and Environment, 1994, 16(2): 109–137

    Article  Google Scholar 

  2. Eren T, Polat C. Natural gas underground storage and oil recovery with horizontal wells. Journal of Petroleum Science Engineering, 2020, 187: 106753

    Article  CAS  Google Scholar 

  3. Karakaya C, Kee R J. Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 2016, 55: 60–97

    Article  Google Scholar 

  4. Mousavi M, Nakhaei Pour A. Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method. New Journal of Chemistry, 2019, 43(27): 10763–10773

    Article  CAS  Google Scholar 

  5. Nakhaei Pour A, Housaindokht M R, Kamali Shahri S M. Fischer-Tropsch synthesis over cobalt/CNTs catalysts: functionalized support and catalyst preparation effect on activity and kinetic parameters. Industrial & Engineering Chemistry Research, 2018, 57(41): 13639–13649

    Article  CAS  Google Scholar 

  6. Nakhaei Pour A, Karimi J, Taghipoor S, Gholizadeh M, Hashemian M. Fischer-Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field. Journal of the Indian Chemical Society, 2017, 14(7): 1477–1488

    CAS  Google Scholar 

  7. Behrooz M, Peyrovi M H, Nakhaei Pour A. Direct partial oxidation (dpo) of methane to higher hydrocarbons by modified h-Zsm5 catalyst. Reaction Kinetics and Catalysis Letters, 2001, 73(1): 127–133

    Article  CAS  Google Scholar 

  8. Liu Y, Osta E H, Poryvaev A S, Fedin M V, Longo A, Nefedov A, Kosinov N. Direct conversion of methane to zeolite-templated carbons, light hydrocarbons, and hydrogen. Carbon, 2023, 201: 535–541

    Article  CAS  Google Scholar 

  9. Nakhaei Pour A, Housaindokht M R. A new kinetic model for direct CO2 hydrogenation to higher hydrocarbons on a precipitated iron catalyst: effect of catalyst particle size. Journal of Energy Chemistry, 2017, 26(3): 359–367

    Article  Google Scholar 

  10. Gambo Y, Jalil A, Triwahyono S, Abdulrasheed A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. Journal of Industrial and Engineering Chemistry, 2018, 59: 218–229

    Article  CAS  Google Scholar 

  11. Ortiz-Bravo C A, Chagas C A, Toniolo F S. Oxidative coupling of methane (OCM): an overview of the challenges and opportunities for developing new technologies. Journal of Natural Gas Science and Engineering, 2021, 96: 104254

    Article  CAS  Google Scholar 

  12. Karakaya C, Zhu H, Loebick C, Weissman J G, Kee R J. A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions. Catalysis Today, 2018, 312: 10–22

    Article  CAS  Google Scholar 

  13. Sourav S, Wang Y, Kiani D, Baltrusaitis J, Fushimi R R, Wachs I E. New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 catalysts. Angewandte Chemie International Edition, 2021, 60(39): 21502–21511

    Article  CAS  PubMed  Google Scholar 

  14. Wu J, Li S, Niu J, Fang X. Mechanistic study of oxidative coupling of methane over Mn2O3-Na2WO4SiO2 catalyst. Applied Catalysis A, General, 1995, 124(1): 9–18

    Article  CAS  Google Scholar 

  15. Zhao G, Ni J, Si J, Sun W, Lu Y. Low-temperature light-off MnOx-Na2WO4-based catalysts: a step forward to OCM process industrialization. ChemPhysChem, 2022, 23(22): e202200365

    Article  CAS  PubMed  Google Scholar 

  16. Gu S, Kang J, Lee T, Shim J, Choi J W, Suh D J, Lee H, Yoo C, Baik H, Choi J, Ha J M. Na2WO4/Mn supported on all-silica delaminated zeolite for the optimal oxidative coupling of methane via the effective stabilization of tetrahedral WO4: elucidating effects of support precursors with different crystal structures, Al-addition, and morphologies. Chemical Engineering Journal, 2023, 457: 141057

    Article  CAS  Google Scholar 

  17. Jaroenpanon K, Tiyatha W, Chukeaw T, Sringam S, Witoon T, Wattanakit C, Chareonpanich M, Faungnawakij K, Seubsai A. Synthesis of Na2WO4-MnxOy, supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. Arabian Journal of Chemistry, 2022, 15(2): 103577

    Article  CAS  Google Scholar 

  18. Shahri S M K, Nakhaei Pour A. Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure. Journal of Natural Gas Chemistry, 2010, 19(1): 47–53

    Article  CAS  Google Scholar 

  19. Nguyen T N, Seenivasan K, Nakanowatari S, Mohan P, Tran T P N, Nishimura S, Takahashi K, Taniike T. Factors to influence low-temperature performance of supported Mn-Na2WO4 in oxidative coupling of methane. Molecular Catalysis, 2021, 516: 111976

    Article  CAS  Google Scholar 

  20. Ortiz-Bravo C A, Figueroa S J, Portela R, Chagas C A, Bañares M A, Toniolo F S. Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures. Journal of Catalysis, 2022, 408: 423–435

    Article  CAS  Google Scholar 

  21. Yildiz M, Aksu Y, Simon U, Kailasam K, Goerke O, Rosowski F, Schomäcker R, Thomas A, Arndt S. Enhanced catalytic performance of MnxOy-Na2WO4/SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chemical Communications (Cambridge), 2014, 50(92): 14440–14442

    Article  CAS  Google Scholar 

  22. Kiani D, Sourav S, Baltrusaitis J, Wachs I E. Oxidative coupling of methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na. ACS Catalysis, 2019, 9(7): 5912–5928

    Article  CAS  Google Scholar 

  23. Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomäcker R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Applied Catalysis A, General, 2012, 425: 53–61

    Article  Google Scholar 

  24. Yıldız M. Mesoporous TiO2-rutile supported MnxOy-Na2WO4: preparation, characterization and catalytic performance in the oxidative coupling of methane. Journal of Industrial and Engineering Chemistry, 2019, 76: 488–499

    Article  Google Scholar 

  25. Baidya T, Van Vegten N, Verel R, Jiang Y, Yulikov M, Kohn T, Jeschke G, Baiker A. SrO·Al2O3 mixed oxides: a promising class of catalysts for oxidative coupling of methane. Journal of Catalysis, 2011, 281(2): 241–253

    Article  CAS  Google Scholar 

  26. Sourav S, Wang Y, Kiani D, Baltrusaitis J, Fushimi R R, Wachs I E. Resolving the types and origin of active oxygen species present in supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane. ACS Catalysis, 2021, 11(16): 10288–10293

    Article  CAS  Google Scholar 

  27. Aydin Z, Zanina A, Kondratenko V A, Rabeah J, Li J, Chen J, Li Y, Jiang G, Lund H, Bartling S, et al. Effects of N2O and water on activity and selectivity in the oxidative coupling of methane over Mn-Na2WO4/SiO2: role of oxygen species. ACS Catalysis, 2022, 12(2): 1298–1309

    Article  CAS  Google Scholar 

  28. Sun N, Zhang J, Ling L, Zhang R, Jia L, Li D, Wang B. Effect of different oxygen species on the oxidative coupling of methane over TiO2 catalysts. Applied Catalysis A, General, 2023, 650: 118998

    Article  CAS  Google Scholar 

  29. Sourav S, Kiani D, Wang Y, Baltrusaitis J, Fushimi R R, Wachs I E. Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catalysis Today, 2023, 416: 113837

    Article  CAS  Google Scholar 

  30. Yildiz M, Simon U, Otremba T, Aksu Y, Kailasam K, Thomas A, Schomäcker R, Arndt S. Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catalysis Today, 2014, 228: 5–14

    Article  CAS  Google Scholar 

  31. Jiang Z C, Gong H, Li S B. Methane activation over Mn2O3-Na2WO4/SiO2 catalyst and oxygen spillover. In: Studies in Surface Science and Catalysis. Elsevier, 1997, 481–490

  32. Yan B, Lin L, Wu J, Lei F. Photoluminescence of rare earth phosphors Na0.5Gd0.5WO4:RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4: RE3+ (RE = Eu, Sm, Dy). Journal of Fluorescence, 2011, 21(1): 203–211

    Article  CAS  PubMed  Google Scholar 

  33. Tiyatha W, Chukeaw T, Sringam S, Witoon T, Chareonpanich M, Rupprechter G, Seubsai A. Oxidative coupling of methane—comparisons of MnTiO3-Na2WO4 and MnOx-TiO2-Na2WO4 catalysts on different silica supports. Scientific Reports, 2022, 12(1): 2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu B, Yang Y, Xu Y, Han B, Wang Y, Liu X, Yan Z. Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability. Microporous and Mesoporous Materials, 2017, 238: 84–89

    Article  CAS  Google Scholar 

  35. Kidamorn P, Tiyatha W, Chukeaw T, Niamnuy C, Chareonpanich M, Sohn H, Seubsai A. Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4-TiO2-MnOx/SiO2 catalysts with alkali or alkali earth oxide additives. ACS Omega, 2020, 5(23): 13612–13620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abdalla Z E A, Li B, Tufail A. Preparation of phosphate promoted Na2WO4/Al2O3 catalyst and its application for oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2009, 15(6): 780–783

    Article  CAS  Google Scholar 

  37. Vamvakeros A, Matras D, Jacques S D, di Michiel M, Middelkoop V, Cong P, Price S W, Bull C L, Senecal P, Beale A M. Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catalysis Today, 2021, 364: 242–255

    Article  CAS  Google Scholar 

  38. Ismagilov I, Matus E, Kuznetsov V, Kerzhentsev M, Yasnik S, Larina T, Prosvirin I, Navarro R, Fierro J, Gerritsen G. Effect of preparation mode on the properties of Mn-Na-W/SiO2 catalysts for oxidative coupling of methane: conventional methods vs. POSS nanotechnology. Eurasian Chemico-Technological Journal, 2016, 18(2): 93–110

    Article  CAS  Google Scholar 

  39. Bayer V, Podloucky R, Franchini C, Allegretti F, Xu B, Parteder G, Ramsey M G, Surnev S, Netzer F P. Formation of Mn3O4 (001) on MnO (001): surface and interface structural stability. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(16): 165428

    Article  Google Scholar 

  40. Scofield J H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 1976, 8(2): 129–137

    Article  CAS  Google Scholar 

  41. Elkins T W, Hagelin-Weaver H E. Characterization of Mn-Na2WO4/SiO2 and Mn-Na2WO4/MgO catalysts for the oxidative coupling of methane. Applied Catalysis A, General, 2015, 497: 96–106

    Article  CAS  Google Scholar 

  42. Kim G J, Ausenbaugh J T, Hwang H T. Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane. Industrial & Engineering Chemistry Research, 2021, 60(10): 3914–3921

    Article  CAS  Google Scholar 

  43. Gu S, Oh H S, Choi J W, Suh D J, Jae J, Choi J, Ha J M. Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: reducibility of metal additives to manipulate the catalytic activity. Applied Catalysis A, General, 2018, 562: 114–119

    Article  CAS  Google Scholar 

  44. Schwarz H. Chemistry with methane: concepts rather than recipes. Angewandte Chemie International Edition, 2011, 50(43): 10096–10115

    Article  CAS  PubMed  Google Scholar 

  45. Zanina A, Kondratenko V A, Lund H, Li J, Chen J, Li Y, Jiang G, Kondratenko E V. Performance-defining factors of (MnOx)-M2WO4/SiO2 (M = Na, K, Rb, or Cs) catalysts in oxidative coupling of methane. Journal of Catalysis, 2023, 419: 68–79

    Article  CAS  Google Scholar 

  46. Wang P, Zhao G, Liu Y, Lu Y. TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Applied Catalysis A, General, 2017, 544: 77–83

    Article  CAS  Google Scholar 

  47. Jodaian V, Mirzaei M. Ce-promoted Na2WO4/TiO2 catalysts for the oxidative coupling of methane. Inorganic Chemistry Communications, 2019, 100: 97–100

    Article  CAS  Google Scholar 

  48. Li S B. Oxidative coupling of methane over W-Mn/SiO2 catalyst. Chinese Journal of Chemistry, 2001, 19(1): 16–21

    Article  CAS  Google Scholar 

  49. Wang Y, Sourav S, Malizia J P, Thompson B, Wang B, Kunz M R, Nikolla E, Fushimi R. Deciphering the mechanistic role of individual oxide phases and their combinations in supported Mn-Na2WO4 catalysts for oxidative coupling of methane. ACS Catalysis, 2022, 12(19): 11886–11898

    Article  CAS  Google Scholar 

  50. Si J, Zhao G, Lan T, Ni J, Sun W, Liu Y, Lu Y. Insight into the role of Na2WO4 in a low-temperature light-off Mn7SiO12-Na2WO4/cristobalite catalyst for oxidative coupling of methane. ACS Catalysis, 2022, 13(2): 1033–1044

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this work appreciate the financial support of the Ferdowsi University of Mashhad Research Council, Mashhad, Iran (Grant No. 68841) and (OCM project No. 23346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torshizi, H.O., Pour, A.N., Salimi, A. et al. Oxidative coupling of methane by Mn-Na2WO4/γ-Al2O3 catalyst: effect of Mn/W ratio. Front. Chem. Sci. Eng. 18, 1 (2024). https://doi.org/10.1007/s11705-023-2367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-023-2367-z

Keywords

Navigation