
A survey on large language model based autonomous agents

Lei WANG, Chen MA*, Xueyang FENG*, Zeyu ZHANG, Hao YANG, Jingsen ZHANG,
Zhiyuan CHEN, Jiakai TANG, Xu CHEN (✉), Yankai LIN (✉),

Wayne Xin ZHAO, Zhewei WEI, Jirong WEN
Gaoling School of Artificial Intelligence, Renmin University of China, Beijing 100872, China

 The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn

Abstract Autonomous agents have long been a research
focus in academic and industry communities. Previous research
often focuses on training agents with limited knowledge within
isolated environments, which diverges significantly from
human learning processes, and makes the agents hard to
achieve human-like decisions. Recently, through the acquisition
of vast amounts of Web knowledge, large language models
(LLMs) have shown potential in human-level intelligence,
leading to a surge in research on LLM-based autonomous
agents. In this paper, we present a comprehensive survey of
these studies, delivering a systematic review of LLM-based
autonomous agents from a holistic perspective. We first discuss
the construction of LLM-based autonomous agents, proposing a
unified framework that encompasses much of previous work.
Then, we present a overview of the diverse applications of
LLM-based autonomous agents in social science, natural
science, and engineering. Finally, we delve into the evaluation
strategies commonly used for LLM-based autonomous agents.
Based on the previous studies, we also present several
challenges and future directions in this field.

Keywords autonomous agent, large language model,
human-level intelligence

 1 Introduction
“An autonomous agent is a system situated within and a part
of an environment that senses that environment and acts on it,
over time, in pursuit of its own agenda and so as to effect what
it senses in the future.”

Franklin and Graesser (1997)

Autonomous agents have long been recognized as a
promising approach to achieving artificial general intelligence
(AGI), which is expected to accomplish tasks through self-
directed planning and actions. In previous studies, the agents
are assumed to act based on simple and heuristic policy
functions, and learned in isolated and restricted environments
[1–6]. Such assumptions significantly differs from the human

learning process, since the human mind is highly complex,
and individuals can learn from a much wider variety of
environments. Because of these gaps, the agents obtained from
the previous studies are usually far from replicating human-
level decision processes, especially in unconstrained, open-
domain settings.

In recent years, large language models (LLMs) have
achieved notable successes, demonstrating significant
potential in attaining human-like intelligence [5–10]. This
capability arises from leveraging comprehensive training
datasets alongside a substantial number of model parameters.
Building upon this capability, there has been a growing
research area that employs LLMs as central controllers to
construct autonomous agents to obtain human-like decision-
making capabilities [11–17].

Comparing with reinforcement learning, LLM-based agents
have more comprehensive internal world knowledge, which
facilitates more informed agent actions even without training
on specific domain data. Additionally, LLM-based agents can
provide natural language interfaces to interact with humans,
which is more flexible and explainable.

Along this direction, researchers have developed numerous
promising models (see Fig. 1 for an overview of this field),
where the key idea is to equip LLMs with crucial human
capabilities like memory and planning to make them behave
like humans and complete various tasks effectively.
Previously, these models were proposed independently, with
limited efforts made to summarize and compare them
holistically. However, we believe a systematic summary on
this rapidly developing field is of great significance to
comprehensively understand it and benefit to inspire future
research.

In this paper, we conduct a comprehensive survey of the
field of LLM-based autonomous agents. Specifically, we
organize our survey based on three aspects including the
construction, application, and evaluation of LLM-based
autonomous agents. For the agent construction, we focus on
two problems, that is, (1) how to design the agent architecture
to better leverage LLMs, and (2) how to inspire and enhance
the agent capability to complete different tasks. Intuitively, the
first problem aims to build the hardware fundamentals for the
agent, while the second problem focus on providing the agent

Received March 5, 2024; accepted March 10, 2024

E-mail: xu.chen@ruc.edu.cn; yankailin@ruc.edu.cn
* These authors contributed equally to this work.

Front. Comput. Sci., 2024, 18(6): 186345
https://doi.org/10.1007/s11704-024-40231-1

REVIEW ARTICLE

https://doi.org/10.1007/s11704-024-40231-1

with software resources. For the first problem, we present a
unified agent framework, which can encompass most of the
previous studies. For the second problem, we provide a
summary on the commonly-used strategies for agents’
capability acquisition. In addition to discussing agent
construction, we also provide an systematic overview of the
applications of LLM-based autonomous agents in social
science, natural science, and engineering. Finally, we delve
into the strategies for evaluating LLM-based autonomous
agents, focusing on both subjective and objective strategies.

In summary, this survey conducts a systematic review and
establishes comprehensive taxonomies for existing studies in
the burgeoning field of LLM-based autonomous agents. Our
focus encompasses three primary areas: construction of
agents, their applications, and methods of evaluation. Drawing
from a wealth of previous studies, we identify various
challenges in this field and discuss potential future directions.
We expect that our survey can provide newcomers of LLM-
based autonomous agents with a comprehensive background
knowledge, and also encourage further groundbreaking
studies.

 2 LLM-based autonomous agent
construction
LLM-based autonomous agents are expected to effectively
perform diverse tasks by leveraging the human-like
capabilities of LLMs. In order to achieve this goal, there are
two significant aspects, that is, (1) which architecture should
be designed to better use LLMs and (2) give the designed
architecture, how to enable the agent to acquire capabilities for
accomplishing specific tasks. Within the context of
architecture design, we contribute a systematic synthesis of
existing research, culminating in a comprehensive unified
framework. As for the second aspect, we summarize the
strategies for agent capability acquisition based on whether
they fine-tune the LLMs. When comparing LLM-based

autonomous agents to traditional machine learning, designing
the agent architecture is analogous to determining the network
structure, while the agent capability acquisition is similar to
learning the network parameters. In the following, we
introduce these two aspects more in detail.

 2.1 Agent architecture design
Recent advancements in LLMs have demonstrated their great
potential to accomplish a wide range of tasks in the form of
question-answering (QA). However, building autonomous
agents is far from QA, since they need to fulfill specific roles
and autonomously perceive and learn from the environment to
evolve themselves like humans. To bridge the gap between
traditional LLMs and autonomous agents, a crucial aspect is to
design rational agent architectures to assist LLMs in
maximizing their capabilities. Along this direction, previous
work has developed a number of modules to enhance LLMs.
In this section, we propose a unified framework to summarize
these modules. In specific, the overall structure of our
framework is illustrated Fig. 2, which is composed of a
profiling module, a memory module, a planning module, and
an action module. The purpose of the profiling module is to
identify the role of the agent. The memory and planning
modules place the agent into a dynamic environment, enabling
it to recall past behaviors and plan future actions. The action
module is responsible for translating the agent’s decisions into
specific outputs. Within these modules, the profiling module
impacts the memory and planning modules, and collectively,
these three modules influence the action module. In the
following, we detail these modules.

 2.1.1 Profiling module
Autonomous agents typically perform tasks by assuming
specific roles, such as coders, teachers and domain experts
[18,19]. The profiling module aims to indicate the profiles of
the agent roles, which are usually written into the prompt to

Fig. 1 Illustration of the growth trend in the field of LLM-based autonomous agents. We present the cumulative number of papers published
from January 2021 to August 2023. We assign different colors to represent various agent categories. For example, a game agent aims to simulate
a game-player, while a tool agent mainly focuses on tool using. For each time period, we provide a curated list of studies with diverse agent
categories

2 Front. Comput. Sci., 2024, 18(6): 186345

influence the LLM behaviors. Agent profiles typically
encompass basic information such as age, gender, and career
[20], as well as psychology information, reflecting the
personalities of the agent, and social information, detailing the
relationships between agents [21]. The choice of information
to profile the agent is largely determined by the specific
application scenarios. For instance, if the application aims to
study human cognitive process, then the psychology
information becomes pivotal. After identifying the types of
profile information, the next important problem is to create
specific profiles for the agents. Existing literature commonly
employs the following three strategies.

Handcrafting method: in this method, agent profiles are
manually specified. For instance, if one would like to design
agents with different personalities, he can use “you are an
outgoing person” or “you are an introverted person” to profile
the agent. The handcrafting method has been leveraged in a lot
of previous work to indicate the agent profiles. For example,
Generative Agent [22] describes the agent by the information
like name, objectives, and relationships with other agents.
MetaGPT [23], ChatDev [18], and Self-collaboration [24]
predefine various roles and their corresponding
responsibilities in software development, manually assigning
distinct profiles to each agent to facilitate collaboration.
PTLLM [25] aims to explore and quantify personality traits
displayed in texts generated by LLMs. This method guides
LLMs in generating diverse responses by manfully defining
various agent characters through the use of personality
assessment tools such as IPIP-NEO [26] and BFI [27]. [28]
studies the toxicity of the LLM output by manually prompting
LLMs with different roles, such as politicians, journalists and
businesspersons. In general, the handcrafting method is very
flexible, since one can assign any profile information to the
agents. However, it can be also labor-intensive, particularly
when dealing with a large number of agents.

LLM-generation method: in this method, agent profiles are
automatically generated based on LLMs. Typically, it begins
by indicating the profile generation rules, elucidating the

composition and attributes of the agent profiles within the
target population. Then, one can optionally specify several
seed agent profiles to serve as few-shot examples. At last,
LLMs are leveraged to generate all the agent profiles. For
example, RecAgent [21] first creates seed profiles for a few
number of agents by manually crafting their backgrounds like
age, gender, personal traits, and movie preferences. Then, it
leverages ChatGPT to generate more agent profiles based on
the seed information. The LLM-generation method can save
significant time when the number of agents is large, but it may
lack precise control over the generated profiles.

Dataset alignment method: in this method, the agent
profiles are obtained from real-world datasets. Typically, one
can first organize the information about real humans in the
datasets into natural language prompts, and then leverage it to
profile the agents. For instance, in [29], the authors assign
roles to GPT-3 based on the demographic backgrounds (such
as race/ethnicity, gender, age, and state of residence) of
participants in the American National Election Studies
(ANES). They subsequently investigate whether GPT-3 can
produce similar results to those of real humans. The dataset
alignment method accurately captures the attributes of the real
population, thereby making the agent behaviors more
meaningful and reflective of real-world scenarios.

Remark. While most of the previous work leverage the above
profile generation strategies independently, we argue that
combining them may yield additional benefits. For example,
in order to predict social developments via agent simulation,
one can leverage real-world datasets to profile a subset of the
agents, thereby accurately reflecting the current social status.
Subsequently, roles that do not exist in the real world but may
emerge in the future can be manually assigned to the other
agents, enabling the prediction of future social development.
Beyond this example, one can also flexibly combine the other
strategies. The profile module serves as the foundation for
agent design, exerting significant influence on the agent
memorization, planning, and action procedures.

Fig. 2 A unified framework for the architecture design of LLM-based autonomous agent

Lei WANG et al. A survey on large language model based autonomous agents 3

 2.1.2 Memory module
The memory module plays a very important role in the agent
architecture design. It stores information perceived from the
environment and leverages the recorded memories to facilitate
future actions. The memory module can help the agent to
accumulate experiences, self-evolve, and behave in a more
consistent, reasonable, and effective manner. This section
provides a comprehensive overview of the memory module,
focusing on its structures, formats, and operations.

Memory structures: LLM-based autonomous agents
usually incorporate principles and mechanisms derived from
cognitive science research on human memory processes.
Human memory follows a general progression from sensory
memory that registers perceptual inputs, to short-term memory
that maintains information transiently, to long-term memory
that consolidates information over extended periods. When
designing the agent memory structures, researchers take
inspiration from these aspects of human memory. In specific,
short-term memory is analogous to the input information
within the context window constrained by the transformer
architecture. Long-term memory resembles the external vector
storage that agents can rapidly query and retrieve from as
needed. In the following, we introduce two commonly used
memory structures based on the short- and long-term
memories.

● Unified memory. This structure only simulates the human
shot-term memory, which is usually realized by in-context
learning, and the memory information is directly written into
the prompts. For example, RLP [30] is a conversation agent,
which maintains internal states for the speaker and listener.
During each round of conversation, these states serve as LLM
prompts, functioning as the agent’s short-term memory.
SayPlan [31] is an embodied agent specifically designed for
task planning. In this agent, the scene graphs and environment
feedback serve as the agent’s short-term memory, guiding its
actions. CALYPSO [32] is an agent designed for the game
Dungeons & Dragons, which can assist Dungeon Masters in
the creation and narration of stories. Its short-term memory is
built upon scene descriptions, monster information, and
previous summaries. DEPS [33] is also a game agent, but it is
developed for Minecraft. The agent initially generates task
plans and then utilizes them to prompt LLMs, which in turn
produce actions to complete the task. These plans can be
deemed as the agent’s short-term memory. In practice,
implementing short-term memory is straightforward and can
enhance an agent’s ability to perceive recent or contextually
sensitive behaviors and observations. However, due to the
limitation of context window of LLMs, it’s hard to put all
memories into prompt, which may degrade the performance of
agents. This method has high requirements on the window
length of LLMs and the ability to handle long contexts.
Therefore, many researchers resort to hybrid memory to
alleviate this question. However, the limited context window
of LLMs restricts incorporating comprehensive memories into
prompts, which can impair agent performance. This challenge
necessitates LLMs with larger context windows and the ability
to handle extended contexts. Consequently, numerous
researchers turn to hybrid memory systems to mitigate this

issue.
● Hybrid memory. This structure explicitly models the

human short-term and long-term memories. The short-term
memory temporarily buffers recent perceptions, while long-
term memory consolidates important information over time.
For instance, Generative Agent [20] employs a hybrid
memory structure to facilitate agent behaviors. The short-term
memory contains the context information about the agent
current situations, while the long-term memory stores the
agent past behaviors and thoughts, which can be retrieved
according to the current events. AgentSims [34] also
implements a hybrid memory architecture. The information
provided in the prompt can be considered as short-term
memory. In order to enhance the storage capacity of memory,
the authors propose a long-term memory system that utilizes a
vector database, facilitating efficient storage and retrieval.
Specifically, the agent’s daily memories are encoded as
embeddings and stored in the vector database. If the agent
needs to recall its previous memories, the long-term memory
system retrieves relevant information using embedding
similarities. This process can improve the consistency of the
agent’s behavior. In GITM [16], the short-term memory stores
the current trajectory, and the long-term memory saves
reference plans summarized from successful prior trajectories.
Long-term memory provides stable knowledge, while short-
term memory allows flexible planning. Reflexion [12] utilizes
a short-term sliding window to capture recent feedback and
incorporates persistent long-term storage to retain condensed
insights. This combination allows for the utilization of both
detailed immediate experiences and high-level abstractions.
SCM [35] selectively activates the most relevant long-term
knowledge to combine with short-term memory, enabling
reasoning over complex contextual dialogues. SimplyRetrieve
[36] utilizes user queries as short-term memory and stores
long-term memory using external knowledge bases. This
design enhances the model accuracy while guaranteeing user
privacy. MemorySandbox [37] implements long-term and
short-term memory by utilizing a 2D canvas to store memory
objects, which can then be accessed throughout various
conversations. Users can create multiple conversations with
different agents on the same canvas, facilitating the sharing of
memory objects through a simple drag-and-drop interface. In
practice, integrating both short-term and long-term memories
can enhance an agent’s ability for long-range reasoning and
accumulation of valuable experiences, which are crucial for
accomplishing tasks in complex environments.

Remark. Careful readers may find that there may also exist
another type of memory structure, that is, only based on the
long-term memory. However, we find that such type of
memory is rarely documented in the literature. Our speculation
is that the agents are always situated in continuous and
dynamic environments, with consecutive actions displaying a
high correlation. Therefore, the capture of short-term memory
is very important and usually cannot be disregarded.

Memory formats: In addition to the memory structure,
another perspective to analyze the memory module is based on
the formats of the memory storage medium, for example,

4 Front. Comput. Sci., 2024, 18(6): 186345

natural language memory or embedding memory. Different
memory formats possess distinct strengths and are suitable for
various applications. In the following, we introduce several
representative memory formats.

● Natural languages. In this format, memory information
such as the agent behaviors and observations are directly
described using raw natural language. This format possesses
several strengths. Firstly, the memory information can be
expressed in a flexible and understandable manner. Moreover,
it retains rich semantic information that can provide
comprehensive signals to guide agent behaviors. In the
previous work, Reflexion [12] stores experiential feedback in
natural language within a sliding window. Voyager [38]
employs natural language descriptions to represent skills
within the Minecraft game, which are directly stored in
memory.

● Embeddings. In this format, memory information is
encoded into embedding vectors, which can enhance the
memory retrieval and reading efficiency. For instance,
MemoryBank [39] encodes each memory segment into an
embedding vector, which creates an indexed corpus for
retrieval. [16] represents reference plans as embeddings to
facilitate matching and reuse. Furthermore, ChatDev [18]
encodes dialogue history into vectors for retrieval.

● Databases. In this format, memory information is stored in
databases, allowing the agent to manipulate memories
efficiently and comprehensively. For example, ChatDB [40]
uses a database as a symbolic memory module. The agent can
utilize SQL statements to precisely add, delete, and revise the
memory information. In DB-GPT [41], the memory module is
constructed based on a database. To more intuitively operate
the memory information, the agents are fine-tuned to
understand and execute SQL queries, enabling them to interact
with databases using natural language directly.

● Structured lists. In this format, memory information is
organized into lists, and the semantic of memory can be
conveyed in an efficient and concise manner. For instance,
GITM [16] stores action lists for sub-goals in a hierarchical
tree structure. The hierarchical structure explicitly captures the
relationships between goals and corresponding plans. RET-
LLM [42] initially converts natural language sentences into
triplet phrases, and subsequently stores them in memory.

Remark. Here we only show several representative memory
formats, but it is important to note that there are many
uncovered ones, such as the programming code used by [38].
Moreover, it should be emphasized that these formats are not
mutually exclusive; many models incorporate multiple formats
to concurrently harness their respective benefits. A notable
example is the memory module of GITM [16], which utilizes
a key-value list structure. In this structure, the keys are
represented by embedding vectors, while the values consist of
raw natural languages. The use of embedding vectors allows
for efficient retrieval of memory records. By utilizing natural
languages, the memory contents become highly
comprehensive, enabling more informed agent actions.

Above, we mainly discuss the internal designs of the
memory module. In the following, we turn our focus to
memory operations, which are used to interact with external

environments.
Memory operations: The memory module plays a critical

role in allowing the agent to acquire, accumulate, and utilize
significant knowledge by interacting with the environment.
The interaction between the agent and the environment is
accomplished through three crucial memory operations:
memory reading, memory writing, and memory reflection. In
the following, we introduce these operations more in detail.

● Memory reading. The objective of memory reading is to
extract meaningful information from memory to enhance the
agent’s actions. For example, using the previously successful
actions to achieve similar goals [16]. The key of memory
reading lies in how to extract valuable information from
history actions. Usually, there three commonly used criteria
for information extraction, that is, the recency, relevance, and
importance [20]. Memories that are more recent, relevant, and
important are more likely to be extracted. Formally, we
conclude the following equation from existing literature for
memory information extraction:

m∗ = arg min
m∈M
αsrec(q,m)+βsrel(q,m)+γsimp(m), (1)

q
M

srec(·) srel(·) simp(·)

m
srel(q,m)

simp

q α β
γ

α = γ = 0
srel

α = β = γ = 1.0

where is the query, for example, the task that the agent
should address or the context in which the agent is situated.
is the set of all memories. , , and are the
scoring functions for measuring the recency, relevance, and
importance of the memory . These scoring functions can be
implemented using various methods, for example,
can be realized based on LSH, ANNOY, HNSW, FAISS, and
so on. It should be noted that only reflects the characters
of the memory itself, thus it is unrelated to the query . , ,
and are balancing parameters. By assigning them with
different values, one can obtain various memory reading
strategies. For example, by setting , many studies
[16,30,38,42] only consider the relevance score for
memory reading. By assigning , [20] equally
weights all the above three metrics to extract information from
memory.

● Memory writing. The purpose of memory writing is to
store information about the perceived environment in memory.
Storing valuable information in memory provides a foundation
for retrieving informative memories in the future, enabling the
agent to act more efficiently and rationally. During the
memory writing process, there are two potential problems that
should be carefully addressed. On one hand, it is crucial to
address how to store information that is similar to existing
memories (i.e., memory duplicated). On the other hand, it is
important to consider how to remove information when the
memory reaches its storage limit (i.e., memory overflow). In
the following, we discuss these problems more in detail.
(1) Memory duplicated. To incorporate similar information,
people have developed various methods for integrating new
and previous records. For instance, in [7], the successful
action sequences related to the same sub-goal are stored in a
list. Once the size of the list reaches N(=5), all the sequences
in it are condensed into a unified plan solution using LLMs.
The original sequences in the memory are replaced with the
newly generated one. Augmented LLM [43] aggregates
duplicate information via count accumulation, avoiding

Lei WANG et al. A survey on large language model based autonomous agents 5

redundant storage. (2) Memory overflow. In order to write
information into the memory when it is full, people design
different methods to delete existing information to continue
the memorizing process. For example, in ChatDB [40],
memories can be explicitly deleted based on user commands.
RET-LLM [42] uses a fixed-size buffer for memory,
overwriting the oldest entries in a first-in-first-out (FIFO)
manner.

● Memory reflection. Memory reflection emulates humans’
ability to witness and evaluate their own cognitive, emotional,
and behavioral processes. When adapted to agents, the
objective is to provide agents with the capability to
independently summarize and infer more abstract, complex
and high-level information. More specifically, in Generative
Agent [20], the agent has the capability to summarize its past
experiences stored in memory into broader and more abstract
insights. To begin with, the agent generates three key
questions based on its recent memories. Then, these questions
are used to query the memory to obtain relevant information.
Building upon the acquired information, the agent generates
five insights, which reflect the agent high-level ideas. For
example, the low-level memories “Klaus Mueller is writing a
research paper”, “Klaus Mueller is engaging with a librarian to
further his research”, and “Klaus Mueller is conversing with
Ayesha Khan about his research” can induce the high-level
insight “Klaus Mueller is dedicated to his research”. In
addition, the reflection process can occur hierarchically,
meaning that the insights can be generated based on existing
insights. In GITM [16], the actions that successfully
accomplish the sub-goals are stored in a list. When the list
contains more than five elements, the agent summarizes them
into a common and abstract pattern and replaces all the
elements. In ExpeL [44], two approaches are introduced for
the agent to acquire reflection. Firstly, the agent compares
successful or failed trajectories within the same task.
Secondly, the agent learns from a collection of successful
trajectories to gain experiences.

A significant distinction between traditional LLMs and the
agents is that the latter must possess the capability to learn and
complete tasks in dynamic environments. If we consider the
memory module as responsible for managing the agents’ past
behaviors, it becomes essential to have another significant
module that can assist the agents in planning their future
actions. In the following, we present an overview of how
researchers design the planning module.

 2.1.3 Planning module
When faced with a complex task, humans tend to deconstruct
it into simpler subtasks and solve them individually. The
planning module aims to empower the agents with such
human capability, which is expected to make the agent behave
more reasonably, powerfully, and reliably. In specific, we
summarize existing studies based on whether the agent can
receive feedback in the planing process, which are detailed as
follows:

Planning without feedback: In this method, the agents do
not receive feedback that can influence its future behaviors
after taking actions. In the following, we present several

representative strategies.
● Single-path reasoning. In this strategy, the final task is

decomposed into several intermediate steps. These steps are
connected in a cascading manner, with each step leading to
only one subsequent step. LLMs follow these steps to achieve
the final goal. Specifically, Chain of Thought (CoT) [45]
proposes inputting reasoning steps for solving complex
problems into the prompt. These steps serve as examples to
inspire LLMs to plan and act in a step-by-step manner. In this
method, the plans are created based on the inspiration from the
examples in the prompts. Zero-shot-CoT [46] enables LLMs
to generate task reasoning processes by prompting them with
trigger sentences like “think step by step”. Unlike CoT, this
method does not incorporate reasoning steps as examples in
the prompts. Re-Prompting [47] involves checking whether
each step meets the necessary prerequisites before generating
a plan. If a step fails to meet the prerequisites, it introduces a
prerequisite error message and prompts the LLM to regenerate
the plan. ReWOO [48] introduces a paradigm of separating
plans from external observations, where the agents first
generate plans and obtain observations independently, and
then combine them together to derive the final results.
HuggingGPT [13] first decomposes the task into many sub-
goals, and then solves each of them based on Huggingface.
Different from CoT and Zero-shot-CoT, which outcome all
the reasoning steps in a one-shot manner, ReWOO and
HuggingGPT produce the results by accessing LLMs multiply
times.

● Multi-path reasoning. In this strategy, the reasoning steps
for generating the final plans are organized into a tree-like
structure. Each intermediate step may have multiple
subsequent steps. This approach is analogous to human
thinking, as individuals may have multiple choices at each
reasoning step. In specific, Self-consistent CoT (CoT-SC) [49]
believes that each complex problem has multiple ways of
thinking to deduce the final answer. Thus, it starts by
employing CoT to generate various reasoning paths and
corresponding answers. Subsequently, the answer with the
highest frequency is chosen as the final output. Tree of
Thoughts (ToT) [50] is designed to generate plans using a
tree-like reasoning structure. In this approach, each node in the
tree represents a “thought,” which corresponds to an
intermediate reasoning step. The selection of these
intermediate steps is based on the evaluation of LLMs. The
final plan is generated using either the breadth-first search
(BFS) or depth-first search (DFS) strategy. Comparing with
CoT-SC, which generates all the planed steps together, ToT
needs to query LLMs for each reasoning step. In RecMind
[51], the authors designed a self-inspiring mechanism, where
the discarded historical information in the planning process is
also leveraged to derive new reasoning steps. In GoT [52], the
authors expand the tree-like reasoning structure in ToT to
graph structures, resulting in more powerful prompting
strategies. In AoT [53], the authors design a novel method to
enhance the reasoning processes of LLMs by incorporating
algorithmic examples into the prompts. Remarkably, this
method only needs to query LLMs for only one or a few
times. In [54], the LLMs are leveraged as zero-shot planners.

6 Front. Comput. Sci., 2024, 18(6): 186345

At each planning step, they first generate multiple possible
next steps, and then determine the final one based on their
distances to admissible actions. [55] further improves [54] by
incorporating examples that are similar to the queries in the
prompts. RAP [56] builds a world model to simulate the
potential benefits of different plans based on Monte Carlo
Tree Search (MCTS), and then, the final plan is generated by
aggregating multiple MCTS iterations. To enhance
comprehension, we provide an illustration comparing the
strategies of single-path and multi-path reasoning in Fig. 3.

● External planner. Despite the demonstrated power of
LLMs in zero-shot planning, effectively generating plans for
domain-specific problems remains highly challenging. To
address this challenge, researchers turn to external planners.
These tools are well-developed and employ efficient search
algorithms to rapidly identify correct, or even optimal, plans.
In specific, LLM+P [57] first transforms the task descriptions
into formal Planning Domain Definition Languages (PDDL),
and then it uses an external planner to deal with the PDDL.
Finally, the generated results are transformed back into natural
language by LLMs. Similarly, LLM-DP [58] utilizes LLMs to
convert the observations, the current world state, and the target
objectives into PDDL. Subsequently, this transformed data is
passed to an external planner, which efficiently determines the
final action sequence. CO-LLM [22] demonstrates that LLMs
is good at generating high-level plans, but struggle with low-
level control. To address this limitation, a heuristically
designed external low-level planner is employed to effectively
execute actions based on high-level plans.

Planning with feedback: In many real-world scenarios, the
agents need to make long-horizon planning to solve complex
tasks. When facing these tasks, the above planning modules
without feedback can be less effective due to the following
reasons: firstly, generating a flawless plan directly from the
beginning is extremely difficult as it needs to consider various
complex preconditions. As a result, simply following the
initial plan often leads to failure. Moreover, the execution of
the plan may be hindered by unpredictable transition
dynamics, rendering the initial plan non-executable.
Simultaneously, when examining how humans tackle complex
tasks, we find that individuals may iteratively make and revise

their plans based on external feedback. To simulate such
human capability, researchers have designed many planning
modules, where the agent can receive feedback after taking
actions. The feedback can be obtained from environments,
humans, and models, which are detailed in the following.

● Environmental feedback. This feedback is obtained from
the objective world or virtual environment. For instance, it
could be the game’s task completion signals or the
observations made after the agent takes an action. In specific,
ReAct [59] proposes constructing prompts using thought-act-
observation triplets. The thought component aims to facilitate
high-level reasoning and planning for guiding agent behaviors.
The act represents a specific action taken by the agent. The
observation corresponds to the outcome of the action, acquired
through external feedback, such as search engine results. The
next thought is influenced by the previous observations, which
makes the generated plans more adaptive to the environment.
Voyager [38] makes plans by incorporating three types of
environment feedback including the intermediate progress of
program execution, the execution error and self-verification
results. These signals can help the agent to make better plans
for the next action. Similar to Voyager, Ghost [16] also
incorporates feedback into the reasoning and action taking
processes. This feedback encompasses the environment states
as well as the success and failure information for each
executed action. SayPlan [31] leverages environmental
feedback derived from a scene graph simulator to validate and
refine its strategic formulations. This simulator is adept at
discerning the outcomes and state transitions subsequent to
agent actions, facilitating SayPlan’s iterative recalibration of
its strategies until a viable plan is ascertained. In DEPS [33],
the authors argue that solely providing information about the
completion of a task is often inadequate for correcting
planning errors. Therefore, they propose informing the agent
about the detail reasons for task failure, allowing them to more
effectively revise their plans. LLM-Planner [60] introduces a
grounded re-planning algorithm that dynamically updates
plans generated by LLMs when encountering object
mismatches and unattainable plans during task completion.
Inner Monologue [61] provides three types of feedback to the
agent after it takes actions: (1) whether the task is successfully

Fig. 3 Comparison between the strategies of single-path and multi-path reasoning. LMZSP is the model proposed in [54]

Lei WANG et al. A survey on large language model based autonomous agents 7

completed, (2) passive scene descriptions, and (3) active scene
descriptions. The former two are generated from the
environments, which makes the agent actions more
reasonable.

● Human feedback. In addition to obtaining feedback from
the environment, directly interacting with humans is also a
very intuitive strategy to enhance the agent planning
capability. The human feedback is a subjective signal. It can
effectively make the agent align with the human values and
preferences, and also help to alleviate the hallucination
problem. In Inner Monologue [61], the agent aims to perform
high-level natural language instructions in a 3D visual
environment. It is given the capability to actively solicit
feedback from humans regarding scene descriptions. Then, the
agent incorporates the human feedback into its prompts,
enabling more informed planning and reasoning. In the above
cases, we can see, different types of feedback can be
combined to enhance the agent planning capability. For
example, Inner Monologue [61] collects both environment and
human feedback to facilitate the agent plans.

● Model feedback. Apart from the aforementioned
environmental and human feedback, which are external
signals, researchers have also investigated the utilization of
internal feedback from the agents themselves. This type of
feedback is usually generated based on pre-trained models. In
specific, [62] proposes a self-refine mechanism. This
mechanism consists of three crucial components: output,
feedback, and refinement. Firstly, the agent generates an
output. Then, it utilizes LLMs to provide feedback on the
output and offer guidance on how to refine it. At last, the
output is improved by the feedback and refinement. This
output-feedback-refinement process iterates until reaching
some desired conditions. SelfCheck [63] allows agents to
examine and evaluate their reasoning steps generated at
various stages. They can then correct any errors by comparing
the outcomes. InterAct [64] uses different language models
(such as ChatGPT and InstructGPT) as auxiliary roles, such as
checkers and sorters, to help the main language model avoid
erroneous and inefficient actions. ChatCoT [65] utilizes model
feedback to improve the quality of its reasoning process. The
model feedback is generated by an evaluation module that
monitors the agent reasoning steps. Reflexion [12] is
developed to enhance the agent’s planning capability through
detailed verbal feedback. In this model, the agent first
produces an action based on its memory, and then, the
evaluator generates feedback by taking the agent trajectory as
input. In contrast to previous studies, where the feedback is
given as a scalar value, this model leverages LLMs to provide
more detailed verbal feedback, which can provide more
comprehensive supports for the agent plans.

Remark. In conclusion, the implementation of planning
module without feedback is relatively straightforward.
However, it is primarily suitable for simple tasks that only
require a small number of reasoning steps. Conversely, the
strategy of planning with feedback needs more careful designs
to handle the feedback. Nevertheless, it is considerably more
powerful and capable of effectively addressing complex tasks
that involve long-range reasoning.

 2.1.4 Action module
The action module is responsible for translating the agent’s
decisions into specific outcomes. This module is located at the
most downstream position and directly interacts with the
environment. It is influenced by the profile, memory, and
planning modules. This section introduces the action module
from four perspectives: (1) Action goal: what are the intended
outcomes of the actions? (2) Action production: how are the
actions generated? (3) Action space: what are the available
actions? (4) Action impact: what are the consequences of the
actions? Among these perspectives, the first two focus on the
aspects preceding the action (“before-action” aspects), the
third focuses on the action itself (“in-action” aspect), and the
fourth emphasizes the impact of the actions (“after-action”
aspect).

Action goal: The agent can perform actions with various
objectives. Here, we present several representative examples:
(1) Task Completion. In this scenario, the agent’s actions are
aimed at accomplishing specific tasks, such as crafting an iron
pickaxe in Minecraft [38] or completing a function in software
development [18]. These actions usually have well-defined
objectives, and each action contributes to the completion of
the final task. Actions aimed at this type of goal are very
common in existing literature. (2) Communication. In this
case, the actions are taken to communicate with the other
agents or real humans for sharing information or
collaboration. For example, the agents in ChatDev [18] may
communicate with each other to collectively accomplish
software development tasks. In Inner Monologue [61], the
agent actively engages in communication with humans and
adjusts its action strategies based on human feedback.
(3) Environment Exploration. In this example, the agent aims
to explore unfamiliar environments to expand its perception
and strike a balance between exploring and exploiting. For
instance, the agent in Voyager [38] may explore unknown
skills in their task completion process, and continually refine
the skill execution code based on environment feedback
through trial and error.

Action production: Different from ordinary LLMs, where
the model input and output are directly associated, the agent
may take actions via different strategies and sources. In the
following, we introduce two types of commonly used action
production strategies. (1) Action via memory recollection. In
this strategy, the action is generated by extracting information
from the agent memory according to the current task. The task
and the extracted memories are used as prompts to trigger the
agent actions. For example, in Generative Agents [20], the
agent maintains a memory stream, and before taking each
action, it retrieves recent, relevant and important information
from the memory steam to guide the agent actions. In GITM
[16], in order to achieve a low-level sub-goal, the agent
queries its memory to determine if there are any successful
experiences related to the task. If similar tasks have been
completed previously, the agent invokes the previously
successful actions to handle the current task directly. In
collaborative agents such as ChatDev [18] and MetaGPT [23],
different agents may communicate with each other. In this
process, the conversation history in a dialog is remembered in

8 Front. Comput. Sci., 2024, 18(6): 186345

the agent memories. Each utterance generated by the agent is
influenced by its memory. (2) Action via plan following. In
this strategy, the agent takes actions following its pre-
generated plans. For instance, in DEPS [33], for a given task,
the agent first makes action plans. If there are no signals
indicating plan failure, the agent will strictly adhere to these
plans. In GITM [16], the agent makes high-level plans by
decomposing the task into many sub-goals. Based on these
plans, the agent takes actions to solve each sub-goal
sequentially to complete the final task.

Action space: Action space refers to the set of possible
actions that can be performed by the agent. In general, we can
roughly divide these actions into two classes: (1) external
tools and (2) internal knowledge of the LLMs. In the
following, we introduce these actions more in detail.

● External tools. While LLMs have been demonstrated to be
effective in accomplishing a large amount of tasks, they may
not work well for the domains which need comprehensive
expert knowledge. In addition, LLMs may also encounter
hallucination problems, which are hard to be resolved by
themselves. To alleviate the above problems, the agents are
empowered with the capability to call external tools for
executing action. In the following, we present several
representative tools which have been exploited in the
literature.

(1) APIs. Leveraging external APIs to complement and
expand action space is a popular paradigm in recent years. For
example, HuggingGPT [13] leverages the models on
HuggingFace to accomplish complex user tasks. [66,67]
propose to automatically generate queries to extract relevant
content from external Web pages when responding to user
request. TPTU [67] interfaces with both Python interpreters
and LaTeX compilers to execute sophisticated computations
such as square roots, factorials and matrix operations. Another
type of APIs is the ones that can be directly invoked by LLMs
based on natural language or code inputs. For instance, Gorilla
[68] is a fine-tuned LLM designed to generate accurate input
arguments for API calls and mitigate the issue of hallucination
during external API invocations. ToolFormer [15] is an LLM-
based tool transformation system that can automatically
convert a given tool into another one with different
functionalities or formats based on natural language
instructions. API-Bank [69] is an LLM-based API
recommendation agent that can automatically search and
generate appropriate API calls for various programming
languages and domains. API-Bank also provides an interactive
interface for users to easily modify and execute the generated
API calls. ToolBench [14] is an LLM-based tool generation
system that can automatically design and implement various
practical tools based on natural language requirements. The
tools generated by ToolBench include calculators, unit
converters, calendars, maps, charts, etc. RestGPT [70]
connects LLMs with RESTful APIs, which follow widely
accepted standards for Web services development, making the
resulting program more compatible with real-world
applications. TaskMatrix.AI [71] connects LLMs with
millions of APIs to support task execution. At its core lies a
multimodal conversational foundational model that interacts

with users, understands their goals and context, and then
produces executable code for particular tasks. All these agents
utilize external APIs as their tools, and provide interactive
interfaces for users to easily modify and execute the generated
or transformed tools.

(2) Databases & Knowledge Bases. Integrating external
database or knowledge base enables agents to obtain specific
domain information for generating more realistic actions. For
example, ChatDB [40] employs SQL statements to query
databases, facilitating actions by the agents in a logical
manner. MRKL [72] and OpenAGI [73] incorporate various
expert systems such as knowledge bases and planners to
access domain-specific information.

(3) External models. Previous studies often utilize external
models to expand the range of possible actions. In comparison
to APIs, external models typically handle more complex tasks.
Each external model may correspond to multiple APIs. For
example, to enhance the text retrieval capability,
MemoryBank [39] incorporates two language models: one is
designed to encode the input text, while the other is
responsible for matching the query statements. ViperGPT [74]
firstly uses Codex, which is implemented based on language
model, to generate Python code from text descriptions, and
then executes the code to complete the given tasks. TPTU [67]
incorporates various LLMs to accomplish a wide range of
language generation tasks such as generating code, producing
lyrics, and more. ChemCrow [75] is an LLM-based chemical
agent designed to perform tasks in organic synthesis, drug
discovery, and material design. It utilizes seventeen expert-
designed models to assist its operations. MM-REACT [76]
integrates various external models, such as VideoBERT for
video summarization, X-decoder for image generation, and
SpeechBERT for audio processing, enhancing its capability in
diverse multimodal scenarios.

● Internal knowledge. In addition to utilizing external tools,
many agents rely solely on the internal knowledge of LLMs to
guide their actions. We now present several crucial
capabilities of LLMs that can support the agent to behave
reasonably and effectively. (1) Planning capability. Previous
work has demonstrated that LLMs can be used as decent
planers to decompose complex task into simpler ones [45].
Such capability of LLMs can be even triggered without
incorporating examples in the prompts [46]. Based on the
planning capability of LLMs, DEPS [33] develops a Minecraft
agent, which can solve complex task via sub-goal
decomposition. Similar agents like GITM [16] and Voyager
[38] also heavily rely on the planning capability of LLMs to
successfully complete different tasks. (2) Conversation
capability. LLMs can usually generate high-quality
conversations. This capability enables the agent to behave
more like humans. In the previous work, many agents take
actions based on the strong conversation capability of LLMs.
For example, in ChatDev [18], different agents can discuss the
software developing process, and even can make reflections
on their own behaviors. In RLP [30], the agent can
communicate with the listeners based on their potential
feedback on the agent’s utterance. (3) Common sense
understanding capability. Another important capability of

Lei WANG et al. A survey on large language model based autonomous agents 9

LLMs is that they can well comprehend human common
sense. Based on this capability, many agents can simulate
human daily life and make human-like decisions. For
example, in Generative Agent, the agent can accurately
understand its current state, the surrounding environment, and
summarize high-level ideas based on basic observations.
Without the common sense understanding capability of LLMs,
these behaviors cannot be reliably simulated. Similar
conclusions may also apply to RecAgent [21] and S3 [77],
where the agents aim to simulate user recommendation and
social behaviors.

Action impact: Action impact refers to the consequences of
the action. In fact, the action impact can encompass numerous
instances, but for brevity, we only provide a few examples.
(1) Changing environments. Agents can directly alter
environment states by actions, such as moving their positions,
collecting items, and constructing buildings. For instance, in
GITM [16] and Voyager [38], the environments are changed
by the actions of the agents in their task completion process.
For example, if the agent mines three woods, then they may
disappear in the environments. (2) Altering internal states.
Actions taken by the agent can also change the agent itself,
including updating memories, forming new plans, acquiring
novel knowledge, and more. For example, in Generative
Agents [20], memory streams are updated after performing
actions within the system. SayCan [78] enables agents to take
actions to update understandings of the environment.
(3) Triggering new actions. In the task completion process,
one agent action can be triggered by another one. For
example, Voyager [38] constructs buildings once it has
gathered all the necessary resources.

 2.2 Agent capability acquisition
In the above sections, we mainly focus on how to design the
agent architecture to better inspire the capability of LLMs to
make it qualified for accomplishing tasks like humans. The
architecture functions as the “hardware” of the agent.
However, relying solely on the hardware is insufficient for
achieving effective task performance. This is because the
agent may lack the necessary task-specific capabilities, skills
and experiences, which can be regarded as “software”
resources. In order to equip the agent with these resources,
various strategies have been devised. Generally, we categorize
these strategies into two classes based on whether they require
fine-tuning of the LLMs. In the following, we introduce each
of them more in detail.

Capability acquisition with fine-tuning: A straightforward
method to enhance the agent capability for task completion is
fine-tuning the agent based on task-dependent datasets.
Generally, the datasets can be constructed based on human
annotation, LLM generation or collected from real-world
applications. In the following, we introduce these methods
more in detail.

● Fine-tuning with human annotated datasets. To fine-tune
the agent, utilizing human annotated datasets is a versatile
approach that can be employed in various application
scenarios. In this approach, researchers first design annotation
tasks and then recruit workers to complete them. For example,

in CoH [79], the authors aim to align LLMs with human
values and preferences. Different from the other models,
where the human feedback is leveraged in a simple and
symbolic manner, this method converts the human feedback
into detailed comparison information in the form of natural
languages. The LLMs are directly fine-tuned based on these
natural language datasets. In RET-LLM [42], in order to better
convert natural languages into structured memory information,
the authors fine-tune LLMs based on a human constructed
dataset, where each sample is a “triplet-natural language” pair.
In WebShop [80], the authors collect 1.18 million real-world
products form amazon.com, and put them onto a simulated e-
commerce website, which contains several carefully designed
human shopping scenarios. Based on this website, the authors
recruit 13 workers to collect a real-human behavior dataset. At
last, three methods based on heuristic rules, imitation learning
and reinforcement learning are trained based on this dataset.
Although the authors do not fine-tune LLM-based agents, we
believe that the dataset proposed in this paper holds immense
potential to enhance the capabilities of agents in the field of
Web shopping. In EduChat [81], the authors aim to enhance
the educational functions of LLMs, such as open-domain
question answering, essay assessment, Socratic teaching, and
emotional support. They fine-tune LLMs based on human
annotated datasets that cover various educational scenarios
and tasks. These datasets are manually evaluated and curated
by psychology experts and frontline teachers. SWIFTSAGE
[82] is an agent influenced by the dual-process theory of
human cognition [83], which is effective for solving complex
interactive reasoning tasks. In this agent, the SWIFT module
constitutes a compact encoder-decoder language model, which
is fine-tuned using human-annotated datasets.

● Fine-tuning with LLM generated datasets. Building
human annotated dataset needs to recruit people, which can be
costly, especially when one needs to annotate a large amount
of samples. Considering that LLMs can achieve human-like
capabilities in a wide range of tasks, a natural idea is using
LLMs to accomplish the annotation task. While the datasets
produced from this method can be not as perfect as the human
annotated ones, it is much cheaper, and can be leveraged to
generate more samples. For example, in ToolBench [14], to
enhance the tool-using capability of open-source LLMs, the
authors collect 16,464 real-world APIs spanning 49 categories
from the RapidAPI Hub. They used these APIs to prompt
ChatGPT to generate diverse instructions, covering both
single-tool and multi-tool scenarios. Based on the obtained
dataset, the authors fine-tune LLaMA [9], and obtain
significant performance improvement in terms of tool using.
In [84], to empower the agent with social capability, the
authors design a sandbox, and deploy multiple agents to
interact with each other. Given a social question, the central
agent first generates initial responses. Then, it shares the
responses to its nearby agents for collecting their feedback.
Based on the feedback as well as its detailed explanations, the
central agent revise its initial responses to make them more
consistent with social norms. In this process, the authors
collect a large amount of agent social interaction data, which
is then leveraged to fine-tune the LLMs.

10 Front. Comput. Sci., 2024, 18(6): 186345

● Fine-tuning with real-world datasets. In addition to
building datasets based on human or LLM annotation, directly
using real-world datasets to fine-tune the agent is also a
common strategy. For example, in MIND2WEB [85], the
authors collect a large amount of real-world datasets to
enhance the agent capability in the Web domain. In contrast to
prior studies, the dataset presented in this paper encompasses
diverse tasks, real-world scenarios, and comprehensive user
interaction patterns. Specifically, the authors collect over
2,000 open-ended tasks from 137 real-world websites
spanning 31 domains. Using this dataset, the authors fine-tune
LLMs to enhance their performance on Web-related tasks,
including movie discovery and ticket booking, among others.
In SQL-PALM [86], researchers fine-tune PaLM-2 based on a
cross-domain large-scale text-to-SQL dataset called Spider.
The obtained model can achieve significant performance
improvement on text-to-SQL tasks.

Capability acquisition without fine-tuning: In the era of
tradition machine learning, the model capability is mainly
acquired by learning from datasets, where the knowledge is
encoded into the model parameters. In the era of LLMs, the
model capability can be acquired either by training/fine-tuning
the model parameters or designing delicate prompts (i.e.,
prompt engineer). In prompt engineer, one needs to write
valuable information into the prompts to enhance the model
capability or unleash existing LLM capabilities. In the era of
agents, the model capability can be acquired based on three
strategies: (1) model fine-tuning, (2) prompt engineer, and
(3) designing proper agent evolution mechanisms (we called it
as mechanism engineering). Mechanism engineering is a
broad concept that involves developing specialized modules,
introducing novel working rules, and other strategies to
enhance agent capabilities. For clearly understanding such
transitions on the strategy of model capability acquisition, we
illustrate them in Fig. 4. In the following, we introduce
prompting engineering and mechanism engineering for agent
capability acquisition.

● Prompting engineering. Due to the strong language
comprehension capabilities, people can directly interact with
LLMs using natural languages. This introduces a novel
strategy for enhancing agent capabilities, that is, one can
describe the desired capability using natural language and then

use it as prompts to influence LLM actions. For example, in
CoT [45], in order to empower the agent with the capability
for complex task reasoning, the authors present the
intermediate reasoning steps as few-shot examples in the
prompt. Similar techniques are also used in CoT-SC [49] and
ToT [50]. In SocialAGI [30], in order to enhance the agent
self-awareness capability in conversation, the authors prompt
LLMs with the agent beliefs about the mental states of the
listeners and itself, which makes the generated utterance more
engaging and adaptive. In addition, the authors also
incorporate the target mental states of the listeners, which
enables the agents to make more strategic plans. Retroformer
[87] presents a retrospective model that enables the agent to
generate reflections on its past failures. The reflections are
integrated into the prompt of LLMs to guide the agent’s future
actions. Additionally, this model utilizes reinforcement
learning to iteratively improve the retrospective model,
thereby refining the LLM prompt.

● Mechanism engineering. Unlike model fine-tuning and
prompt engineering, mechanism engineering is a unique
strategy to enhance agent capability. In the following, we
present several representative methods of mechanism
engineering.

(1) Trial-and-error. In this method, the agent first performs
an action, and subsequently, a pre-defined critic is invoked to
judge the action. If the action is deemed unsatisfactory, then
the agent reacts by incorporating the critic’s feedback. In RAH
[88], the agent serves as a user assistant in recommender
systems. One of the agent’s crucial roles is to simulate human
behavior and generate responses on behalf of the user. To
fulfill this objective, the agent first generates a predicted
response and then compares it with the real human feedback.
If the predicted response and the real human feedback differ,
the critic generates failure information, which is subsequently
incorporated into the agent’s next action. In DEPS [33], the
agent first designs a plan to accomplish a given task. In the
plan execution process, if an action fails, the explainer
generates specific details explaining the cause of the failure.
This information is then incorporated by the agent to redesign
the plan. In RoCo [89], the agent first proposes a sub-task plan
and a path of 3D waypoints for each robot in a multi-robot
collaboration task. The plan and waypoints are then validated

Fig. 4 Illustration of transitions in strategies for acquiring model capabilities

Lei WANG et al. A survey on large language model based autonomous agents 11

by a set of environment checks, such as collision detection and
inverse kinematics. If any of the checks fail, the feedback is
appended to each agent’s prompt and another round of dialog
begins. The agents use LLMs to discuss and improve their
plan and waypoints until they pass all validations. In PREFER
[90], the agent first evaluates its performance on a subset of
data. If it fails to solve certain examples, LLMs are leveraged
to generate feedback information reflecting on the reasons of
the failure. Based on this feedback, the agent improves itself
by iteratively refining its actions.

(2) Crowd-sourcing. In [91], the authors design a debating
mechanism that leverages the wisdom of crowds to enhance
agent capabilities. To begin with, different agents provide
separate responses to a given question. If their responses are
not consistent, they will be prompted to incorporate the
solutions from other agents and provide an updated response.
This iterative process continues until reaching a final
consensus answer. In this method, the capability of each agent
is enhanced by understanding and incorporating the other
agents’ opinions.

(3) Experience accumulation. In GITM [16], the agent does
not know how to solve a task in the beginning. Then, it makes
explorations, and once it has successfully accomplished a task,
the actions used in this task are stored into the agent memory.
In the future, if the agent encounters a similar task, then the
relevant memories are extracted to complete the current task.
In this process, the improved agent capability comes from the
specially designed memory accumulation and utilization
mechanisms. In Voyager [38], the authors equip the agent
with a skill library, and each skill in the library is represented
by executable codes. In the agent-environment interaction
process, the codes for each skill will be iteratively refined
according to the environment feedback and the agent self-
verification results. After a period of execution, the agent can
successfully complete different tasks efficiently by accessing
the skill library. In AppAgent [92], the agent is designed to
interact with apps in a manner akin to human users, learning
through both autonomous exploration and observation of
human demonstrations. Throughout this process, it constructs
a knowledge base, which serves as a reference for performing
intricate tasks across various applications on a mobile phone.
In MemPrompt [93], the users are requested to provide
feedback in natural language regarding the problem-solving
intentions of the agent, and this feedback is stored in memory.
When the agent encounters similar tasks, it attempts to retrieve
related memories to generate more suitable responses.

(4) Self-driven evolution. In LMA3 [94], the agent can
autonomously set goals for itself, and gradually improve its
capability by exploring the environment and receiving
feedback from a reward function. Following this mechanism,
the agent can acquire knowledge and develop capabilities
according to its own preferences. In SALLM-MS [95], by
integrating advanced large language models like GPT-4 into a
multi-agent system, agents can adapt and perform complex
tasks, showcasing advanced communication capabilities,
thereby realizing self-driven evolution in their interactions
with the environment. In CLMTWA [96], by using a large
language model as a teacher and a weaker language model as a

student, the teacher can generate and communicate natural
language explanations to improve the student’s reasoning
skills via theory of mind. The teacher can also personalize its
explanations for the student and intervene only when
necessary, based on the expected utility of intervention. In
NLSOM [97], different agents communicate and collaborate
through natural language to solve tasks that a single agent
cannot solve. This can be seen as a form of self-driven
learning, utilizing the exchange of information and knowledge
between multiple agents. However, unlike other models such
as LMA3, SALLM-MS, and CLMTWA, NLSOM allows for
dynamic adjustment of agent roles, tasks, and relationships
based on the task requirements and feedback from other agents
or the environment.

Remark. Upon comparing the aforementioned strategies for
agent capability acquisition, we can find that the fine-tuning
method improves the agent capability by adjusting model
parameters, which can incorporate a large amount of task-
specific knowledge, but is only suitable for open-source
LLMs. The method without fine-tuning usually enhances the
agent capability based on delicate prompting strategies or
mechanism engineering. They can be used for both open- and
closed-source LLMs. However, due to the limitation of the
input context window of LLMs, they cannot incorporate too
much task information. In addition, the designing spaces of
the prompts and mechanisms are extremely large, which
makes it not easy to find optimal solutions.

In the above sections, we have detailed the construction of
LLM-based agents, where we focus on two aspects including
the architecture design and capability acquisition. We present
the correspondence between existing work and the above
taxonomy in Table 1. It should be noted that, for the sake of
integrity, we have also incorporated several studies, which do
not explicitly mention LLM-based agents but are highly
related to this area.

 3 LLM-based autonomous agent
application
Owing to the strong language comprehension, complex task
reasoning, and common sense understanding capabilities,
LLM-based autonomous agents have shown significant
potential to influence multiple domains. This section provides
a succinct summary of previous studies, categorizing them
according to their applications in three distinct areas: social
science, natural science, and engineering (see the left part of
Fig. 5 for a global overview).

 3.1 Social science
Social science is one of the branches of science, devoted to the
study of societies and the relationships among individuals
within those societies. LLM-based autonomous agents can
promote this domain by leveraging their impressive human-
like understanding, thinking and task solving capabilities. In
the following, we discuss several key areas that can be
affected by LLM-based autonomous agents.

Psychology: For the domain of psychology, LLM-based
agents can be leveraged for conducting simulation
experiments, providing mental health support and so on

12 Front. Comput. Sci., 2024, 18(6): 186345

[102–105]. For example, in [102], the authors assign LLMs
with different profiles, and let them complete psychology
experiments. From the results, the authors find that LLMs are
capable of generating results that align with those from studies

involving human participants. Additionally, it was observed
that larger models tend to deliver more accurate simulation
results compared to their smaller counterparts. An interesting
discovery is that, in many experiments, models like ChatGPT

Table 1 For the profile module, we use ①, ②, and ③ to represent the handcrafting method, LLM-generation method, and dataset alignment method,
respectively. For the memory module, we focus on the implementation strategies for memory operation and memory structure. For memory operation, we use
① and ② to indicate that the model only has read/write operations and has read/write/reflection operations, respectively. For memory structure, we use ① and
② to represent unified and hybrid memories, respectively. For the planning module, we use ① and ② to represent planning w/o feedback and w/ feedback,
respectively. For the action module, we use ① and ② to represent that the model does not use tools and use tools, respectively. For the agent capability
acquisition (CA) strategy, we use ① and ② to represent the methods with and without fine-tuning, respectively. “−” indicates that the corresponding content is
not explicitly discussed in the paper

Model Profile
Memory

Planning Action CA Time
Operation Structure

WebGPT [66] − − − − ② ① 12/2021
SayCan [78] − − − ① ① ② 04/2022
MRKL [72] − − − ① ② − 05/2022
Inner Monologue [61] − − − ② ① ② 07/2022
Social Simulacra [98] ② − − − ① − 08/2022
ReAct [59] − − − ② ② ① 10/2022
MALLM [43] − ① ② − ① − 01/2023
DEPS [33] − − − ② ① ② 02/2023
Toolformer [15] − − − ① ② ① 02/2023
Reflexion [12] − ② ② ② ① ② 03/2023
CAMEL [99] ① ② − − ② ① − 03/2023
API-Bank [69] − − − ② ② ② 04/2023
ViperGPT [74] − − − − ② − 03/2023
HuggingGPT [13] − − ① ① ② − 03/2023
Generative Agents [20] ① ② ② ② ① − 04/2023
LLM+P [57] − − − ① ① − 04/2023
ChemCrow [75] − − − ② ② − 04/2023
OpenAGI [73] − − − ② ② ① 04/2023
AutoGPT [100] − ① ② ② ② ② 04/2023
SCM [35] − ② ② − ① − 04/2023
Socially Alignment [84] − ① ② − ① ① 05/2023
GITM [16] − ② ② ② ① ② 05/2023
Voyager [38] − ② ② ② ① ② 05/2023
Introspective Tips [101] − − − ② ① ② 05/2023
RET-LLM [42] − ① ② − ① ① 05/2023
ChatDB [40] − ① ② ② ② − 06/2023
S 3 [77] ③ ② ② − ① − 07/2023
ChatDev [18] ① ② ② ② ① ② 07/2023
ToolLLM [14] − − − ② ② ① 07/2023
MemoryBank [39] − ② ② − ① − 07/2023
MetaGPT [23] ① ② ② ② ② − 08/2023

Fig. 5 The applications (left) and evaluation strategies (right) of LLM-based agents

Lei WANG et al. A survey on large language model based autonomous agents 13

and GPT-4 can provide too perfect estimates (called “hyper-
accuracy distortion”), which may influence the downstream
applications. In [104], the authors systematically analyze the
effectiveness of LLM-based conversation agents for mental
well-being support. They collect 120 posts from Reddit, and
find that such agents can help users cope with anxieties, social
isolation and depression on demand. At the same time, they
also find that the agents may produce harmful contents
sometimes.

Political science and economy: LLM-based agents can also
be utilized to study political science and economy
[29,105,106]. In [29], LLM-based agents are utilized for
ideology detection and predicting voting patterns. In [105], the
authors focuses on understanding the discourse structure and
persuasive elements of political speech through the assistance
of LLM-based agents. In [106], LLM-based agents are
provided with specific traits such as talents, preferences, and
personalities to explore human economic behaviors in
simulated scenarios.

Social simulation: Previously, conducting experiments with
human societies is often expensive, unethical, or even
infeasible. With the ever prospering of LLMs, many people
explore to build virtual environment with LLM-based agents
to simulate social phenomena, such as the propagation of
harmful information, and so on [20,34,77,79,107–110]. For
example, Social Simulacra [79] simulates an online social
community and explores the potential of utilizing agent-based
simulations to aid decision-makers to improve community
regulations. [107,108] investigates the potential impacts of
different behavioral characteristics of LLM-based agents in
social networks. Generative Agents [20] and AgentSims [34]
construct multiple agents in a virtual town to simulate the
human daily life. SocialAI School [109] employs LLM-based
agents to simulate and investigate the fundamental social
cognitive skills during the course of child development. S3

[77] builds a social network simulator, focusing on the
propagation of information, emotion and attitude. CGMI [111]
is a framework for multi-agent simulation. CGMI maintains
the personality of the agents through a tree structure and
constructs a cognitive model. The authors simulated a
classroom scenario using CGMI.

Jurisprudence: LLM-based agents can serve as aids in
legal decision-making processes, facilitating more informed
judgements [112,113]. Blind Judgement [113] employs
several language models to simulate the decision-making
processes of multiple judges. It gathers diverse opinions and
consolidates the outcomes through a voting mechanism.
ChatLaw [112] is a prominent Chinese legal model based on
LLM. It adeptly supports both database and keyword search
strategies, specifically designed to mitigate the hallucination
issue prevalent in such models. In addition, this model also
employs self-attention mechanism to enhance the LLM’s
capability via mitigating the impact of reference inaccuracies.

Research assistant: Beyond their application in specialized
domains, LLM-based agents are increasingly adopted as
versatile assistants in the broad field of social science research
[105,114]. In [105], LLM-based agents offer multifaceted
assistance, ranging from generating concise article abstracts

and extracting pivotal keywords to crafting detailed scripts for
studies, showcasing their ability to enrich and streamline the
research process. Meanwhile, in [114], LLM-based agents
serve as a writing assistant, demonstrating their capability to
identify novel research inquiries for social scientists, thereby
opening new avenues for exploration and innovation in the
field. These examples highlight the potential of LLM-based
agents in enhancing the efficiency, creativity, and breadth of
social science research.

 3.2 Natural science
Natural science is one of the branches of science concerned
with the description, understanding and prediction of natural
phenomena, based on empirical evidence from observation
and experimentation. With the ever prospering of LLMs, the
application of LLM-based agents in natural sciences becomes
more and more popular. In the following, we present many
representative areas, where LLM-based agents can play
important roles.

Documentation and data management: Natural scientific
research often involves the collection, organization, and
synthesis of substantial amounts of literature, which requires a
significant dedication of time and human resources. LLM-
based agents have shown strong capabilities on language
understanding and employing tools such as the internet and
databases for text processing. These capabilities empower the
agent to excel in tasks related to documentation and data
management [75,115,116]. In [115], the agent can efficiently
query and utilize internet information to complete tasks such
as question answering and experiment planning. ChatMOF
[116] utilizes LLMs to extract important information from text
descriptions written by humans. It then formulates a plan to
apply relevant tools for predicting the properties and structures
of metal-organic frameworks. ChemCrow [75] utilizes
chemistry-related databases to both validate the precision of
compound representations and identify potentially dangerous
substances. This functionality enhances the reliability and
comprehensiveness of scientific inquiries by ensuring the
accuracy of the data involved.

Experiment assistant: LLM-based agents have the ability
to independently conduct experiments, making them valuable
tools for supporting scientists in their research projects
[75,115]. For instance, [115] introduces an innovative agent
system that utilizes LLMs for automating the design, planning,
and execution of scientific experiments. This system, when
provided with the experimental objectives as input, accesses
the Internet and retrieves relevant documents to gather the
necessary information. It subsequently utilizes Python code to
conduct essential calculations and carry out the following
experiments. ChemCrow [75] incorporates 17 carefully
developed tools that are specifically designed to assist
researchers in their chemical research. Once the input
objectives are received, ChemCrow provides valuable
recommendations for experimental procedures, while also
emphasizing any potential safety risks associated with the
proposed experiments.

Natural science education: LLM-based agents can
communicate with humans fluently, often being utilized to

14 Front. Comput. Sci., 2024, 18(6): 186345

develop agent-based educational tools [115,117–119]. For
example, [115] develops agent-based education systems to
facilitate students learning of experimental design,
methodologies, and analysis. The objective of these systems is
to enhance students’ critical thinking and problem-solving
skills, while also fostering a deeper comprehension of
scientific principles. Math Agents [117] can assist researchers
in exploring, discovering, solving and proving mathematical
problems. Additionally, it can communicate with humans and
aids them in understanding and using mathematics. [118]
utilize the capabilities of CodeX [119] to automatically solve
and explain university-level mathematical problems, which
can be used as education tools to teach students and
researchers. CodeHelp [120] is an education agent for
programming. It offers many useful features, such as setting
course-specific keywords, monitoring student queries, and
providing feedback to the system. EduChat [81] is an LLM-
based agent designed specifically for the education domain. It
provides personalized, equitable, and empathetic educational
support to teachers, students, and parents through dialogue.
FreeText [121] is an agent that utilizes LLMs to automatically
assess students’ responses to open-ended questions and offer
feedback.

 3.3 Engineering
LLM-based autonomous agents have shown great potential in
assisting and enhancing engineering research and applications.
In this section, we review and summarize the applications of
LLM-based agents in several major engineering domains.

Civil engineering: In civil engineering, LLM-based agents
can be used to design and optimize complex structures such as
buildings, bridges, dams, roads. [122] proposes an interactive
framework where human architects and agents collaborate to
construct structures in a 3D simulation environment. The
interactive agent can understand natural language instructions,
place blocks, detect confusion, seek clarification, and
incorporate human feedback, showing the potential for
human-AI collaboration in engineering design.

Computer science & software engineering: In the field
of computer science and software engineering, LLM-
based agents offer potential for automating coding,
testing, debugging, and documentation generation
[14,18,23,24,123–125]. ChatDev [18] proposes an end-to-end
framework, where multiple agent roles communicate and
collaborate through natural language conversations to
complete the software development life cycle. This framework
demonstrates efficient and cost-effective generation of
executable software systems. ToolBench [14] can be used for
tasks such as code auto-completion and code recommendation.
MetaGPT [23] abstracts multiple roles, such as product
managers, architects, project managers, and engineers, to
supervise code generation process and enhance the quality of
the final output code. This enables low-cost software
development. [24] presents a self-collaboration framework for
code generation using LLMs. In this framework, multiple
LLMs are assumed to be distinct “experts” for specific sub-
tasks. They collaborate and interact according to specified
instructions, forming a virtual team that facilitates each other’s

work. Ultimately, the virtual team collaboratively addresses
code generation tasks without requiring human intervention.
LLIFT [126] employs LLMs to assist in conducting static
analysis, specifically for identifying potential code
vulnerabilities. This approach effectively manages the trade-
off between accuracy and scalability. ChatEDA [127] is an
agent developed for electronic design automation (EDA) to
streamline the design process by integrating task planning,
script generation, and execution. CodeHelp [120] is an agent
designed to assist students and developers in debugging and
testing their code. Its features include providing detailed
explanations of error messages, suggesting potential fixes, and
ensuring the accuracy of the code. PENTESTGPT [128] is a
penetration testing tool based on LLMs, which can effectively
identify common vulnerabilities, and interpret source code to
develop exploits. DB-GPT [41] utilizes the capabilities of
LLMs to systematically assess potential root causes of
anomalies in databases. Through the implementation of a tree
of thought approach, DB-GPT enables LLMs to backtrack to
previous steps in case the current step proves unsuccessful,
thus enhancing the accuracy of the diagnosis process.

Industrial automation: In the field of industrial
automation, LLM-based agents can be used to achieve
intelligent planning and control of production processes. [129]
proposes a novel framework that integrates large language
models (LLMs) with digital twin systems to accommodate
flexible production needs. The framework leverages prompt
engineering techniques to create LLM agents that can adapt to
specific tasks based on the information provided by digital
twins. These agents can coordinate a series of atomic
functionalities and skills to complete production tasks at
different levels within the automation pyramid. This research
demonstrates the potential of integrating LLMs into industrial
automation systems, providing innovative solutions for more
agile, flexible and adaptive production processes. IELLM
[130] showcases a case study on LLMs’ role in the oil and gas
industry, covering applications like rock physics, acoustic
reflectometry, and coiled tubing control.

Robotics & embodied artificial intelligence: Recent works
have developed more efficient reinforcement learning agents
for robotics and embodied artificial intelligence
[16,38,78,131–138]. The focus is on enhancing autonomous
agents’ abilities for planning, reasoning, and collaboration in
embodied environments. In specific, [135] proposes a unified
agent system for embodied reasoning and task planning. In
this system, the authors design high-level commands to enable
improved planning while propose low-level controllers to
translate commands into actions. Additionally, one can
leverage dialogues to gather information [136] to accelerate
the optimization process. [137,138] employ autonomous
agents for embodied decision-making and exploration. To
overcome the physical constraints, the agents can generate
executable plans and accomplish long-term tasks by
leveraging multiple skills. In terms of control policies, SayCan
[78] focuses on investigating a wide range of manipulation
and navigation skills utilizing a mobile manipulator robot.
Taking inspiration from typical tasks encountered in a kitchen
environment, it presents a comprehensive set of 551 skills that

Lei WANG et al. A survey on large language model based autonomous agents 15

cover seven skill families and 17 objects. These skills
encompass various actions such as picking, placing, pouring,
grasping, and manipulating objects, among others. TidyBot
[139] is an embodied agent designed to personalize household
cleanup tasks. It can learn users’ preferences on object
placement and manipulation methods through textual
examples.

To promote the application of LLM-based autonomous
agents, researchers have also introduced many open-source
libraries, based on which the developers can quickly
implement and evaluate agents according to their customized
requirements [19,108,124,140–153]. For example, LangChain
[145] is an open-source framework that automates coding,
testing, debugging, and documentation generation tasks. By
integrating language models with data sources and facilitating
interaction with the environment, LangChain enables efficient
and cost-effective software development through natural
language communication and collaboration among multiple
agent roles. Based on LangChain, XLang [143] comes with a
comprehensive set of tools, a complete user interface, and
support three different agent scenarios, namely data
processing, plugin usage, and Web agent. AutoGPT [100] is
an agent that is fully automated. It sets one or more goals,
breaks them down into corresponding tasks, and cycles
through the tasks until the goal is achieved. WorkGPT [146] is
an agent framework similar to AutoGPT and LangChain. By
providing it with an instruction and a set of APIs, it engages in
back-and-forth conversations with AI until the instruction is
completed. GPT-Engineer [125], SmolModels [123] and
DemoGPT [124] are open-source projects that focus on
automating code generation through prompts to complete
development tasks. AGiXT [142] is a dynamic AI automation
platform designed to orchestrate efficient AI command
management and task execution across many providers.
AgentVerse [19] is a versatile framework that facilitates
researchers in creating customized LLM-based agent
simulations efficiently. GPT Researcher [148] is an
experimental application that leverages large language models
to efficiently develop research questions, trigger Web crawls

to gather information, summarize sources, and aggregate
summaries. BMTools [149] is an open-source repository that
extends LLMs with tools and provides a platform for
community-driven tool building and sharing. It supports
various types of tools, enables simultaneous task execution
using multiple tools, and offers a simple interface for loading
plugins via URLs, fostering easy development and
contribution to the BMTools ecosystem.

Remark. Utilization of LLM-based agents in supporting above
applications may also entail risks and challenges. On one
hand, LLMs themselves may be susceptible to illusions and
other issues, occasionally providing erroneous answers,
leading to incorrect conclusions, experimental failures, or even
posing risks to human safety in hazardous experiments.
Therefore, during experimentation, users must possess the
necessary expertise and knowledge to exercise appropriate
caution. On the other hand, LLM-based agents could
potentially be exploited for malicious purposes, such as the
development of chemical weapons, necessitating the
implementation of security measures, such as human
alignment, to ensure responsible and ethical use.

In summary, in the above sections, we introduce the typical
applications of LLM-based autonomous agents in three
important domains. To facilitate a clearer understanding, we
have summarized the relationship between previous studies
and their respective applications in Table 2.

 4 LLM-based autonomous agent
evaluation
Similar to LLMs themselves, evaluating the effectiveness of
LLM-based autonomous agents is a challenging task. This
section outlines two prevalent approaches to evaluation:
subjective and objective methods. For a comprehensive
overview, please refer to the right portion of Fig. 5.

 4.1 Subjective evaluation
Subjective evaluation measures the agent capabilities based on
human judgements [20,22,29,79,158]. It is suitable for the
scenarios where there are no evaluation datasets or it is very

Table 2 Representative applications of LLM-based autonomous agents

Domain Work

Social
Science

Psychology TE [102], Akata et al. [103], Ziems et al. [105], Ma et al. [104]
Political Science and

Economy Out of One [29], Horton [106], Ziems et al. [105]

Social Simulation Social Simulacra [79], Generative Agents [20], SocialAI School [109], AgentSims [34],
S3 [77], Williams et al. [110], Li et al. [107], Chao et al. [108]

Jurisprudence ChatLaw [112], Blind Judgement [113]
Research Assistant Ziems et al. [105], Bail et al. [114]

Natural
Science

Documentation and
Data Management ChemCrow [75], Boiko et al. [115]

Experiment Assistant ChemCrow [75], Boiko et al. [115], Grossmann et al. [154]
Natural Science

Education ChemCrow [75], CodeHelp [120], Boiko et al. [115], MathAgent [117], Drori et al. [118]

Engineering

CS & SE RestGPT [70], Self-collaboration [24], SQL-PALM [86], RAH [88], DB-GPT [41], RecMind [51], ChatEDA [127],
InteRecAgent [155], PentestGPT [128], CodeHelp [120], SmolModels [123], DemoGPT [124], GPTEngineer [125]

Industrial
Automation GPT4IA [129], IELLM [130], TaskMatrix.AI [71]

Robotics &
Embodied AI

ProAgent [156], LLM4RL [131], PET [132], REMEMBERER [133], DEPS [33], Unified Agent [134], SayCan [78],
LMMWM [157], TidyBot [139], RoCo [89], SayPlan [31]

16 Front. Comput. Sci., 2024, 18(6): 186345

hard to design quantitative metrics, for example, evaluating
the agent’s intelligence or user-friendliness. In the following,
we present two commonly used strategies for subjective
evaluation.

Human annotation: This evaluation method involves
human evaluators directly scoring or ranking the outputs
generated by various agents [22,29,102]. For example, in [20],
the authors employ many annotators, and ask them to provide
feedback on five key questions that directly associated with
the agent capability. Similarly, [159] assess model
effectiveness by having human participants rate the models on
harmlessness, honesty, helpfulness, engagement, and
unbiasedness, subsequently comparing these scores across
different models. In [79], annotators are asked to determine
whether the specifically designed models can significantly
enhance the development of rules within online communities.

Turing test: This evaluation strategy necessitates that
human evaluators differentiate between outputs produced by
agents and those created by humans. If, in a given task, the
evaluators cannot separate the agent and human results, it
demonstrates that the agent can achieve human-like
performance on this task. For instance, researchers in [29]
conduct experiments on free-form Partisan text, and the
human evaluators are asked to guess whether the responses are
from human or LLM-based agent. In [20], the human
evaluators are required to identify whether the behaviors are
generated from the agents or real-humans. In EmotionBench
[160], human annotations are collected to compare the
emotional states expressed by LLM software and human
participants across various scenarios. This comparison serves
as a benchmark for evaluating the emotional intelligence of
the LLM software, illustrating a nuanced approach to
understanding agent capabilities in mimicking human-like
performance and emotional expression.

Remark. LLM-based agents are usually designed to serve
humans. Thus, subjective agent evaluation plays a critical role,
since it reflects human criterion. However, this strategy also
faces issues such as high costs, inefficiency, and population
bias. To address these issues, a growing number of researchers
are investigating the use of LLMs themselves as
intermediaries for carrying out these subjective assessments.
For example, in ChemCrow [75], researchers assess the
experimental results using GPT. They consider both the
completion of tasks and the accuracy of the underlying
processes. Similarly, ChatEval [161] introduces a novel
approach by employing multiple agents to critique and assess
the results generated by various candidate models in a
structured debate format. This innovative use of LLMs for
evaluation purposes holds promise for enhancing both the
credibility and applicability of subjective assessments in the
future. As LLM technology continues to evolve, it is
anticipated that these methods will become increasingly
reliable and find broader applications, thereby overcoming the
current limitations of direct human evaluation.

 4.2 Objective evaluation
Objective evaluation refers to assessing the capabilities of
LLM-based autonomous agents using quantitative metrics that

can be computed, compared and tracked over time. In contrast
to subjective evaluation, objective metrics aim to provide
concrete, measurable insights into the agent performance. For
conducting objective evaluation, there are three important
aspects, that is, the evaluation metrics, protocols and
benchmarks. In the following, we introduce these aspects
more in detail.

Metrics: In order to objectively evaluate the effectiveness of
the agents, designing proper metrics is significant, which may
influence the evaluation accuracy and comprehensiveness.
Ideal evaluation metrics should precisely reflect the quality of
the agents, and align with the human feelings when using
them in real-world scenarios. In existing work, we can
conclude the following representative evaluation metrics.
(1) Task success metrics: These metrics measure how well an
agent can complete tasks and achieve goals. Common metrics
include success rate [12,22,57,59], reward/score [22,59,122],
coverage [16], and accuracy [18,40,102]. Higher values
indicate greater task completion ability. (2) Human similarity
metrics: These metrics quantify the degree to which the agent
behaviors closely resembles that of humans. Typical examples
include trajectory/location accuracy [38,162], dialogue
similarities [79,102], and mimicry of human responses
[29,102]. Higher similarity suggests better human simulation
performance. (3) Efficiency metrics: In contrast to the
aforementioned metrics used to evaluate the agent
effectiveness, these metrics aim to assess the efficiency of
agent. Commonly considered metrics encompass the length of
planning [57], the cost associated with development [18], the
speed of inference [16,38], and number of clarification
dialogues [122].

Protocols: In addition to the evaluation metrics, another
important aspect for objective evaluation is how to leverage
these metrics. In the previous work, we can identify the
following commonly used evaluation protocols: (1) Real-
world simulation: In this method, the agents are evaluated
within immersive environments like games and interactive
simulators. The agents are required to perform tasks
autonomously, and then metrics like task success rate and
human similarity are leveraged to evaluate the capability of
the agents based on their trajectories and completed objectives
[16,22,33,38,59,80,122,162,163,164]. This method is expected
to evaluate the agents’ practical capabilities in real-world
scenarios. (2) Social evaluation: This method utilizes metrics
to assess social intelligence based on the agent interactions in
simulated societies. Various approaches have been adopted,
such as collaborative tasks to evaluate teamwork skills,
debates to analyze argumentative reasoning, and human
studies to measure social aptitude [34,98,102,165,166]. These
approaches analyze qualities such as coherence, theory of
mind, and social IQ to assess agents’ capabilities in areas
including cooperation, communication, empathy, and
mimicking human social behavior. By subjecting agents to
complex interactive settings, social evaluation provides
valuable insights into agents’ higher-level social cognition.
(3) Multi-task evaluation: In this method, people use a set
of diverse tasks from different domains to evaluate the
agent, which can effectively measure the agent

Lei WANG et al. A survey on large language model based autonomous agents 17

generalization capability in open-domain environments
[29,80,153,163,165,166,167]. (4) Software testing: In this
method, researchers evaluate the agents by letting them
conduct tasks such as software testing tasks, such as
generating test cases, reproducing bugs, debugging code, and
interacting with developers and external tools
[166,168,169,170]. Then, one can use metrics like test
coverage and bug detection rate to measure the effectiveness
of LLM-based agents.

Benchmarks: Given the metrics and protocols, a crucial
remaining aspect is the selection of an appropriate benchmark
for conducting the evaluation. In the past, people have used
various benchmarks in their experiments. For example, many
researchers use simulation environments like ALFWorld [59],
IGLU [122], and Minecraft [16,33,38] as benchmarks to
evaluate the agent capabilities. Tachikuma [164] is a
benchmark that leverages TRPG game logs to evaluate LLMs’
ability to understand and infer complex interactions with
multiple characters and novel objects. AgentBench [167]
provides a comprehensive framework for evaluating LLMs as
autonomous agents across diverse environments. It represents
the first systematic assessment of LLMs as agents on real-
world challenges across diverse domains. SocKET [165] is a
comprehensive benchmark for evaluating the social
capabilities of LLMs across 58 tasks covering five categories
of social information such as humor and sarcasm, emotions
and feelings, and credibility. AgentSims [34] is a versatile
framework for evaluating LLM-based agents, where one can
flexibly design the agent planning, memory and action
strategies, and measure the effectiveness of different agent
modules in interactive environments. ToolBench [149] is an
open-source project that aims to support the development of
powerful LLMs with general tool-use capability. It provides
an open platform for training, serving, and evaluating LLMs
based on tool learning. WebShop [80] develops a benchmark
for evaluating LLM-based agents in terms of their capabilities
for product search and retrieval. The benchmark is constructed
using a collection of 1.18 million real-world items. Mobile-
Env [163] is an extendable interactive platform which can be
used to evaluate the multi-step interaction capabilities of
LLM-based agents. WebArena [171] offers a comprehensive
website environment that spans multiple domains. Its purpose
is to evaluate agents in an end-to-end fashion and determine
the accuracy of their completed tasks. GentBench [172] is a
benchmark designed to evaluate the agent capabilities,
including their reasoning, safety, and efficiency, when
utilizing tools to complete complex tasks. RocoBench [89] is a
benchmark with six tasks evaluating multi-agent collaboration
across diverse scenarios, emphasizing communication and
coordination strategies to assess adaptability and
generalization in cooperative robotics. EmotionBench [160]
evaluates the emotion appraisal ability of LLMs, i.e., how
their feelings change when presented with specific situations.
It collects over 400 situations that elicit eight negative
emotions and measures the emotional states of LLMs and
human subjects using self-report scales. PEB [128] is a
benchmark tailored for assessing LLM-based agents in
penetration testing scenarios, comprising 13 diverse targets

from leading platforms. It offers a structured evaluation across
varying difficulty levels, reflecting real-world challenges for
agents. ClemBench [173] contains five Dialogue Games to
assess LLMs’ ability as a player. E2E [174] is an end-to-end
benchmark for testing the accuracy and usefulness of chatbots.

Remark. Objective evaluation facilitates the quantitative
analysis of capabilities in LLM-based agents through a variety
of metrics. While current techniques can not perfectly measure
all types of agent capabilities, objective evaluation provides
essential insights that complement subjective assessment.
Continued advancements in benchmarks and methodologies
for objective evaluation will enhance the development and
understanding of LLM-based autonomous agents further.

In the above sections, we introduce both subjective and
objective strategies for LLM-based autonomous agents
evaluation. The evaluation of the agents play significant roles
in this domain. However, both subjective and objective
evaluation have their own strengths and weakness. Maybe, in
practice, they should be combined to comprehensively
evaluate the agents. We summarize the correspondence
between the previous work and these evaluation strategies in
Table 3.

 5 Related surveys
With the vigorous development of large language models, a
variety of comprehensive surveys have emerged, providing
detailed insights into various aspects. [176] extensively
introduces the background, main findings, and mainstream
technologies of LLMs, encompassing a vast array of existing
works. On the other hand, [177] primarily focus on the
applications of LLMs in various downstream tasks and the
challenges associated with their deployment. Aligning LLMs
with human intelligence is an active area of research to
address concerns such as biases and illusions. [178] have
compiled existing techniques for human alignment, including
data collection and model training methodologies. Reasoning
is a crucial aspect of intelligence, influencing decision-
making, problem-solving, and other cognitive abilities. [179]
presents the current state of research on LLMs’ reasoning
abilities, exploring approaches to improve and evaluate their
reasoning skills. [180] propose that language models can be
enhanced with reasoning capabilities and the ability to utilize
tools, termed Augmented Language Models (ALMs). They
conduct a comprehensive review of the latest advancements in
ALMs. As the utilization of large-scale models becomes more
prevalent, evaluating their performance is increasingly critical.
[181] shed light on evaluating LLMs, addressing what to
evaluate, where to evaluate, and how to assess their
performance in downstream tasks and societal impact. [182]
also discusses the capabilities and limitations of LLMs in
various downstream tasks. The aforementioned research
encompasses various aspects of large models, including
training, application, and evaluation. However, prior to this
paper, no work has specifically focused on the rapidly
emerging and highly promising field of LLM-based Agents. In
this study, we have compiled 100 relevant works on LLM-
based Agents, covering their construction, applications, and
evaluation processes.

18 Front. Comput. Sci., 2024, 18(6): 186345

 6 Challenges
While previous work on LLM-based autonomous agent has
obtained many remarkable successes, this field is still at its
initial stage, and there are several significant challenges that
need to be addressed in its development. In the following, we
present many representative challenges.

 6.1 Role-playing capability
Different from traditional LLMs, autonomous agent usually
has to play as specific roles (e.g., program coder, researcher,
and chemist) for accomplishing different tasks. Thus, the
capability of the agent for role-playing is very important.
Although LLMs can effectively simulate many common roles
such as movie reviewers, there are still various roles and
aspects that they struggle to capture accurately. To begin with,
LLMs are usually trained based on web-corpus, thus for the
roles which are seldom discussed on the Web or the newly
emerging roles, LLMs may not simulate them well. In
addition, previous research [30] has shown that existing LLMs
may not well model the human cognitive psychology
characters, leading to the lack of self-awareness in
conversation scenarios. Potential solution to these problems
may include fine-tuning LLMs or carefully designing the
agent prompts/architectures [183]. For example, one can

firstly collect real-human data for uncommon roles or
psychology characters, and then leverage it to fine-tune LLMs.
However, how to ensure that fine-tuned model still perform
well for the common roles may pose further challenges.
Beyond fine-tuning, one can also design tailored agent
prompts/architectures to enhance the capability of LLM on
role-playing. However, finding the optimal prompts/
architectures is not easy, since their designing spaces are too
large.

 6.2 Generalized human alignment
Human alignment has been discussed a lot for traditional
LLMs. In the field of LLM-based autonomous agent,
especially when the agents are leveraged for simulation, we
believe this concept should be discussed more in depth. In
order to better serve human-beings, traditional LLMs are
usually fine-tuned to be aligned with correct human values, for
example, the agent should not plan to make a bomb for
avenging society. However, when the agents are leveraged for
real-world simulation, an ideal simulator should be able to
honestly depict diverse human traits, including the ones with
incorrect values. Actually, simulating the human negative
aspects can be even more important, since an important goal
of simulation is to discover and solve problems, and without

✓
Table 3 For subjective evaluation, we use ① and ② to represent human annotation and the Turing test, respectively. For objective evaluation, we use ①, ②,
③, and ④ to represent environment simulation, social evaluation, multi-task evaluation, and software testing, respectively. “ ” indicates that the evaluations
are based on benchmarks

Model Subjective Objective Benchmark Time
WebShop [80] − ① ③ ✓ 07/2022
Social Simulacra [98] ① ② − 08/2022
TE [102] − ② − 08/2022
LIBRO [168] − ④ − 09/2022
ReAct [59] − ① ✓ 10/2022
Out of One, Many [29] ② ② ③ − 02/2023
DEPS [33] − ① ✓ 02/2023
Jalil et al. [169] − ④ − 02/2023
Reflexion [12] − ① ③ − 03/2023
IGLU [122] − ① ✓ 04/2023
Generative Agents [20] ① ② − − 04/2023
ToolBench [149] − ③ ✓ 04/2023
GITM [16] − ① ✓ 05/2023
Two-Failures [162] − ③ − 05/2023
Voyager [38] − ① ✓ 05/2023
SocKET [165] − ② ③ ✓ 05/2023
MobileEnv [163] − ① ③ ✓ 05/2023
Clembench [173] − ① ③ ✓ 05/2023
Dialop [175] − ② ✓ 06/2023
Feldt et al. [170] − ④ − 06/2023
CO-LLM [22] ① ① − 07/2023
Tachikuma [164] ① ① ✓ 07/2023
WebArena [171] − ① ✓ 07/2023
RocoBench [89] − ① ② ③ − 07/2023
AgentSims [34] − ② − 08/2023
AgentBench [167] − ③ ✓ 08/2023
BOLAA [166] − ① ③ ④ ✓ 08/2023
Gentopia [172] − ③ ✓ 08/2023
EmotionBench [160] ① − ✓ 08/2023
PTB [128] − ④ − 08/2023

Lei WANG et al. A survey on large language model based autonomous agents 19

negative aspects means no problem to be solved. For example,
to simulate the real-world society, we may have to allow the
agent to plan for making a bomb, and observe how it will act
to implement the plan as well as the influence of its behaviors.
Based on these observations, people can make better actions to
stop similar behaviors in real-world society. Inspired by the
above case, maybe an important problem for agent-based
simulation is how to conduct generalized human alignment,
that is, for different purposes and applications, the agent
should be able to align with diverse human values. However,
existing powerful LLMs including ChatGPT and GPT-4 are
mostly aligned with unified human values. Thus, an
interesting direction is how to “realign” these models by
designing proper prompting strategies.

 6.3 Prompt robustness
To ensure rational behavior in agents, it’s a common practice
for designers to embed supplementary modules, such as
memory and planning modules, into LLMs. However, the
inclusion of these modules necessitates the development of
more complex prompts in order to facilitate consistent
operation and effective communication. Previous research
[184,185] has highlighted the lack of robustness in prompts
for LLMs, as even minor alterations can yield substantially
different outcomes. This issue becomes more pronounced
when constructing autonomous agents, as they encompass not
a single prompt but a prompt framework that considers all
modules, wherein the prompt for one module has the potential
to influence others. Moreover, the prompt frameworks can
vary significantly across different LLMs. The development of
a unified and resilient prompt framework applicable across
diverse LLMs remains a critical and unresolved challenge.
There are two potential solutions to the aforementioned
problems: (1) manually crafting the essential prompt elements
through trial and error, or (2) automatically generating
prompts using GPT.

 6.4 Hallucination
Hallucination poses a fundamental challenge for LLMs,
characterized by the models’ tendency to produce false
information with a high level of confidence. This challenge is
not limited to LLMs alone but is also a significant concern in
the domain of autonomous agents. For instance, in [186], it
was observed that when confronted with simplistic
instructions during code generation tasks, the agent may
exhibit hallucinatory behavior. Hallucination can lead to
serious consequences such as incorrect or misleading code,
security risks, and ethical issues [186]. To mitigate this issue,
incorporating human correction feedback directly into the
iterative process of human-agent interaction presents a viable
approach [23]. More discussions on the hallucination problem
can be seen in [176].

 6.5 Knowledge boundary
A pivotal application of LLM-based autonomous agents lies in
simulating diverse real-world human behaviors [20]. The
study of human simulation has a long history, and the recent
surge in interest can be attributed to the remarkable
advancements made by LLMs, which have demonstrated

significant capabilities in simulating human behavior.
However, it is important to recognize that the power of LLMs
may not always be advantageous. Specifically, an ideal
simulation should accurately replicate human knowledge. In
this context, LLMs may display overwhelming capabilities,
being trained on a vast corpus of Web knowledge that far
exceeds what an average individual might know. The immense
capabilities of LLMs can significantly impact the effectiveness
of simulations. For instance, when attempting to simulate user
selection behaviors for various movies, it is crucial to ensure
that LLMs assume a position of having no prior knowledge of
these movies. However, there is a possibility that LLMs have
already acquired information about these movies. Without
implementing appropriate strategies, LLMs may make
decisions based on their extensive knowledge, even though
real-world users would not have access to the contents of these
movies beforehand. Based on the above example, we may
conclude that for building believable agent simulation
environment, an important problem is how to constrain the
utilization of user-unknown knowledge of LLM.

 6.6 Efficiency
Due to their autoregressive architecture, LLMs typically have
slow inference speeds. However, the agent may need to query
LLMs for each action multiple times, such as extracting
information from memory, make plans before taking actions
and so on. Consequently, the efficiency of agent actions is
greatly affected by the speed of LLM inference.

 7 Conclusion
In this survey, we systematically summarize existing research
in the field of LLM-based autonomous agents. We present and
review these studies from three aspects including the
construction, application, and evaluation of the agents. For
each of these aspects, we provide a detailed taxonomy to draw
connections among the existing research, summarizing the
major techniques and their development histories. In addition
to reviewing the previous work, we also propose several
challenges in this field, which are expected to guide potential
future directions.

 Acknowledgements This work was supported in part by the National
Natural Science Foundation of China (Grant No. 62102420), the Beijing
Outstanding Young Scientist Program (No. BJJWZYJH012019100020098),
Intelligent Social Governance Platform, Major Innovation & Planning
Interdisciplinary Platform for the “Double-First Class” Initiative, Renmin
University of China, Public Computing Cloud, Renmin University of China,
fund for building world-class universities (disciplines) of Renmin University
of China, Intelligent Social Governance Platform.

 Competing interests The authors declare that they have no competing
interests or financial conflicts to disclose.

 Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or

20 Front. Comput. Sci., 2024, 18(6): 186345

exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

To view a copy of this licence, visit creativecommons.org/licenses/by/4.0/.

References
 Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M
G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G, Petersen S,
Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D,
Legg S, Hassabis D. Human-level control through deep reinforcement
learning. Nature, 2015, 518(7540): 529–533

1.

 Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D,
Wierstra D. Continuous control with deep reinforcement learning.
2019, arXiv preprint arXiv: 1509.02971

2.

 Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal
policy optimization algorithms. 2017, arXiv preprint arXiv:
1707.06347

3.

 Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: off-policy
maximum entropy deep reinforcement learning with a stochastic actor.
In: Proceedings of the 35th International Conference on Machine
Learning. 2018, 1861−1870

4.

 Brown T B, Mann B, Ryder N, Subbiah M, Kaplan J D, Dhariwal P,
Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-
Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D M,
Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess
B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei
D. Language models are few-shot learners. In: Proceedings of the 34th
Conference on Neural Information Processing Systems. 2020,
1877−1901

5.

 Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language
models are unsupervised multitask learners. OpenAI Blog, 2019, 1(8):
9

6.

 OpenAI. GPT-4 technical report. 2024, arXiv preprint arXiv:
2303.08774

7.

 Anthropic. Model card and evaluations for Claude models. See
Files.anthropic.com/production/images/Model-Card-Claude-2, 2023

8.

 Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M A, Lacroix T,
Rozière B, Goyal N, Hambro E, Azhar F, Rodriguez A, Joulin A,
Grave E, Lample G. LLaMA: open and efficient foundation language
models. 2023, arXiv preprint arXiv: 2302.13971

9.

 Touvron H, Martin L, Stone K, Albert P, Almahairi A, et al. Llama 2:
open foundation and fine-tuned chat models. 2023, arXiv preprint
arXiv: 2307.09288

10.

 Chen X, Li S, Li H, Jiang S, Qi Y, Song L. Generative adversarial user
model for reinforcement learning based recommendation system. In:
Proceedings of the 36th International Conference on Machine
Learning. 2019, 1052−1061

11.

 Shinn N, Cassano F, Gopinath A, rasimhan K, Yao S. Reflexion:
language agents with verbal reinforcement learning. NaIn: Proceedings
of the 37th Conference on Neural Information Processing Systems.
2023, 36

12.

 Shen Y, Song K, Tan X, Li D, Lu W, Zhuang Y. HuggingGPT:
solving AI tasks with chatGPT and its friends in hugging face. In:
Proceedings of the 37th Conference on Neural Information Processing
Systems. 2023, 36

13.

 Qin Y, Liang S, Ye Y, Zhu K, Yan L, Lu Y, Lin Y, Cong X, Tang X,
Qian B, Zhao S, Hong L, Tian R, Xie R, Zhou J, Gerstein M, Li D, Liu
Z, Sun M. ToolLLM: facilitating large language models to master
16000+ real-world APIs. 2023, arXiv preprint arXiv: 2307.16789

14.

 Schick T, Dwivedi-Yu J, Dessì R, Raileanu R, Lomeli M, Hambro E,
Zettlemoyer L, Cancedda N, Scialom T. Toolformer: language models
can teach themselves to use tools. In: Proceedings of the 37th
Conference on Neural Information Processing Systems. 2023, 36

15.

 Zhu X, Chen Y, Tian H, Tao C, Su W, Yang C, Huang G, Li B, Lu L,16.

Wang X, Qiao Y, Zhang Z, Dai J. Ghost in the minecraft: generally
capable agents for open-world environments via large language models
with text-based knowledge and memory. 2023, arXiv preprint arXiv:
2305.17144
 Sclar M, Kumar S, West P, Suhr A, Choi Y, Tsvetkov Y. Minding
language models’ (lack of) theory of mind: a plug-and-play multi-
character belief tracker. In: Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics. 2023, 13960–13980

17.

 Qian C, Cong X, Liu W, Yang C, Chen W, Su Y, Dang Y, Li J, Xu J,
Li S, Liu Z, Sun M. Communicative agents for software development.
2023, arXiv preprint arXiv: 2307.07924

18.

 Chen W, Su Y, Zuo J, Yang C, Yuan C, Chan C, Yu H, Lu Y, Hung Y,
Qian C, Qin Y, Cong X, Xie R, Liu Z, Sun M, Zhou, J. Agentverse:
Facilitating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848 .

19.

 Park J S, O’Brien J, Cai C J, Morris M R, Liang P, Bernstein M S.
Generative agents: interactive simulacra of human behavior. In:
Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology. 2023, 2

20.

 Zhang H, Du W, Shan J, Zhou Q, Du Y, Tenenbaum J B, Shu T, Gan
C. Building cooperative embodied agents modularly with large
language models. 2024, arXiv preprint arXiv: 2307.02485

21.

 Hong S, Zhuge M, Chen J, Zheng X, Cheng Y, Zhang C, Wang J,
Wang Z, Yau S K S, Lin Z, Zhou L, Ran C, Xiao L, Wu C,
Schmidhuber J. MetaGPT: meta programming for a multi-agent
collaborative framework. 2023, arXiv preprint arXiv: 2308.00352

22.

 Dong Y, Jiang X, Jin Z, Li G. Self-collaboration code generation via
chatGPT. 2023, arXiv preprint arXiv: 2304.07590

23.

 Serapio-García G, Safdari M, Crepy C, Sun L, Fitz S, Romero P,
Abdulhai M, Faust A, Matarić M. Personality traits in large language
models. 2023, arXiv preprint arXiv: 2307.00184

24.

 Johnson J A. Measuring thirty facets of the five factor model with a
120-item public domain inventory: development of the IPIP-NEO-120.
Journal of Research in Personality, 2014, 51: 78–89

25.

 John O P, Donahue E M, Kentle R L. Big five inventory. Journal of
personality and social psychology, 1991.

26.

 Deshpande A, Murahari V, Rajpurohit T, Kalyan A, Narasimhan K.
Toxicity in chatGPT: analyzing persona-assigned language models. In:
Proceedings of Findings of the Association for Computational
Linguistics. 2023, 1236–1270

27.

 Wang L, Zhang J, Yang H, Chen Z, Tang J, Zhang Z, Chen X, Lin Y,
Song R, Zhao W X, Xu J, Dou Z, Wang J, Wen J R. User behavior
simulation with large language model based agents. 2024, arXiv
preprint arXiv: 2306.02552

28.

 Argyle L P, Busby E C, Fulda N, Gubler J R, Rytting C, Wingate D.
Out of one, many: using language models to simulate human samples.
Political Analysis, 2023, 31(3): 337–351

29.

 Fischer K A. Reflective linguistic programming (RLP): a stepping
stone in socially-aware AGI (socialAGI). 2023, arXiv preprint arXiv:
2305.12647

30.

 Rana K, Haviland J, Garg S, Abou-Chakra J, Reid I, Suenderhauf N.
SayPlan: grounding large language models using 3D scene graphs for
scalable robot task planning. In: Proceedings of the 7th Conference on
Robot Learning. 2023, 23−72

31.

 Zhu A, Martin L, Head A, Callison-Burch C. CALYPSO: LLMs as
dungeon master’s assistants. In: Proceedings of the 19th AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment. 2023, 380−390

32.

 Wang Z, Cai S, Chen G, Liu A, Ma X, Liang Y. Describe, explain,
plan and select: interactive planning with large language models
enables open-world multi-task agents. 2023, arXiv preprint arXiv:
2302.01560

33.

 Lin J, Zhao H, Zhang A, Wu Y, Ping H, Chen Q. AgentSims: an open-
source sandbox for large language model evaluation. 2023, arXiv

34.

Lei WANG et al. A survey on large language model based autonomous agents 21

http://creativecommons.org/licenses/by/4.0/

preprint arXiv: 2308.04026
 Wang B, Liang X, Yang J, Huang H, Wu S, Wu P, Lu L, Ma Z, Li Z.
Enhancing large language model with self-controlled memory
framework. 2024, arXiv preprint arXiv: 2304.13343

35.

 Ng Y, Miyashita D, Hoshi Y, Morioka Y, Torii O, Kodama T, Deguchi
J. SimplyRetrieve: a private and lightweight retrieval-centric
generative AI tool. 2023, arXiv preprint arXiv: 2308.03983

36.

 Huang Z, Gutierrez S, Kamana H, Macneil S. Memory sandbox:
transparent and interactive memory management for conversational
agents. In: Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology. 2023, 97

37.

 Wang G, Xie Y, Jiang Y, Mandlekar A, Xiao C, Zhu Y, Fan L,
Anandkumar A. Voyager: an open-ended embodied agent with large
language models. 2023, arXiv preprint arXiv: 2305.16291

38.

 Zhong W, Guo L, Gao Q, Ye H, Wang Y. MemoryBank: enhancing
large language models with long-term memory. 2023, arXiv preprint
arXiv: 2305.10250

39.

 Hu C, Fu J, Du C, Luo S, Zhao J, Zhao H. ChatDB: augmenting LLMs
with databases as their symbolic memory. 2023, arXiv preprint arXiv:
2306.03901

40.

 Zhou X, Li G, Liu Z. LLM as DBA. 2023, arXiv preprint arXiv:
2308.05481

41.

 Modarressi A, Imani A, Fayyaz M, Schütze H. RET-LLM: towards a
general read-write memory for large language models. 2023, arXiv
preprint arXiv: 2305.14322

42.

 Schuurmans D. Memory augmented large language models are
computationally universal. 2023, arXiv preprint arXiv: 2301.04589

43.

 Zhao A, Huang D, Xu Q, Lin M, Liu Y J, Huang G. Expel: LLM
agents are experiential learners. 2023, arXiv preprint arXiv:
2308.10144

44.

 Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E H,
Le Q V, Zhou D. Chain-of-thought prompting elicits reasoning in large
language models. In: Proceedings of the 36th Conference on Neural
Information Processing Systems. 2022, 24824−24837

45.

 Kojima T, Gu S S, Reid M, Matsuo Y, Iwasawa Y. Large language
models are zero-shot reasoners. In: Proceedings of the 36th Conference
on Neural Information Processing Systems. 2022, 22199−22213

46.

 Raman S S, Cohen V, Rosen E, Idrees I, Paulius D, Tellex S. Planning
with large language models via corrective re-prompting. In:
Proceedings of Foundation Models for Decision Making Workshop at
Neural Information Processing Systems. 2022

47.

 Xu B, Peng Z, Lei B, Mukherjee S, Liu Y, Xu D. ReWOO: decoupling
reasoning from observations for efficient augmented language models.
2023, arXiv preprint arXiv: 2305.18323

48.

 Wang X, Wei J, Schuurmans D, Le Q V, Chi E H, Narang S,
Chowdhery A, Zhou D. Self-consistency improves chain of thought
reasoning in language models. In: Proceedings of the 11th
International Conference on Learning Representations. 2023

49.

 Yao S, Yu D, Zhao J, Shafran I, Griffiths T L, Cao Y, Narasimhan K.
Tree of thoughts: deliberate problem solving with large language
models. In: Proceedings of the 37th Conference on Neural Information
Processing Systems. 2023, 36

50.

 Wang Y, Jiang Z, Chen Z, Yang F, Zhou Y, Cho E, Fan X, Huang X,
Lu Y, Yang Y. RecMind: Large language model powered agent for
recommendation. 2023, arXiv preprint arXiv: 2308.14296

51.

 Besta M, Blach N, Kubicek A, Gerstenberger R, Podstawski M,
Gianinazzi L, Gajda J, Lehmann T, Niewiadomski H, Nyczyk P,
Hoefler T. Graph of thoughts: solving elaborate problems with large
language models. 2024, arXiv preprint arXiv: 2308.09687

52.

 Sel B, Al-Tawaha A, Khattar V, Jia R, Jin M. Algorithm of thoughts:
enhancing exploration of ideas in large language models. 2023, arXiv
preprint arXiv: 2308.10379

53.

 Huang W, Abbeel P, Pathak D, Mordatch I. Language models as zero-
shot planners: extracting actionable knowledge for embodied agents.

54.

In: Proceedings of the 39th International Conference on Machine
Learning. 2022, 9118−9147
 Gramopadhye M, Szafir D. Generating executable action plans with
environmentally-aware language models. In: Proceedings of 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2023, 3568−3575

55.

 Hao S, Gu Y, Ma H, Hong J, Wang Z, Wang D, Hu Z. Reasoning with
language model is planning with world model. In: Proceedings of 2023
Conference on Empirical Methods in Natural Language Processing.
2023, 8154–8173

56.

 Liu B, Jiang Y, Zhang X, Liu Q, Zhang S, Biswas J, Stone P. LLM+P:
empowering large language models with optimal planning proficiency.
2023, arXiv preprint arXiv: 2304.11477

57.

 Dagan G, Keller F, Lascarides A. Dynamic planning with a LLM.
2023, arXiv preprint arXiv: 2308.06391

58.

 Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K R, Cao Y.
ReAct: synergizing reasoning and acting in language models. In:
Proceedings of the 11th International Conference on Learning
Representations. 2023

59.

 Song C H, Sadler B M, Wu J, Chao W L, Washington C, Su Y. LLM-
planner: few-shot grounded planning for embodied agents with large
language models. In: Proceedings of 2023 IEEE/CVF International
Conference on Computer Vision. 2023, 2986−2997

60.

 Huang W, Xia F, Xiao T, Chan H, Liang J, Florence P, Zeng A,
Tompson J, Mordatch I, Chebotar Y, Sermanet P, Jackson T, Brown
N, Luu L, Levine S, Hausman K, Ichter B. Inner monologue:
embodied reasoning through planning with language models. In:
Proceedings of the 6th Conference on Robot Learning, 2023,
1769−1782

61.

 Madaan A, Tandon N, Gupta P, Hallinan S, Gao L, Wiegreffe S, Alon
U, Dziri N, Prabhumoye S, Yang Y, Gupta S, Majumder B P,
Hermann K, Welleck S, Yazdanbakhsh A, Clark P. Self-refine:
iterative refinement with self-feedback. Advances in Neural
Information Processing Systems, 2024, 36.

62.

 Miao N, Teh Y W, Rainforth T. SelfCheck: using LLMs to zero-shot
check their own step-by-step reasoning. 2023, arXiv preprint arXiv:
2308.00436

63.

 Chen P L, Chang C S. InterAct: exploring the potentials of chatGPT as
a cooperative agent. 2023, arXiv preprint arXiv: 2308.01552

64.

 Chen Z, Zhou K, Zhang B, Gong Z, Zhao X, Wen J R. ChatCoT: tool-
augmented chain-of-thought reasoning on chat-based large language
models. In: Proceedings of Findings of the Association for
Computational Linguistics. 2023, 14777–14790

65.

 Nakano R, Hilton J, Balaji S, Wu J, Ouyang L, Kim C, Hesse C, Jain
S, Kosaraju V, Saunders W, Jiang X, Cobbe K, Eloundou T, Krueger
G, Button K, Knight M, Chess B, Schulman J. WebGPT: browser-
assisted question-answering with human feedback. 2022, arXiv
preprint arXiv: 2112.09332

66.

 Ruan J, Chen Y, Zhang B, Xu Z, Bao T, Du G, Shi S, Mao H, Li Z,
Zeng X, Zhao R. TPTU: large language model-based AI agents for
task planning and tool usage. 2023, arXiv preprint arXiv: 2308.03427

67.

 Patil S G, Zhang T, Wang X, Gonzalez J E. Gorilla: large language
model connected with massive APIs. 2023, arXiv preprint arXiv:
2305.15334

68.

 Li M, Zhao Y, Yu B, Song F, Li H, Yu H, Li Z, Huang F, Li Y. API-
bank: a comprehensive benchmark for tool-augmented LLMs. In:
Proceedings of 2023 Conference on Empirical Methods in Natural
Language Processing. 2023, 3102–3116

69.

 Song Y, Xiong W, Zhu D, Wu W, Qian H, Song M, Huang H, Li C,
Wang K, Yao R, Tian Y, Li S. RestGPT: connecting large language
models with real-world RESTful APIs. 2023, arXiv preprint arXiv:
2306.06624

70.

 Liang Y, Wu C, Song T, Wu W, Xia Y, Liu Y, Ou Y, Lu S, Ji L, Mao
S, Wang Y, Shou L, Gong M, Duan N. TaskMatrix.AI: Completing

71.

22 Front. Comput. Sci., 2024, 18(6): 186345

tasks by connecting foundation models with millions of APIs. 2023,
arXiv preprint arXiv: 2303.16434
 Karpas E, Abend O, Belinkov Y, Lenz B, Lieber O, Ratner N, Shoham
Y, Bata H, Levine Y, Leyton-Brown K, Muhlgay D, Rozen N,
Schwartz E, Shachaf G, Shalev-Shwartz S, Shashua A, Tenenholtz M.
MRKL systems: a modular, neuro-symbolic architecture that combines
large language models, external knowledge sources and discrete
reasoning. 2022, arXiv preprint arXiv: 2205.00445

72.

 Ge Y, Hua W, Mei K, Tan J, Xu S, Li Z, Zhang Y. OpenAGI: When
LLM meets domain experts. In: Proceedings of the 37th Conference on
Neural Information Processing Systems, 2023, 36

73.

 Surís D, Menon S, Vondrick C. ViperGPT: visual inference via python
execution for reasoning. 2023, arXiv preprint arXiv: 2303.08128

74.

 Bran A M, Cox S, Schilter O, Baldassari C, White A D, Schwaller P.
ChemCrow: augmenting large-language models with chemistry tools.
2023, arXiv preprint arXiv: 2304.05376

75.

 Yang Z, Li L, Wang J, Lin K, Azarnasab E, Ahmed F, Liu Z, Liu C,
Zeng M, Wang L. MM-REACT: Prompting chatGPT for multimodal
reasoning and action. 2023, arXiv preprint arXiv: 2303.11381

76.

 Gao C, Lan X, Lu Z, Mao J, Piao J, Wang H, Jin D, Li Y. S3: social-
network simulation system with large language model-empowered
agents. 2023, arXiv preprint arXiv: 2307.14984

77.

 Ichter B, Brohan A, Chebotar Y, Finn C, Hausman K, et al. Do as I
can, not as I say: grounding language in robotic affordances. In:
Proceedings of the 6th Conference on Robot Learning. 2023, 287−318

78.

 Liu H, Sferrazza C, Abbeel P. Chain of hindsight aligns language
models with feedback. arXiv preprint arXiv: 2302.02676

79.

 Yao S, Chen H, Yang J, Narasimhan K. WebShop: towards scalable
real-world Web interaction with grounded language agents. In:
Proceedings of the 36th Conference on Neural Information Processing
Systems. 2022, 20744−20757

80.

 Dan Y, Lei Z, Gu Y, Li Y, Yin J, Lin J, Ye L, Tie Z, Zhou Y, Wang Y,
Zhou A, Zhou Z, Chen Q, Zhou J, He L, Qiu X. EduChat: a large-scale
language model-based chatbot system for intelligent education. 2023,
arXiv preprint arXiv: 2308.02773

81.

 Lin B Y, Fu Y, Yang K, Brahman F, Huang S, Bhagavatula C,
Ammanabrolu P, Choi Y, Ren X. SwiftSage: a generative agent with
fast and slow thinking for complex interactive tasks. In: Proceedings of
the 37th Conference on Neural Information Processing Systems. 2023,
36

82.

 Evans J S B T, Stanovich K E. Dual-process theories of higher
cognition: advancing the debate. Perspectives on Psychological
Science, 2013, 8(3): 223–241

83.

 Liu R, Yang R, Jia C, Zhang G, Zhou D, Dai A M, Yang D, Vosoughi
S. Training socially aligned language models on simulated social
interactions. 2023, arXiv preprint arXiv: 2305.16960

84.

 Weng X, Gu Y, Zheng B, Chen S, Stevens S, Wang B, Sun H, Su Y.
Mind2Web: towards a generalist agent for the Web. In: Proceedings of
the 37th Conference on Neural Information Processing Systems. 2023,
36

85.

 Sun R, Arik S O, Nakhost H, Dai H, Sinha R, Yin P, Pfister T. SQL-
PaLm: improved large language model adaptation for text-to-SQL.
2023, arXiv preprint arXiv: 2306.00739

86.

 Yao W, Heinecke S, Niebles J C, Liu Z, Feng Y, Xue L, Murthy R,
Chen Z, Zhang J, Arpit D, Xu R, Mui P, Wang H, Xiong C, Savarese
S. Retroformer: retrospective large language agents with policy
gradient optimization, 2023, arXiv preprint arXiv: 2308.02151

87.

 Shu Y, Zhang H, Gu H, Zhang P, Lu T, Li D, Gu N. RAH! RecSys-
assistant-human: a human-centered recommendation framework with
LLM agents. 2023, arXiv preprint arXiv: 2308.09904

88.

 Mandi Z, Jain S, Song S. RoCo: dialectic multi-robot collaboration
with large language models. 2023, arXiv preprint arXiv: 2307.04738

89.

 Zhang C, Liu L, Wang J, Wang C, Sun X, Wang H, Cai M. PREFER:
prompt ensemble learning via feedback-reflect-refine. 2023, arXiv

90.

preprint arXiv: 2308.12033
 Du Y, Li S, Torralba A, Tenenbaum J B, Mordatch I. Improving
factuality and reasoning in language models through multiagent
debate. 2023, arXiv preprint arXiv: 2305.14325

91.

 Zhang C, Yang Z, Liu J, Han Y, Chen X, Huang Z, Fu B, Yu G.
AppAgent: multimodal agents as smartphone users. 2023, arXiv
preprint arXiv: 2312.13771

92.

 Madaan A, Tandon N, Clark P, Yang Y. Memory-assisted prompt
editing to improve GPT-3 after deployment. In: Proceedings of 2022
Conference on Empirical Methods in Natural Language Processing.
2022, 2833–2861

93.

 Colas C, Teodorescu L, Oudeyer P Y, Yuan X, Côté M A.
Augmenting autotelic agents with large language models. In:
Proceedings of the 2nd Conference on Lifelong Learning Agents.
2023, 205–226

94.

 Nascimento N, Alencar P, Cowan D. Self-adaptive large language
model (LLM)-based multiagent systems. In: Proceedings of 2023 IEEE
International Conference on Autonomic Computing and Self-
Organizing Systems Companion. 2023, 104−109

95.

 Saha S, Hase P, Bansal M. Can language models teach weaker agents?
Teacher explanations improve students via personalization. 2023,
arXiv preprint arXiv: 2306.09299

96.

 Zhuge M, Liu H, Faccio F, Ashley D R, Csordás R, Gopalakrishnan A,
Hamdi A, Hammoud H A A K, Herrmann V, Irie K, Kirsch L, Li B, Li
G, Liu S, Mai J, Piękos P, Ramesh A, Schlag I, Shi W, Stanić A, Wang
W, Wang Y, Xu M, Fan D P, Ghanem B, Schmidhuber J. Mindstorms
in natural language-based societies of mind. 2023, arXiv preprint
arXiv: 2305.17066

97.

 Park J S, Popowski L, Cai C, Morris M R, Liang P, Bernstein M S.
Social simulacra: creating populated prototypes for social computing
systems. In: Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology. 2022, 74

98.

 Li G, Hammoud H A A K, Itani H, Khizbullin D, Ghanem B.
CAMEL: communicative agents for "mind" exploration of large
language model society. 2023, arXiv preprint arXiv: 2303.17760

99.

 AutoGPT. See Github.com/Significant-Gravitas/Auto, 2023100.
 Chen L, Wang L, Dong H, Du Y, Yan J, Yang F, Li S, Zhao P, Qin S,
Rajmohan S, Lin Q, Zhang D. Introspective tips: large language model
for in-context decision making. 2023, arXiv preprint arXiv:
2305.11598

101.

 Aher G V, Arriaga R I, Kalai A T. Using large language models to
simulate multiple humans and replicate human subject studies. In:
Proceedings of the 40th International Conference on Machine
Learning. 2023, 337−371

102.

 Akata E, Schulz L, Coda-Forno J, Oh S J, Bethge M, Schulz E.
Playing repeated games with large language models. 2023, arXiv
preprint arXiv: 2305.16867

103.

 Ma Z, Mei Y, Su Z. Understanding the benefits and challenges of
using large language model-based conversational agents for mental
well-being support. In: Proceedings of AMIA Symposium. 2023,
1105−1114

104.

 Ziems C, Held W, Shaikh O, Chen J, Zhang Z, Yang D. Can large
language models transform computational social science? 2024, arXiv
preprint arXiv: 2305.03514

105.

 Horton J J. Large language models as simulated economic agents: what
can we learn from homo silicus? 2023, arXiv preprint arXiv:
2301.07543

106.

 Li S, Yang J, Zhao K. Are you in a masquerade? Exploring the
behavior and impact of large language model driven social bots in
online social networks. 2023, arXiv preprint arXiv: 2307.10337

107.

 Li C, Su X, Han H, Xue C, Zheng C, Fan C. Quantifying the impact of
large language models on collective opinion dynamics. 2023, arXiv
preprint arXiv: 2308.03313

108.

 Kovač G, Portelas R, Dominey P F, Oudeyer P Y. The SocialAI109.

Lei WANG et al. A survey on large language model based autonomous agents 23

school: insights from developmental psychology towards artificial
socio-cultural agents. 2023, arXiv preprint arXiv: 2307.07871
 Williams R, Hosseinichimeh N, Majumdar A, Ghaffarzadegan N.
Epidemic modeling with generative agents. 2023, arXiv preprint
arXiv: 2307.04986

110.

 Shi J, Zhao J, Wang Y, Wu X, Li J, He L. CGMI: configurable general
multi-agent interaction framework. 2023, arXiv preprint arXiv:
2308.12503

111.

 Cui J, Li Z, Yan Y, Chen B, Yuan L. ChatLaw: open-source legal large
language model with integrated external knowledge bases. 2023, arXiv
preprint arXiv: 2306.16092

112.

 Hamilton S. Blind judgement: agent-based supreme court modelling
with GPT. 2023, arXiv preprint arXiv: 2301.05327

113.

 Bail C A. Can generative AI improve social science? 2023114.
 Boiko D A, MacKnight R, Gomes G. Emergent autonomous scientific
research capabilities of large language models. 2023, arXiv preprint
arXiv: 2304.05332

115.

 Kang Y, Kim J. ChatMOF: an autonomous AI system for predicting
and generating metal-organic frameworks. 2023, arXiv preprint arXiv:
2308.01423

116.

 Swan M, Kido T, Roland E, Santos R P D. Math agents: computational
infrastructure, mathematical embedding, and genomics. 2023, arXiv
preprint arXiv: 2307.02502

117.

 Drori I, Zhang S, Shuttleworth R, Tang L, Lu A, Ke E, Liu K, Chen L,
Tran S, Cheng N, Wang R, Singh N, Patti T L, Lynch J, Shporer A,
Verma N, Wu E, Strang G. A neural network solves, explains, and
generates university math problems by program synthesis and few-shot
learning at human level. Proceedings of the National Academy of
Sciences of the United States of America, 2022, 119(32):
e2123433119

118.

 Chen M, Tworek J, Jun H, Yuan Q, de Oliveira Pinto H P, et al.
Evaluating large language models trained on code. 2021, arXiv
preprint arXiv: 2107.03374

119.

 Liffiton M, Sheese B E, Savelka J, Denny P. CodeHelp: using large
language models with guardrails for scalable support in programming
classes. In: Proceedings of the 23rd Koli Calling International
Conference on Computing Education Research. 2023, 8

120.

 Matelsky J K, Parodi F, Liu T, Lange R D, Kording K P. A large
language model-assisted education tool to provide feedback on open-
ended responses. 2023, arXiv preprint arXiv: 2308.02439

121.

 Mehta N, Teruel M, Sanz P F, Deng X, Awadallah A H, Kiseleva J.
Improving grounded language understanding in a collaborative
environment by interacting with agents through help feedback. 2024,
arXiv preprint arXiv: 2304.10750

122.

 SmolModels. See Githubcom/smol-ai/developer website, 2023123.
 DemoGPT. See Github.com/melih-unsal/Demo website, 2023124.
 GPT-engineer. See Github.com/AntonOsika/gpt website, 2023125.
 Li H, Hao Y, Zhai Y, Qian Z. The hitchhiker’s guide to program
analysis: a journey with large language models. 2023, arXiv preprint
arXiv: 2308.00245

126.

 He Z, Wu H, Zhang X, Yao X, Zheng S, Zheng H, Yu B. ChatEDA: a
large language model powered autonomous agent for EDA. In:
Proceedings of the 5th ACM/IEEE Workshop on Machine Learning
for CAD. 2023, 1−6

127.

 Deng G, Liu Y, Mayoral-Vilches V, Liu P, Li Y, Xu Y, Zhang T, Liu
Y, Pinzger M, Rass S. PentestGPT: an LLM-empowered automatic
penetration testing tool. 2023, arXiv preprint arXiv: 2308.06782

128.

 Xia Y, Shenoy M, Jazdi N, Weyrich M. Towards autonomous system:
flexible modular production system enhanced with large language
model agents. In: Proceedings of the 2023 IEEE 28th International
Conference on Emerging Technologies and Factory Automation. 2023,
1−8

129.

 Ogundare O, Madasu S, Wiggins N. Industrial engineering with large
language models: a case study of chatGPT’s performance on oil & gas

130.

problems. In: Proceedings of the 2023 11th International Conference
on Control, Mechatronics and Automation. 2023, 458−461
 Hu B, Zhao C, Zhang P, Zhou Z, Yang Y, Xu Z, Liu B. Enabling
intelligent interactions between an agent and an LLM: a reinforcement
learning approach. 2024, arXiv preprint arXiv: 2306.03604

131.

 Wu Y, Min S Y, Bisk Y, Salakhutdinov R, Azaria A, Li Y, Mitchell T,
Prabhumoye S. Plan, eliminate, and track−language models are good
teachers for embodied agents. 2023, arXiv preprint arXiv: 2305.02412

132.

 Zhang D, Chen L, Zhang S, Xu H, Zhao Z, Yu K. Large language
models are semi-parametric reinforcement learning agents. In:
Proceedings of the 37th Conference on Neural Information Processing
Systems. 2023, 36

133.

 Di P N, Byravan A, Hasenclever L, Wulfmeier M, Heess N, Riedmiller
M. Towards a unified agent with foundation models. 2023, arXiv
preprint arXiv: 2307.09668

134.

 Dasgupta I, Kaeser-Chen C, Marino K, Ahuja A, Babayan S, Hill F,
Fergus R. Collaborating with language models for embodied
reasoning. 2023, arXiv preprint arXiv: 2302.00763

135.

 Zhou W, Peng X, Riedl M O. Dialogue shaping: empowering agents
through NPC interaction. 2023, arXiv preprint arXiv: 2307.15833

136.

 Nottingham K, Ammanabrolu P, Suhr A, Choi Y, Hajishirzi H, Singh
S, Fox R. Do embodied agents dream of pixelated sheep: embodied
decision making using language guided world modelling. In:
Proceedings of the 40th International Conference on Machine
Learning. 2023, 26311–26325

137.

 Wu Z, Wang Z, Xu X, Lu J, Yan H. Embodied task planning with
large language models. 2023, arXiv preprint arXiv: 2307.01848

138.

 Wu J, Antonova R, Kan A, Lepert M, Zeng A, Song S, Bohg J,
Rusinkiewicz S, Funkhouser T. TidyBot: personalized robot assistance
with large language models. In: Proceedings of 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2023,
3546−3553

139.

 AgentGPT. See Github.com/reworkd/Agent website, 2023140.
 Ai-legion. See Github.com/eumemic/ai website, 2023141.
 AGiXT. See Githubcom/Josh-XT/AGiXT website, 2023142.
 Xlang. See Githubcom/xlang-ai/xlang website, 2023143.
 Babyagi. See Githubcom/yoheinakajima website, 2023144.
 LangChain. See Docs.langchaincom/docs/ website, 2023145.
 WorkGPT. See Githubcom/team-openpm/workgpt website, 2023146.
 LoopGPT. See Githubcom/farizrahman4u/loopgpt website, 2023147.
 GPT-researcher. See Github.com/assafelovic/gpt website, 2023148.
 Qin Y, Hu S, Lin Y, Chen W, Ding N, Cui G, Zeng Z, Huang Y, Xiao
C, Han C, Fung Y R, Su Y, Wang H, Qian C, Tian R, Zhu K, Liang S,
Shen X, Xu B, Zhang Z, Ye Y, Li B, Tang Z, Yi J, Zhu Y, Dai Z, Yan
L, Cong X, Lu Y, Zhao W, Huang Y, Yan J, Han X, Sun X, Li D,
Phang J, Yang X, Wu T, Ji H, Liu Z, Sun M. Tool learning with
foundation models. 2023, arXiv preprint arXiv: 2304.08354

149.

 Transformers agent. See Huggingface.co/docs/transformers/
transformers website, 2023

150.

 Mini-agi. See Github.com/muellerberndt/mini website, 2023151.
 SuperAGI. See Github.com/TransformerOptimus/Super website, 2023152.
 Wu Q, Bansal G, Zhang J, Wu Y, Li B, Zhu E, Jiang L, Zhang X,
Zhang S, Liu J, Awadallah A H, White R W, Burger D, Wang C.
AutoGen: enabling next-gen LLM applications via multi-agent
conversation. 2023, arXiv preprint arXiv: 2308.08155

153.

 Grossmann I, Feinberg M, Parker D C, Christakis N A, Tetlock P E,
Cunningham W A. AI and the transformation of social science
research: careful bias management and data fidelity are key. Science,
2023, 380(6650): 1108–1109

154.

 Huang X, Lian J, Lei Y, Yao J, Lian D, Xie X. Recommender AI
agent: integrating large language models for interactive
recommendations. 2023, arXiv preprint arXiv: 2308.16505

155.

24 Front. Comput. Sci., 2024, 18(6): 186345

 Zhang C, Yang K, Hu S, Wang Z, Li G, Sun Y, Zhang C, Zhang Z, Liu
A, Zhu S C, Chang X, Zhang J, Yin F, Liang Y, Yang Y. ProAgent:
building proactive cooperative agents with large language models.
2024, arXiv preprint arXiv: 2308.11339

156.

 Xiang J, Tao T, Gu Y, Shu T, Wang Z, Yang Z, Hu Z. Language
models meet world models: embodied experiences enhance language
models. In: Proceedings of the 37th Conference on Neural Information
Processing Systems. 2023, 36

157.

 Lee M, Srivastava M, Hardy A, Thickstun J, Durmus E, Paranjape A,
Gerard-Ursin I, Li X L, Ladhak F, Rong F, Wang R E, Kwon M, Park
J S, Cao H, Lee T, Bommasani R, Bernstein M, Liang P. Evaluating
human-language model interaction. 2024, arXiv preprint arXiv:
2212.09746

158.

 Krishna R, Lee D, Fei-Fei L, Bernstein M S. Socially situated artificial
intelligence enables learning from human interaction. Proceedings of
the National Academy of Sciences of the United States of America,
2022, 119(39): e2115730119

159.

 Huang J T, Lam M H, Li E J, Ren S, Wang W, Jiao W, Tu Z, Lyu M
R. Emotionally numb or empathetic? Evaluating how LLMs feel using
emotionbench. 2024, arXiv preprint arXiv: 2308.03656

160.

 Chan C M, Chen W, Su Y, Yu J, Xue W, Zhang S, Fu J, Liu Z.
ChatEval: towards better LLM-based evaluators through multi-agent
debate. 2023, arXiv preprint arXiv: 2308.07201

161.

 Chen A, Phang J, Parrish A, Padmakumar V, Zhao C, Bowman S R,
Cho K. Two failures of self-consistency in the multi-step reasoning of
LLMs. 2024, arXiv preprint arXiv: 2305.14279

162.

 Zhang D, Xu H, Zhao Z, Chen L, Cao R, Yu K. Mobile-env: an
evaluation platform and benchmark for LLM-GUI interaction. 2024,
arXiv preprint arXiv: 2305.08144

163.

 Liang Y, Zhu L, Yang Y. Tachikuma: understading complex
interactions with multi-character and novel objects by large language
models. 2023, arXiv preprint arXiv: 2307.12573

164.

 Choi M, Pei J, Kumar S, Shu C, Jurgens D. Do LLMs understand
social knowledge? Evaluating the sociability of large language models
with socKET benchmark. In: Proceedings of 2023 Conference on
Empirical Methods in Natural Language Processing. 2023,
11370–11403

165.

 Liu Z, Yao W, Zhang J, Xue L, Heinecke S, Murthy R, Feng Y, Chen
Z, Niebles J C, Arpit D, Xu R, Mui P, Wang H, Xiong C, Savarese S.
BOLAA: benchmarking and orchestrating LLM-augmented
autonomous agents. 2023, arXiv preprint arXiv: 2308.05960

166.

 Liu X, Yu H, Zhang H, Xu Y, Lei X, Lai H, Gu Y, Ding H, Men K,
Yang K, Zhang S, Deng X, Zeng A, Du Z, Zhang C, Shen S, Zhang T,
Su Y, Sun H, Huang M, Dong Y, Tang J. AgentBench: evaluating
LLMs as agents. 2023, arXiv preprint arXiv: 2308.03688

167.

 Kang S, Yoon J, Yoo S. Large language models are few-shot testers:
exploring LLM-based general bug reproduction. In: Proceedings of the
45th IEEE/ACM International Conference on Software Engineering.
2023, 2312−2323

168.

 Jalil S, Rafi S, LaToza T D, Moran K, Lam W. ChatGPT and software
testing education: Promises & perils. In: Proceedings of 2023 IEEE
International Conference on Software Testing, Verification and
Validation Workshops. 2023, 4130−4137

169.

 Feldt R, Kang S, Yoon J, Yoo S. Towards autonomous testing agents
via conversational large language models. In: Proceedings of the 38th
IEEE/ACM International Conference on Automated Software
Engineering. 2023, 1688−1693

170.

 Zhou S, Xu F F, Zhu H, Zhou X, Lo R, Sridhar A, Cheng X, Ou T,
Bisk Y, Fried D, Alon U, Neubig G. WebArena: a realistic Web
environment for building autonomous agents. 2023, arXiv preprint
arXiv: 2307.13854

171.

 Xu B, Liu X, Shen H, Han Z, Li Y, Yue M, Peng Z, Liu Y, Yao Z, Xu
D. Gentopia.AI: a collaborative platform for tool-augmented LLMs.

172.

In: Proceedings of 2023 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. 2023, 237−245
 Chalamalasetti K, Götze J, Hakimov S, Madureira B, Sadler P,
Schlangen D. clembench: Using game play to evaluate chat-optimized
language models as conversational agents. In: Proceedings of 2023
Conference on Empirical Methods in Natural Language Processing.
2023, 11174–11219

173.

 Banerjee D, Singh P, Avadhanam A, Srivastava S. Benchmarking
LLM powered chatbots: methods and metrics. 2023, arXiv preprint
arXiv: 2308.04624

174.

 Lin J, Tomlin N, Andreas J, Eisner J. Decision-oriented dialogue for
human-AI collaboration. 2023, arXiv preprint arXiv: 2305.20076

175.

 Zhao W X, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B,
Zhang J, Dong Z, Du Y, Yang C, Chen Y, Chen Z, Jiang J, Ren R, Li
Y, Tang X, Liu Z, Liu P, Nie J Y, Wen J R. A survey of large language
models. 2023, arXiv preprint arXiv: 2303.18223

176.

 Yang J, Jin H, Tang R, Han X, Feng Q, Jiang H, Zhong S, Yin B, Hu
X. Harnessing the power of LLMs in practice: a survey on chatGPT
and beyond. ACM Transactions on Knowledge Discovery from Data,
2024, doi: 10.1145/3649506

177.

 Wang Y, Zhong W, Li L, Mi F, Zeng X, Huang W, Shang L, Jiang X,
Liu Q. Aligning large language models with human: a survey. 2023,
arXiv preprint arXiv: 2307.12966

178.

 Huang J, Chang K C C. Towards reasoning in large language models:
a survey. In: Proceedings of Findings of the Association for
Computational Linguistics: ACL 2023. 2023, 1049–1065

179.

 Mialon G, Dessì R, Lomeli M, Nalmpantis C, Pasunuru R, Raileanu R,
Rozière B, Schick T, Dwivedi-Yu J, Celikyilmaz A, Grave E, LeCun
Y, Scialom T. Augmented language models: a survey. 2023, arXiv
preprint arXiv: 2302.07842

180.

 Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, Chen H, Yi X,
Wang C, Wang Y, Ye W, Zhang Y, Chang Y, Yu P S. A survey on
evaluation of large language models. ACM Transactions on Intelligent
Systems and Technology, 2023, doi: 10.1145/3641289

181.

 Chang T A, Bergen B K. Language model behavior: a comprehensive
survey. Computational Linguistics, 2024, doi: 10.1162/coli_a_00492

182.

 Li C, Wang J, Zhu K, Zhang Y, Hou W, Lian J, Xie X.
Emotionprompt: Leveraging psychology for large language models
enhancement via emotional stimulus. 2023, arXiv preprint arXiv:
2307.11760

183.

 Zhuo T Y, Li Z, Huang Y, Shiri F, Wang W, Haffari G, Li Y F. On
robustness of prompt-based semantic parsing with large pre-trained
language model: an empirical study on codex. In: Proceedings of the
17th Conference of the European Chapter of the Association for
Computational Linguistics. 2023, 1090–1102

184.

 Gekhman Z, Oved N, Keller O, Szpektor I, Reichart R. On the
robustness of dialogue history representation in conversational
question answering: a comprehensive study and a new prompt-based
method. Transactions of the Association for Computational
Linguistics, 2023, 11(11): 351–366

185.

 Ji Z, Lee N, Frieske R, Yu T, Su D, Xu Y, Ishii E, Bang Y J, Madotto
A, Fung P. Survey of hallucination in natural language generation.
ACM Computing Surveys, 2023, 55(12): 248

186.

Lei Wang is a PhD candidate at Renmin
University of China, China. His research focuses
on recommender systems and agent-based large
language models.

Lei WANG et al. A survey on large language model based autonomous agents 25

http://dx.doi.org/10.1145/3649506
http://dx.doi.org/10.1145/3641289
http://dx.doi.org/10.1162/coli_a_00492

Chen Ma is currently pursuing a Master’s degree
at Renmin University of China, China. His
research interests include recommender system,
agent based on large language model.

Xueyang Feng is currently studying for a PhD
degree at Renmin University of China, China. His
research interests include recommender system,
agent based on large language model.

Zeyu Zhang is currently pursuing a Master’s
degree at Renmin University of China, China. His
research interests include recommender system,
causal inference, agent based on large language
model.

Hao Yang is currently studying for a PhD degree
at Renmin University of China, China. His
research interests include recommender system,
causal inference.

Jingsen Zhang is currently studying for a PhD
degree at Renmin University of China, China. His
research interests include recommender system.

Zhiyuan Chen is pursuing his PhD in Gaoling
school of Artificial Intelligence, Renmin
University of China, China. His research mainly
focuses on language model reasoning and agent
based on large language model.

Jiakai Tang is currently pursuing a Master’s
degree at Renmin University of China, China. His
research interests include recommender system.

Xu Chen obtained his PhD degree from Tsinghua
University, China. Before joining Renmin
University of China, he was a postdoc researcher
at University College London, UK. In the period
from March to September of 2017, he was
studying at Georgia Institute of Technology, USA
as a visiting scholar. His research mainly focuses

on the recommender system, reinforcement learning, and causal
inference.

Yankai Lin received his BE and PhD degrees from
Tsinghua University, China in 2014 and 2019,
respectively. After that, he worked as a senior
researcher in Tencent WeChat, and joined Renmin
University of China, China in 2022 as a tenure-
track assistant professor. His main research
interests are pretrained models and natural

language processing.

Wayne Xin Zhao received his PhD degree in
Computer Science from Peking University, China
in 2014. His research interests include data
mining, natural language processing and
information retrieval in general. The main goal is
to study how to organize, analyze and mine user
generated data for improving the service of real-

world applications.

Zhewei Wei received his PhD degree in Computer
Science and Engineering from The Hong Kong
University of Science and Technology, China. He
did postdoctoral research in Aarhus University,
Denmark from 2012 to 2014, and joined Renmin
University of China, China in 2014.

Jirong Wen is a full professor, the executive dean
of Gaoling School of Artificial Intelligence, and
the dean of School of Information at Renmin
University of China, China. He has been working
in the big data and AI areas for many years, and
publishing extensively on prestigious international
conferences and journals.

26 Front. Comput. Sci., 2024, 18(6): 186345

	1 Introduction
	2 LLM-based autonomous agent construction
	2.1 Agent architecture design
	2.1.1 Profiling module
	2.1.2 Memory module
	2.1.3 Planning module
	2.1.4 Action module

	2.2 Agent capability acquisition

	3 LLM-based autonomous agent application
	3.1 Social science
	3.2 Natural science
	3.3 Engineering

	4 LLM-based autonomous agent evaluation
	4.1 Subjective evaluation
	4.2 Objective evaluation

	5 Related surveys
	6 Challenges
	6.1 Role-playing capability
	6.2 Generalized human alignment
	6.3 Prompt robustness
	6.4 Hallucination
	6.5 Knowledge boundary
	6.6 Efficiency

	7 Conclusion
	Acknowledgements
	Competing interests
	Open Access

