Skip to main content
Log in

Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The interrelationships and synergistic regulations of bioactive molecules play pivotal roles in physiological and pathological processes involved in the initiation and development of some diseases, such as cancer and neurodegenerative and cardiovascular diseases. Therefore, the simultaneous, accurate and timely detection of two bioactive molecules is crucial to explore their roles and pathological mechanisms in related diseases. Fluorescence imaging associated with small molecular probes has been widely used in the imaging of bioactive molecules in living cells and in vivo due to its excellent performances, including high sensitivity and selectivity, noninvasive properties, real-time and high spatial temporal resolution. Single organic molecule fluorescent probes have been successively developed to simultaneously monitor two biomolecules to uncover their synergistic relationships in living systems. Hence, in this review, we focus on summarizing the design strategies, classifications, and bioimaging applications of dual-response fluorescent probes over the past decade. Furthermore, future research directions in this field are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sies H, Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents. Nature Reviews. Molecular Cell Biology, 2020; 21(7): 363–383

    Article  CAS  PubMed  Google Scholar 

  2. Sies H, Berndt C, Jones D P. Oxidative stress. Annual Review of Biochemistry, 2017; 86(1): 715–748

    Article  CAS  PubMed  Google Scholar 

  3. Wu L L, Huang C, Emery B P, Sedgwick A C, Bull S D, He X P, Tian H, Yoon J Y, Sessler J L, James T D. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chemical Society Reviews, 2020; 49(15): 5110–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen W, Pacheco A, Takano Y K, Day J J, Hanaoka K, Xian M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angewandte Chemie International Edition, 2016; 55(34): 9993–9996

    Article  CAS  PubMed  Google Scholar 

  5. Chen X Q, Wang F, Hyun J Y, Wei T W, Qiang J, Ren X T, Shin I J, Yoon J Y. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 2016; 45(10): 2976–3016

    Article  CAS  PubMed  Google Scholar 

  6. Xu Z, Xu L. Fluorescent probes for the selective detection of chemical species inside mitochondria. Chemical Communications, 2016; 52(6): 1094–1119

    Article  CAS  PubMed  Google Scholar 

  7. Mao Z Q, Ye M T, Hu W, Ye X X, Wang Y Y, Zhang H J, Li C Y, Liu Z H. Design of a ratiometric two-photon probe for imaging of hypochlorous acid (HClO) in wounded tissues. Chemical Science (Cambridge), 2018; 9(28): 6035–6040

    Article  CAS  Google Scholar 

  8. Li X H, Gao X H, Shi W, Ma H M. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chemical Reviews, 2014; 114(1): 590–659

    Article  CAS  PubMed  Google Scholar 

  9. Harris I S, DeNicola G D. The complex interplay between antioxidants and ROS in cancer. Trends in Cell Biology, 2020; 30(6): 440–451

    Article  CAS  PubMed  Google Scholar 

  10. Jiao X Y, Li Y, Niu J Y, Xie X L, Wang X, Tang B. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Analytical Chemistry, 2018; 90(1): 533–555

    Article  CAS  PubMed  Google Scholar 

  11. Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J Y, Jame T D. Fluorescent chemosensors: the past, presen and future. Chemical Society Reviews, 2017; 46(23): 7105–7123

    Article  CAS  PubMed  Google Scholar 

  12. Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chemical Science (Cambridge), 2019; 10(24): 6035–6071

    Article  CAS  Google Scholar 

  13. Ueno T, Nagano T. Fluorescence probes for sensing and imaging. Nature Methods, 2011; 8(8): 642–645

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J L, Xu Z, Yang Y Y, Xu L. Small-molecule fluorescent probes for specific detection and imaging of chemical species inside lysosomes. Chemical Communications, 2019; 55(47): 6629–6671

    Article  CAS  PubMed  Google Scholar 

  15. Yuan L, Lin W Y, Zhang K B, Zhu S S. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Accounts of Chemical Research, 2013; 46(7): 1462–1473

    Article  CAS  PubMed  Google Scholar 

  16. He L W, Dong B L, Liu Y, Lin W Y. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chemical Society Reviews, 2016; 45(23): 6449–6461

    Article  CAS  PubMed  Google Scholar 

  17. Crichton R R, Pierre J L. Old iron, young copper: from Mars to Venus. Biometals, 2011; 14(2): 99–112

    Article  Google Scholar 

  18. Wang X, Li P, Zhang W, Tang B. Recent advances in fluorescence imaging of bioactive molecules in neurons and in vivo. Chinese Journal of Analytical Chemistry, 2019; 47(10): 1537–1548

    Article  CAS  Google Scholar 

  19. Lee M H, Kim J S, Sessler J L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chemical Society Reviews, 2015; 44(13): 4185–4191

    Article  CAS  PubMed  Google Scholar 

  20. Miller L M, Wang Q, Telivala T P, Smith R J, Lanzirotti A, Miklossy J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. Journal of Structural Biology, 2006; 155(1): 30–37

    Article  CAS  PubMed  Google Scholar 

  21. Nakao N, Frodl E V, Widner H, Carlson E, Eggerding F A, Epstein C J, Brundin P. Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson’s disease. Nature Medicine, 1995; 1(3): 226–231

    Article  CAS  PubMed  Google Scholar 

  22. Hou L J, Feng J, Wang Y B, Dong C A, Shuang S M, Wang Y. Single fluorescein-based probe for selective colorimetric and fluorometric dual sensing of Al3+ and Cu2+. Sensors and Actuators. B, Chemical, 2017, 247: 451–460

    Article  CAS  Google Scholar 

  23. Roy A, Shee U, Mukherjee A, Mandal S K, Roy P. Rhodamine-based dual chemosensor for Al3+ and Zn2+ ions with distinctly separated excitation and emission wavelengths. ACS Omega, 2019; 4(4): 6864–6875

    Article  CAS  Google Scholar 

  24. Hazra A, Roy A, Mukherjee A, Maiti G P, Roy P. Remarkable difference in Al3+ and Zn2+ sensing properties of quinoline based isomers. Dalton Transactions (Cambridge, England), 2018; 47(39): 13972–13989

    Article  CAS  Google Scholar 

  25. Sun W, Li M, Fan J L, Peng X J. Activity-based sensing and theranostic probes based on photoinduced electron transfer. Accounts of Chemical Research, 2019; 52(10): 2818–2831

    Article  CAS  PubMed  Google Scholar 

  26. Zhao G, Wei G, Yan Z Q, Guo B Y, Guang S Y, Wu R L, Xu H Y. A multiple fluorescein-based turn-on fluorophore (FHCS) identified for simultaneous determination and living imaging of toxic Al3+ and Zn2+ by improved stokes shift. Analytica Chimica Acta, 2020, 1095: 185–196

    Article  CAS  PubMed  Google Scholar 

  27. Liu H Y, Liu T Q, Li J, Zhang Y M, Li J H, Song J, Qu J L, Wong W Y. A simple Schiff base as dual-responsive fluorescent sensor for bioimaging recognition of Zn2+ and Al3+ in living cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018; 6(34): 5435–5442

    Article  CAS  PubMed  Google Scholar 

  28. Erdemir S, Yuksekogu M, Karakurt S, Kocyigit O. Dual-channel fluorescent probe based on bisphenol A-rhodamine for Zn2+ and Hg2+ through different signaling and its bioimaging studies. Sensors and Actuators B Chemiscal, 2017, 241: 230–238

    Article  CAS  Google Scholar 

  29. Wu L L, Sedgwick A C, Sun X L, Bull S D, He X P, James T D. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Accounts of Chemical Research, 2019; 52(9): 2582–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Y, Zheng B Z, Du J, Xiao D, Yang L. A fluorescent “turn-on” probe for the dual-channel detection of Hg(II) and Mg(II) and its application of imaging in living cells. Talanta, 2011; 85(4): 2194–2201

    Article  CAS  PubMed  Google Scholar 

  31. Andina D, Leroux J C, Luciani P. Ratiometric fluorescent probes for the detection of reactive oxygen species. Chemistry (Weinheim an der Bergstrasse, Germany), 2017; 23(55): 13547–13573

    Google Scholar 

  32. Schoenfeld J D, Sibenaller Z A, Mapuskar K A, Wagner B A, Cramer-Morales K L, Furqan M, Sandhu S, Carlisle T L, Smith M C, Abu Hejleh T, et al. O2.− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell, 2017; 31(4): 487–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lou Z R, Li P, Han K L. Redox-responsive fluorescent probes with different design strategies. Accounts of Chemical Research, 2015; 48(5): 1358–1368

    Article  CAS  PubMed  Google Scholar 

  34. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell, 2019; 35(6): 830–849

    Article  CAS  PubMed  Google Scholar 

  35. Chouchani E T, Pell V R, Gaude E, Aksentijević D, Sundier S Y, Robb E L, Logan A, Nadtochiy S M, Ord E N J, Smith A C, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014; 515(7527): 431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He F, Zuo L. Redox roles of reactive oxygen species in cardiovascular disease. International Journal of Molecular Sciences, 2015; 16(11): 27770–27780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang R, Zhao J, Han G, Liu Z, Liu C, Zhang C, Liu B, Jiang C, Liu R, Zhao T, Han M Y, Zhang Z. Real-time discrimination and versatile profiling of spontaneous ROS in living organisms with a single fluorescent probe. Journal of the American Chemical Society, 2016; 138(11): 3769–3778

    Article  CAS  PubMed  Google Scholar 

  38. Du Y C, Wang B W, Jin D, Li M R, Li Y, Yan X L, Zhou X Q, Chen L G. Dual-site fluorescent probe for multi-response detection of ClO and H2O2 and bio-imaging. Analytica Chimica Acta, 2020, 1103: 174–182

    Article  CAS  PubMed  Google Scholar 

  39. Han J L, Liu X J, Xiong H Q, Wang J P, Wang B H, Song X Z, Wang W. Investigation of the relationship between H2O2 and HClO in living cells by a bifunctional, dual-ratiometric responsive fluorescent probe. Analytical Chemistry, 2020; 92(7): 5134–5142

    Article  CAS  PubMed  Google Scholar 

  40. Park S H, Kwon N, Lee J H, Yoon J Y, Shin I. Synthetic ratiometric fluorescent probes for detection of ions. Chemical Society Reviews, 2020; 49(1): 143–179

    Article  CAS  PubMed  Google Scholar 

  41. Long L L, Han Y Y, Liu W G, Chen Q, Yin D D, Li L L, Yuan F, Han Z X, Gong A H, Wang K. Simultaneous discrimination of hypochlorite and single oxygen during sepsis by a dual-functional fluorescent probe. Analytical Chemistry, 2020; 92(8): 6072–6080

    Article  CAS  PubMed  Google Scholar 

  42. Yue Y K, Huo F J, Cheng F Q, Zhu X J, Mafireyi T, Strongin R M, Yin C X. Functional synthetic probes for selective targeting and multi-analyte detection and imaging. Chemical Society Reviews, 2019; 48(15): 4155–4177

    Article  CAS  PubMed  Google Scholar 

  43. Chen X Q, Zhou Y, Peng X J, Yoon J Y. Fluorescent and colorimetric probes for detection of thiols. Chemical Society Reviews, 2010; 39(6): 2120–2135

    Article  CAS  PubMed  Google Scholar 

  44. Lin V S, Chen W, Xian M, Chang C J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chemical Society Reviews, 2015; 44(14): 4596–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu F B, Han X Y, Che L X. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chemical Communications, 2014; 50(82): 12234–12249

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Y Q, Li P, Fan N N, Wang X, Liu X N, Wu L J, Zhang W, Zhang W, Ma C L, Tang B. In situ visualization of peroxisomal peroxynitrite in the livers of mice with acute liver injury induced by carbon tetrachloride using a new two-photon fluorescent probe. Chemical Communications, 2019; 55(47): 6767–6770

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H X, Liu J, Hu B, Wang L F, Yang Z, Han X, Wang J J, Bai W, Guo W. Dual-channel fluorescence diagnosis of cancer cells/tissues assisted by OATP transporters and cysteine/glutathione. Chemical Science (Cambridge), 2018; 9(12): 3209–3214

    Article  CAS  Google Scholar 

  48. Lv F, Guo X, Wu H, Li H, Tang B, Yu C J, Hao E H, Jiao L J. Direct sulfonylation of BODIPY dyes with sodiumsulfinates through oxidative radical hydrogen substitution at the a-position. Chemical Communications, 2020; 56(99): 15577–15580

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Sun Y Q, Huo Y Y, Zhang H X, Wang L F, Zhang P, Song D, Shi Y W, Guo W. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. Journal of the American Chemical Society, 2014; 136(2): 574–577

    Article  CAS  PubMed  Google Scholar 

  50. Fu X L, Chen X G, Li H, Feng W, Song Q H. Quinolone-based fluorescent probe for distinguishing detection of Cys and GSH through different fluorescence channels. New Journal of Chemistry, 2020; 44(32): 13781–13787

    Article  CAS  Google Scholar 

  51. Li H L, Peng W, Feng W P, Wang Y X, Chen G F, Wang S X, Li S H, Li H F, Wang K R, Zhang J C. A novel dual-emission fluorescent probe for simultaneous detection of H2S and GSH. Chemical Communications, 2016; 52(25): 4628–4631

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Yin C X, Zhang Y B, Yue Y K, Chao J B, Huo F J. High selective distinguishable detection GSH and H2S based on steric configuration of molecular in vivo. Dyes and Pigments, 2020, 172: 107826

    Article  CAS  Google Scholar 

  53. Zhao X X, He F R, Dai Y P, Ma F L, Qi Z J. A single fluorescent probe for one- and two-photon imaging hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Dyes and Pigments, 2020, 172: 107818

    Article  CAS  Google Scholar 

  54. Li M Y, Cui P C, Li K, Feng J H, Zou M M, Yu X Q. Dual-site fluorescent probe for highly selective and sensitive detection of sulfite and biothiols. Chinese Chemical Letters, 2018; 29(6): 992–994

    Article  CAS  Google Scholar 

  55. Wu X Y, Wang Y, Liu Y H, Yu X Q. Dual-site lysosome-targeted fluorescent probe for separate detection of endogenous biothiols and SO2 in living Cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018; 6(25): 4232–4238

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Liu W M, Zhang H Y, Wang M Q, Wu J S, Ge J C, Wang P F. Dual emission channels for simultaneous sensing Cys and Hcy in living cells. Chemistry, an Asian Journal, 2017; 12(16): 2098–2103

    Article  CAS  PubMed  Google Scholar 

  57. Chen W Q, Yue X X, Zhang H, Li W X, Zhang L L, Xiao Q, Huang C S, Sheng J R, Song X Z. Simultaneous detection of glutathione and hydrogen polysulfides from different emission channels. Analytical Chemistry, 2017; 89(23): 12984–12991

    Article  CAS  PubMed  Google Scholar 

  58. Yang X P, Liu W Y, Tang J, Li P, Weng H B, Ye Y, Xian M, Tang B, Zhao Y F. A multi-signal mitochondria-targeted fluorescent probe for real-time visualization of cysteine metabolism in living cells and animals. Chemical Communications, 2018; 54(81): 11387–11390

    Article  CAS  PubMed  Google Scholar 

  59. Zhao F F, Zha Z Y, Tang J, Zhang B B, Yang X P, Song X Z, Ye Y. A bond energy transfer based difunctional fluorescent sensor for Cys and bisulfite. Talanta, 2020, 214: 120884

    Article  CAS  PubMed  Google Scholar 

  60. Yin C X, Yu T, Gan Y B, Zhou L, Liu M L, Zhang Y Y, Li H T, Yin P, Yao S Z. A novel fluorescent probe with dual-sites for simultaneously monitoring metabolisms of cysteine in living cells and zebrafishes. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 241: 118602

    Article  CAS  Google Scholar 

  61. Yin J L, Ma Y Y, Li G H, Peng M, Lin W Y. A versatile small-molecule fluorescence scaffold: carbazole derivatives for bioimaging. Coordination Chemistry Reviews, 2020, 412: 213257

    Article  CAS  Google Scholar 

  62. Zhu H, Fan J L, Du J J, Peng X J. Fluorescent probes for sensing and imaging within specific cellular organelles. Accounts of Chemical Research, 2016; 49(10): 2115–2126

    Article  CAS  PubMed  Google Scholar 

  63. Niu H W, Tang J, Zhua X F, Li Z P, Zhang Y R, Ye Y, Zhao Y F. Three-channel fluorescent probe to image mitochondrial stress. Chemical Communications, 2020; 56(56): 7710–7713

    Article  CAS  PubMed  Google Scholar 

  64. Dou K, Fu Q, Chen G, Yu F B, Liu Y X, Cao Z P, Li G L, Zhao X N, Xia L, Chen L X, Wang H, You J. A novel dual-ratiometric-response fluorescent probe for SO2/ClO detection in cells and in vivo and its application in exploring the dichotomous role of SO2 under the ClO induced oxidative stress. Biomaterials, 2017, 133: 82–93

    Article  CAS  PubMed  Google Scholar 

  65. Dou K, Guang C, Yu F B, Sun Z W, Li G L, Zhao X N, Chen L X, You J M. A two-photon ratiometric fluorescent probe for the synergistic detection of mitochondrial SO2/HClO crosstalk in cells and in vivo. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017; 5(42): 8389–8398

    CAS  PubMed  Google Scholar 

  66. Yang L, Zhang Y, Ren X J, Wang B H, Yang Z G, Song X Z, Wang W. Fluorescent detection of dynamic H2O2/H2S redox event in living cells and organisms. Analytical Chemistry, 2020; 92(6): 4387–4394

    Article  CAS  PubMed  Google Scholar 

  67. Velusamy N, Thirumalaivasan N, Bobba K N, Podder A, Wu S P, Bhuniya S. FRET-based dual channel fluorescent probe for detecting endogenous/exogenous H2O2/H2S formation through multicolor images. Journal of Photochemistry and Photobiology. B, Biology, 2019, 191: 99–106

    Article  CAS  PubMed  Google Scholar 

  68. Yi L, Wei L, Wang R Y, Zhang C Y, Zhang J, Tan T W, Zhen X. A dual-response fluorescent probe reveals the H2O2-induced H2S biogenesis through a cystathionine β-synthase pathway. Chemistry (Weinheim an der Bergstrasse, Germany), 2015; 21(43): 15167–15172

    CAS  Google Scholar 

  69. Jiao X Y, Xiao Y S, Li Y, Liang M W, Xie X L, Wang X, Tang B. Evaluating drug-induced liver injury and its remission via discrimination and imaging of HClO and H2S with a two-photon fluorescent probe. Analytical Chemistry, 2018; 90(12): 7510–7516

    Article  CAS  PubMed  Google Scholar 

  70. Ren M G, Li Z H, Deng B B, Wang L, Lin W Y. Single fluorescent probe separately and continuously visualize H2S and HClO in lysosomes with different fluorescence signals. Analytical Chemistry, 2019; 91(4): 2932–2938

    Article  CAS  PubMed  Google Scholar 

  71. Yue X X, Wang J P, Han J L, Wang B H, Song X Z. A dualratiometric fluorescent probe for individual and continuous detection of H2S and HClO in living cells. Chemical Communications, 2020; 56(19): 2849–2852

    Article  CAS  PubMed  Google Scholar 

  72. Li Y, Xie X L, Yang X E, Li M M, Jiao X Y, Sun Y H, Wang X, Tang B. Two-photon fluorescent probe for revealing drug-induced hepatotoxicity via mapping fluctuation of peroxynitrite. Chemical Science (Cambridge), 2017; 8(5): 4006–4011

    Article  CAS  Google Scholar 

  73. Wang N N, Yu X Y, Zhang K, Mirkin C A, Li J S. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. Journal of the American Chemical Society, 2017; 139(36): 12354–12357

    Article  CAS  PubMed  Google Scholar 

  74. Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochimica et Biophysica Acta, 2012; 1822(3): 1363–1373

    Article  CAS  PubMed  Google Scholar 

  75. Moldogazieva N T, Mokhosoev I M, Feldman N B, Lutsenko S V. ROS and RNS signaling: adaptive redox switches though oxidative/nitrosative protein modifications. Free Radical Research, 2018; 52(5): 507–543

    Article  CAS  PubMed  Google Scholar 

  76. Zhang P S, Li J, Li B W, Xu J S, Zeng F, Lv J, Wu S Z. A logic gate-based fluorescent sensor for detecting H2S and NO in aqueous media and inside live cells. Chemical Communications, 2015; 51(21): 4414–4416

    Article  CAS  PubMed  Google Scholar 

  77. Chen X X, Niu L Y, Shao N, Yang Q Z. BODIPY-based fluorescent probe for dual-channel detection of nitric oxide and glutathione: visualization of cross-talk in living cells. Analytical Chemistry, 2019; 91(7): 4301–4306

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J J, Chai X Z, He X P, Kim H J, Yoon J Y, Tian H. Fluorogenic probes for disease-relevant enzymes. Chemical Society Reviews, 2019; 48(2): 683–722

    Article  CAS  PubMed  Google Scholar 

  79. Kim H M, Cho B R. Small-molecule two-photon probes for bioimaging applications. Chemical Reviews, 2015; 115(11): 5014–5055

    Article  CAS  PubMed  Google Scholar 

  80. Yuan L, Lin W Y, Xie Y N, Chen B, Zhu S S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. Journal of the American Chemical Society, 2012; 134(2): 1305–1315

    Article  CAS  PubMed  Google Scholar 

  81. Wu Z, Liu M M, Liu Z C, Tian Y. Real-time imaging and simultaneous quantification of mitochondrial H2O2 and ATP in neurons with a single two-photon fluorescence lifetime-based probe. Journal of the American Chemical Society, 2020; 142(16): 7532–7541

    Article  CAS  PubMed  Google Scholar 

  82. Ou P, Zhang R, Liu Z, Tian X, Han G, Liu B, Hu Z, Zhang Z. Gasotransmitter Regulation of Phosphatase Activity in Live Cells Studied by Three-Channel Imaging Correlation. Angewandte Chemie International Edition, 2019; 131(8): 2283–2287

    Article  Google Scholar 

  83. Fang Y, Shi W, Hu Y M, Li X H, Ma H M. A dual-function fluorescent probe for monitoring the degrees of hypoxia in living cells via the imaging of nitroreductase and adenosine triphosphate. Chemical Communications, 2018; 54(43): 5454–5457

    Article  CAS  PubMed  Google Scholar 

  84. Li Y H, Wang H, Li J H, Zheng J, Xu X H, Yang R H. Simultaneous intracellular β-D-glucosidase and phosphodiesterase I activities measurements based on a triple-signaling fluorescent probe. Analytical Chemistry, 2011; 83(4): 1268–1274

    Article  CAS  PubMed  Google Scholar 

  85. Fu L, Tian F F, Lai L, Liu Y, Harvey P D, Jiang F L. A ratiometric “two-in-one” fluorescent chemodosimeter for fluoride and hydrogen sulfide. Sensors and Actuators. B, Chemical, 2014, 193: 701–707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91753111, 22074083 and 21927811), the Key Research and Development Program of Shandong Province (Grant No. 2018YFJH0502), and the National Major Scientific and Technological Special Project for Significant New Drugs Development (Grant No. 2017ZX09301030004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, X., Zhang, W. et al. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Front. Chem. Sci. Eng. 16, 4–33 (2022). https://doi.org/10.1007/s11705-021-2041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2041-2

Keywords

Navigation