Skip to main content
Log in

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 µm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Song P, Ma Z, Qiu H, Ru Y, Gu J. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Letters, 2022, 14(1): 51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang D, Murugadoss V, Wang Y, Lin J, Ding T, Wang Z, Shao Q, Wang C, Liu H, Lu N, Wei R, Subramania A, Guo Z. Electromagnetic interference shielding polymers and nanocomposites—a review. Polymer Reviews (Philadelphia, Pa.), 2019, 59(2): 280–337

    Article  CAS  Google Scholar 

  3. Zhang L, Chen Y, Liu Q, Deng W, Yue Y, Meng F. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111: 57–65

    Article  CAS  Google Scholar 

  4. Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Applied Materials & Interfaces, 2021, 13(50): 60478–60488

    Article  CAS  Google Scholar 

  5. Zhou Z, Song Q, Huang B, Feng S, Lu C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405–12417

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Kong J, Gu J. New generation electromagnetic materials: harvesting instead of dissipation solo. Science Bulletin, 2022, 67(14): 1413–1415

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Chen J, Wang H, Xiao X. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem, 2021, 8(4): 648–655

    Article  CAS  Google Scholar 

  8. Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews. Materials, 2017, 2(2): 16098

    Article  CAS  Google Scholar 

  9. Zhang Y Z, El-Demellawi J K, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef H N. MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49(20): 7229–7251

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Gong M, Wan P. MXene hydrogel for wearable electronics. Matter, 2021, 4(8): 2655–2658

    Article  CAS  Google Scholar 

  11. Sun L, Sun J, Zhai S, Dong T, Yang H, Tan Y, Fang X, Liu C, Deng W Q, Wu H. Homologous MXene-derived electrodes for potassium-ion full batteries. Advanced Energy Materials, 2022, 12(23): 2200113

    Article  CAS  Google Scholar 

  12. Kong W, Deng J, Li L. Recent advances in noble metal MXene-based catalysts for electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(28): 14674–14691

    Article  CAS  Google Scholar 

  13. Wang Z, Zhou Z, Wang S, Yao X, Han X, Cao W, Pu J. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Composites. Part B, Engineering, 2022, 239: 109954

    Article  CAS  Google Scholar 

  14. Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano, 2021, 15(7): 11396–11405

    Article  CAS  PubMed  Google Scholar 

  15. Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Wu N, Zheng S, Yang Y, Li B, Liu W, Liu J, Zeng Z. From MXene trash to ultraflexible composites for multifunctional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2022, 14(44): 50120–50128

    Article  CAS  Google Scholar 

  17. Zhang Y, Yan Y, Qiu H, Ma Z, Ruan K, Gu J. A mini-review of MXene porous films: preparation, mechanism and application. Journal of Materials Science and Technology, 2022, 103: 42–49

    Article  CAS  Google Scholar 

  18. Zhang Y, Ma Z, Ruan K, Gu J. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Research, 2022, 15(6): 5601–5609

    Article  CAS  Google Scholar 

  19. Lee G S, Yun T, Kim H, Kim I H, Choi J, Lee S H, Lee H J, Hwang H S, Kim J G, Kim D, Lee H M, Koo C M, Kim S O. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722–11732

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Zhang Y, Zhang H B, Dai Y, Liu J, Li X, Yu Z Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1673–1678

    Article  CAS  Google Scholar 

  21. Zhang Y, Ruan K, Zhou K, Gu J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Advanced Materials, 2023, 35(16): 2211642

    Article  CAS  Google Scholar 

  22. Qi C Z, Wu X, Liu J, Luo X J, Zhang H B, Yu Z Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. Journal of Materials Science and Technology, 2023, 135: 213–220

    Article  CAS  Google Scholar 

  23. Jiao C, Deng Z, Min P, Lai J, Gou Q, Gao R, Yu Z Z, Zhang H B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon, 2022, 198: 179–187

    Article  CAS  Google Scholar 

  24. Zhang Y G, Huang L Z, Yuan Q, Ma M G. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties. Frontiers of Chemical Science and Engineering, 2022, online, https://doi.org/10.1007/s11705-022-2251-2

  25. Wu N, Zeng Z, Kummer N, Han D, Zenobi R, Nyström G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods, 2021, 5(12): 2100889

    Article  CAS  Google Scholar 

  26. Cao W T, Chen F F, Zhu Y J, Zhang Y G, Jiang Y Y, Ma M G, Chen F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583–4593

    Article  CAS  PubMed  Google Scholar 

  27. Feng S, Zhan Z, Yi Y, Zhou Z, Lu C. Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance. Composites. Part A, Applied Science and Manufacturing, 2022, 157: 106907

    Article  CAS  Google Scholar 

  28. Chen S, Yue N, Cui M, Penkova A, Huang R, Qi W, He Z, Su R. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils. Carbohydrate Polymers, 2022, 294: 119803

    Article  CAS  PubMed  Google Scholar 

  29. Van Hai L, Zhai L, Kim H C, Kim J W, Choi E S, Kim J. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70

    Article  CAS  PubMed  Google Scholar 

  30. Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054

    Article  CAS  Google Scholar 

  31. Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synthetic Metals, 2011, 161(15–16): 1522–1526

    Article  CAS  Google Scholar 

  32. Xu L Q, Yang W J, Neoh K G, Kang E T, Fu G D. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 2010, 43(20): 8336–8339

    Article  CAS  Google Scholar 

  33. Wan S, Li X, Wang Y, Chen Y, Xie X, Yang R, Tomsia A P, Jiang L, Cheng Q. Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27154–27161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Besbes I, Alila S, Boufi S. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983

    Article  CAS  Google Scholar 

  35. Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81

    Article  CAS  PubMed  Google Scholar 

  36. Chen H, Wen Y, Qi Y, Zhao Q, Qu L, Li C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Advanced Functional Materials, 2020, 30(5): 1906996

    Article  CAS  Google Scholar 

  37. Ren H P, Song Y H, Hao Q Q, Liu Z W, Wang W, Chen J G, Jiang J, Liu Z T, Hao Z, Lu J. Highly active and stable Ni–SiO2 prepared by a complex-decomposition method for pressurized carbon dioxide reforming of methane. Industrial & Engineering Chemistry Research, 2014, 53(49): 19077–19086

    Article  CAS  Google Scholar 

  38. Ashok J, Kawi S. Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis, 2014, 4(1): 289–301

    Article  CAS  Google Scholar 

  39. Luo S, Xiang T, Dong J, Su F, Ji Y, Liu C, Feng Y. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science and Technology, 2022, 129: 127–134

    Article  CAS  Google Scholar 

  40. Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Advances, 2015, 5(90): 73416–73423

    Article  CAS  Google Scholar 

  41. Han M, Gogotsi Y. Perspectives for electromagnetic radiation protection with MXenes. Carbon, 2023, 204: 17–25

    Article  CAS  Google Scholar 

  42. Qian K, Wu H, Fang J, Yang Y, Miao M, Cao S, Shi L, Feng X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydrate Polymers, 2021, 254: 117325

    Article  CAS  PubMed  Google Scholar 

  43. Zhou J, Thaiboonrod S, Fang J, Cao S, Miao M, Feng X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Research, 2022, 15(9): 8536–8545

    Article  CAS  Google Scholar 

  44. Song Q, Chen B, Zhou Z, Lu C. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Science China Materials, 2021, 64(6): 1437–1448

    Article  CAS  Google Scholar 

  45. Zhan Z, Song Q, Zhou Z, Lu C. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(32): 9820–9829

    Article  CAS  Google Scholar 

  46. Zhou B, Zhang Z, Li Y, Han G, Feng Y, Wang B, Zhang D, Ma J, Liu C. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and Mxene layers. ACS Applied Materials & Interfaces, 2020, 12(4): 4895–4905

    Article  CAS  Google Scholar 

  47. Xu H, Yin X, Li X, Li M, Liang S, Zhang L, Cheng L. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Applied Materials & Interfaces, 2019, 11(10): 10198–10207

    Article  CAS  Google Scholar 

  48. Zhang H, Sun X, Heng Z, Chen Y, Zou H, Liang M. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Industrial & Engineering Chemistry Research, 2018, 57(50): 17152–17160

    Article  CAS  Google Scholar 

  49. Li Y, Chen Y, Liu Y, Zhang C, Qi H. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohydrate Polymers, 2021, 274: 118652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (Grant No. 2022YFG0291), State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2022-3-20), and the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University (Grant No. 2020SCUNG203). Authors appreciate Dr. Guiping Yuan from Analytical & Testing Center, Sichuan University for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehang Zhou.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

11705_2023_2335_MOESM1_ESM.docx

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Feng, S., Lu, C. et al. Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance. Front. Chem. Sci. Eng. 17, 1460–1469 (2023). https://doi.org/10.1007/s11705-023-2335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2335-7

Keywords

Navigation