Skip to main content
Log in

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Capacitive deionization can alleviate water shortage and water environmental pollution, but performances are greatly determined by the electrochemical and desalination properties of its electrode materials. In this work, B and N co-doped porous carbon with micromesoporous structures is derived from sodium alginate by a carbonization, activation, and hydrothermal doping process, which exhibits large specific surface area (2587 m2·g1) and high specific capacitance (190.7 F·g1) for adsorption of salt ions and heavy metal ions. Furthermore, the materials provide a desalination capacity of 26.9 mg·g1 at 1.2 V in 500 mg·L1 NaCl solution as well as a high removal capacity (239.6 mg·g1) and adsorption rate (7.99 mg·g1·min1) for Pb2+ with an excellent cycle stability. This work can pave the way to design low-cost porous carbon with high-performances for removal of salt ions and heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang Y, Wang Y, Xue J, Tang C. MnO2-coated graphene/polypyrrole hybrids for enhanced capacitive deionization performance of Cu2+ removal. Industrial & Engineering Chemistry Research, 2022, 61(10): 3582–3590

    Article  CAS  Google Scholar 

  2. Dong Y, Xing W, Luo K, Zhang J, Yu J, Jin W, Wang J, Tang W. Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI). Journal of Cleaner Production, 2021, 326: 129417

    Article  CAS  Google Scholar 

  3. Wang R, Xu B, Chen Y, Yin X, Liu Y, Yang W. Electro-enhanced adsorption of lead ions from slightly-polluted water by capacitive deionization. Separation and Purification Technology, 2022, 282: 120122

    Article  CAS  Google Scholar 

  4. He M, Zong M, Zhang P, Huo S, Zhang X, Song X, Li K. Hierarchical N-doped porous 3D network electrode with enhanced capacitive deionization performance. Separation and Purification Technology, 2022, 297: 121558

    Article  CAS  Google Scholar 

  5. Ye Z, Wang F, Jia C, Mu K, Yu M, Lv Y, Shao Z. Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chemical Engineering Journal, 2017, 330: 1166–1173

    Article  CAS  Google Scholar 

  6. Kim M, Xu X, Xin R, Earnshaw J, Ashok A, Kim J, Park T, Nanjundan A K, El-Said W A, Yi J W, Na J, Yamauchi Y. KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Applied Materials & Interfaces, 2021, 13(44): 52034–52043

    Article  CAS  Google Scholar 

  7. Kim M, Firestein K L, Fernando J F S, Xu X, Lim H, Golberg D V, Na J, Kim J, Nara H, Tang J, Yamauchi Y. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chemical Science, 2022, 13(36): 10836–10845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim M, Wang C, Earnshaw J, Park T, Amirilian N, Ashok A, Na J, Han M, Rowan A E, Li J, Yi J W, Yamauchi Y. Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(45): 24056–24063

    Article  CAS  Google Scholar 

  9. Xu L, Ding Z, Chen Y, Xu X, Liu Y, Li J, Lu T, Pan L. Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization. Journal of Colloid and Interface Science, 2023, 630: 372–381

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Zhang Y, Zhang Y, Zhang Q, Gao X, Dou X, Zhu H, Yuan X, Pan L. MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(3): 1443–1450

    Article  CAS  Google Scholar 

  11. Wang K, Liu Y, Xu X, Jiao Y, Pan L. In situ synthesis of ultrasmall NaTi2(PO4)3 nanocube decorated carbon nanofiber network enables ultrafast and superstable rocking-chair capacitive deionization. Chemical Engineering Journal, 2023, 463: 142394

    Article  CAS  Google Scholar 

  12. Chen Z, Ding Z, Chen Y, Xu X, Liu Y, Lu T, Pan L. Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate on MXene nano-stacking for high-performance capacitive deionization. Chemical Engineering Journal, 2023, 452: 139451

    Article  CAS  Google Scholar 

  13. Li Z, Mao S, Yang Y, Sun Z, Zhao R. Controllable synthesis of a hollow core-shell Co−Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. Journal of Colloid and Interface Science, 2021, 585: 85–94

    Article  CAS  PubMed  Google Scholar 

  14. Elisadiki J, Kibona T E, Machunda R L, Saleem M W, Kim W S, Jande Y A C. Biomass-based carbon electrode materials for capacitive deionization: a review. Biomass Conversion and Biorefinery, 2020, 10(4): 1327–1356

    Article  CAS  Google Scholar 

  15. Shang Z, An X, Zhang H, Shen M, Baker F, Liu Y, Liu L, Yang J, Cao H, Xu Q, Liu H, Ni Y. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161: 62–70

    Article  CAS  Google Scholar 

  16. Liu Y, Geng B, Zhang Y, Gao X, Du X, Dou X, Zhu H, Yuan X. MnO2 decorated porous carbon derived from Enteromorpha prolifera as flow-through electrode for dual-mode capacitive deionization. Desalination, 2021, 504: 114977

    Article  CAS  Google Scholar 

  17. Liu L, Lu Y, Qiu D, Wang D, Ding Y, Wang G, Liang Z, Shen Z, Li A, Chen X, Song H. Sodium alginate-derived porous carbon: self-template carbonization mechanism and application in capacitive energy storage. Journal of Colloid and Interface Science, 2022, 620: 284–292

    Article  CAS  PubMed  Google Scholar 

  18. Yang W, Yang W, Kong L, Song A, Qin X, Shao G. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon, 2018, 127: 557–567

    Article  CAS  Google Scholar 

  19. Wang S, Chen D, Zhang Z X, Hu Y, Quan H. Mesopore dominated capacitive deionization of N-doped hierarchically porous carbon for water purification. Separation and Purification Technology, 2022, 290: 120912

    Article  CAS  Google Scholar 

  20. Ding Z, Xu X, Li J, Li Y, Wang K, Lu T, Hossain M S A, Amin M A, Zhang S, Pan L, Yamauchi Y. Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430: 133161

    Article  CAS  Google Scholar 

  21. Luo L, Zhou Y, Yan W, Wu X, Wang S, Zhao W. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochimica Acta, 2020, 360: 137010

    Article  CAS  Google Scholar 

  22. Qiu S, Chen Z, Zhuo H, Hu Y, Liu Q, Peng X, Zhong L. Using FeCl3 as a solvent, template, and activator to prepare B, N co-doping porous carbon with excellent supercapacitance. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15983–15994

    Article  CAS  Google Scholar 

  23. Yang F, Cao S, Tang Y, Yin K, Gao Y, Pang H. HCl-activated porous nitrogen-doped carbon nanopolyhedras with abundant hierarchical pores for ultrafast desalination. Journal of Colloid and Interface Science, 2022, 628: 236–246

    Article  CAS  PubMed  Google Scholar 

  24. Xie Z, Shang X, Yang J, Hu B, Nie P, Jiang W, Liu J. 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization. Carbon, 2020, 158: 184–192

    Article  CAS  Google Scholar 

  25. Zheng S M, Yuan Z H, Dionysiou D D, Zhong L B, Zhao F, Yang J C E, Zheng Y M. Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination. Chemical Engineering Journal, 2023, 458: 141471

    Article  CAS  Google Scholar 

  26. Zhang W, Jin C, Shi Z, Zhu L, Chen L, Liu Y, Zhang H. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization. Chemosphere, 2022, 291: 133113

    Article  CAS  PubMed  Google Scholar 

  27. Lian Y, Liu L, Bao H, Cao Z, Sun J, Zhao J, Zhang H. Noncorrosive and nonpolluting synthesis of biomass-derived nanosheets with B, N Codoping. ACS Applied Energy Materials, 2022, 5(7): 8885–8891

    Article  CAS  Google Scholar 

  28. Chu M, Tian W, Zhao J, Zou M, Lu Z, Zhang D, Jiang J. A comprehensive review of capacitive deionization technology with biochar-based electrodes: biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 2022, 307: 136024

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Ren J, Xia L, Zheng Q, Liao J, Long E, Xie F, Xu C, Lin D. Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochimica Acta, 2018, 284: 336–345

    Article  CAS  Google Scholar 

  30. Song X, Fang D, Huo S, Li K. 3D-ordered honeycomb-like nitrogen-doped micro-mesoporous carbon for brackish water desalination using capacitive deionization. Environmental Science. Nano, 2021, 8(8): 2191–2203

    Article  CAS  Google Scholar 

  31. Guo D, Ding B, Hu X, Wang Y, Han F, Wu X. Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11441–11449

    Article  CAS  Google Scholar 

  32. Zhang H, Wang C, Zhang W, Zhang M, Qi J, Qian J, Sun X, Yuliarto B, Na J, Park T, Gomaa H G A, Kaneti Y V, Yi J W, Yamauchi Y, Li J. Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(21): 12807–12817

    Article  CAS  Google Scholar 

  33. He R, Neupane M, Zia A, Huang X, Bowers C, Wang M, Lu J, Yang Y, Dong P. Binder-free wood converted carbon for enhanced water desalination performance. Advanced Functional Materials, 2022, 32(49): 2208040

    Article  CAS  Google Scholar 

  34. Wu N, Gu X, Zhou S, Han X, Leng H, Zhang P, Yang P, Qi Y, Li S, Qiu J. Hierarchical porous N, S co-doped carbon derived from fish scales for enhanced membrane capacitive deionization. Electrochimica Acta, 2022, 409: 139983

    Article  CAS  Google Scholar 

  35. Yasin A S, Mohamed I M A, Mousa H M, Park C H, Kim C S. Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific Reports, 2018, 8(1): 541

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Tian J, Cui X, Li J, Zhu Z. Highly mesoporous carbon nanofiber electrodes with ultrahigh specific surface area for efficient capacitive deionization. Carbon, 2023, 201: 920–929

    Article  CAS  Google Scholar 

  37. Zhang P, Fritz P A, Schroen K, Duan H, Boom R M, Chan-Park M B. Zwitterionic polymer modified porous carbon for high-performance and antifouling capacitive desalination. ACS Applied Materials & Interfaces, 2018, 10(39): 33564–33573

    Article  CAS  Google Scholar 

  38. Shi M, Hong X, Liu C, Qiang H, Wang F, Xia M. Green double organic salt activation strategy for one-step synthesis of N-doped 3D hierarchical porous carbon for capacitive deionization. Chemical Engineering Journal, 2023, 453: 139764

    Article  CAS  Google Scholar 

  39. Suss M E, Porada S, Sun X, Biesheuvel P M, Yoon J, Presser V. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 2015, 8(8): 2296–2319

    Article  CAS  Google Scholar 

  40. Lu T, Liu Y, Xu X, Pan L, Alothman A A, Shapter J, Wang Y, Yamauchi Y. Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Separation and Purification Technology, 2021, 256: 117771

    Article  CAS  Google Scholar 

  41. Liu X, Liu H, Mi M, Kong W, Ge Y, Hu J. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Separation and Purification Technology, 2019, 224: 44–50

    Article  CAS  Google Scholar 

  42. Li Y, Liu Y, Wang M, Xu X, Lu T, Sun C Q, Pan L. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon, 2018, 130: 377–383

    Article  CAS  Google Scholar 

  43. Xing W, Zhang M, Liang J, Tang W, Li P, Luo Y, Tang N, Guo J. Facile synthesis of pinecone biomass-derived phosphorus-doping porous carbon electrodes for efficient electrochemical salt removal. Separation and Purification Technology, 2020, 251: 117357

    Article  CAS  Google Scholar 

  44. Cao Z, Hu S, Yu J, Wang L, Yang Q, Song H, Zhang S. Enhanced capacitive deionization of toxic metal ions using nanoporous walnut shell-derived carbon. Journal of Environmental Chemical Engineering, 2022, 10(5): 108245

    Article  CAS  Google Scholar 

  45. Kyaw H H, Myint M T Z, AlHarthi S, AlAbri M. Removal of heavy metal ions by capacitive deionization: effect of surface modification on ions adsorption. Journal of Hazardous Materials, 2020, 385: 121565

    Article  CAS  PubMed  Google Scholar 

  46. Bharath G, Hai A, Rambabu K, Ahmed F, Haidyrah A S, Ahmad N, Hasan S W, Banat F. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Environmental Research, 2021, 197: 111110

    Article  CAS  PubMed  Google Scholar 

  47. Liu D, Xu S, Cai Y, Wang Y, Guo J, Li Y. A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead(II) ions. Journal of Electroanalytical Chemistry, 2022, 910: 116152

    Article  CAS  Google Scholar 

  48. Li Y, Xu R, Qiao L, Li Y, Wang D, Li D, Liang X, Xu G, Gao M, Gong H, Zhang X, Qiu H, Liang K, Chen P, Li Y. Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous and Mesoporous Materials, 2022, 338: 111889

    Article  CAS  Google Scholar 

  49. Xu B, Wang R, Fan Y, Li B, Zhang J, Peng F, Du Y, Yang W. Flexible self-supporting electrode for high removal performance of arsenic by capacitive deionization. Separation and Purification Technology, 2022, 299: 121732

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51472174, 61604086, and 21776147), the Shandong Province Natural Science Foundation (Grant Nos. ZR2018BB066, ZR2021YQ32, and ZR2022QB164), and the Taishan Scholar Project of Shandong Province (Grant No. tsqn201909117). L. F. Dong thanks financial support from the Malmstrom Endowed Fund at Hamline University. We also thanks Dr. Yong Liu for his help in the fabrication of CDI module.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Yu, Liyan Yu or Lifeng Dong.

Ethics declarations

The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2023_2346_MOESM1_ESM.pdf

Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, X., Sha, P., Peng, J. et al. Boron and nitrogen co-doped porous carbon derived from sodium alginate enhanced capacitive deionization for water purification. Front. Chem. Sci. Eng. 17, 2014–2024 (2023). https://doi.org/10.1007/s11705-023-2346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2346-4

Keywords

Navigation