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Abstract    Autonomous  agents  have  long  been  a  research
focus in academic and industry communities. Previous research
often focuses on training agents with limited knowledge within
isolated  environments,  which  diverges  significantly  from
human  learning  processes,  and  makes  the  agents  hard  to
achieve human-like decisions. Recently, through the acquisition
of  vast  amounts  of  Web  knowledge,  large  language  models
(LLMs)  have  shown  potential  in  human-level  intelligence,
leading  to  a  surge  in  research  on  LLM-based  autonomous
agents.  In  this  paper,  we  present  a  comprehensive  survey  of
these  studies,  delivering  a  systematic  review  of  LLM-based
autonomous agents from a holistic perspective. We first discuss
the construction of LLM-based autonomous agents, proposing a
unified  framework  that  encompasses  much  of  previous  work.
Then,  we  present  a  overview  of  the  diverse  applications  of
LLM-based  autonomous  agents  in  social  science,  natural
science, and engineering. Finally, we delve into the evaluation
strategies  commonly used for  LLM-based autonomous agents.
Based  on  the  previous  studies,  we  also  present  several
challenges and future directions in this field.
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 1    Introduction
“An autonomous agent is a system situated within and a part
of an environment that senses that environment and acts on it,
over time, in pursuit of its own agenda and so as to effect what
it senses in the future.”

Franklin and Graesser (1997)

Autonomous  agents  have  long  been  recognized  as  a
promising approach to achieving artificial general intelligence
(AGI),  which  is  expected  to  accomplish  tasks  through  self-
directed  planning and actions.  In  previous  studies,  the  agents
are  assumed  to  act  based  on  simple  and  heuristic  policy
functions, and learned in isolated and restricted environments
[1–6]. Such assumptions significantly differs from the human

learning  process,  since  the  human  mind  is  highly  complex,
and  individuals  can  learn  from  a  much  wider  variety  of
environments. Because of these gaps, the agents obtained from
the  previous  studies  are  usually  far  from  replicating  human-
level  decision  processes,  especially  in  unconstrained,  open-
domain settings.

In  recent  years,  large  language  models  (LLMs)  have
achieved  notable  successes,  demonstrating  significant
potential  in  attaining  human-like  intelligence  [5–10].  This
capability  arises  from  leveraging  comprehensive  training
datasets  alongside a  substantial  number of  model  parameters.
Building  upon  this  capability,  there  has  been  a  growing
research  area  that  employs  LLMs  as  central  controllers  to
construct  autonomous  agents  to  obtain  human-like  decision-
making capabilities [11–17].

Comparing with reinforcement learning, LLM-based agents
have  more  comprehensive  internal  world  knowledge,  which
facilitates  more  informed agent  actions  even  without  training
on specific domain data. Additionally, LLM-based agents can
provide  natural  language  interfaces  to  interact  with  humans,
which is more flexible and explainable.

Along this  direction,  researchers  have  developed numerous
promising  models  (see Fig. 1 for  an  overview  of  this  field),
where  the  key  idea  is  to  equip  LLMs  with  crucial  human
capabilities  like  memory  and  planning  to  make  them  behave
like  humans  and  complete  various  tasks  effectively.
Previously,  these  models  were  proposed  independently,  with
limited  efforts  made  to  summarize  and  compare  them
holistically.  However,  we  believe  a  systematic  summary  on
this  rapidly  developing  field  is  of  great  significance  to
comprehensively  understand  it  and  benefit  to  inspire  future
research.

In  this  paper,  we  conduct  a  comprehensive  survey  of  the
field  of  LLM-based  autonomous  agents.  Specifically,  we
organize  our  survey  based  on  three  aspects  including  the
construction,  application,  and  evaluation  of  LLM-based
autonomous  agents.  For  the  agent  construction,  we  focus  on
two problems, that is, (1) how to design the agent architecture
to better  leverage LLMs, and (2)  how to inspire and enhance
the agent capability to complete different tasks. Intuitively, the
first problem aims to build the hardware fundamentals for the
agent, while the second problem focus on providing the agent
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with  software  resources.  For  the  first  problem,  we  present  a
unified  agent  framework,  which  can  encompass  most  of  the
previous  studies.  For  the  second  problem,  we  provide  a
summary  on  the  commonly-used  strategies  for  agents’
capability  acquisition.  In  addition  to  discussing  agent
construction,  we  also  provide  an  systematic  overview  of  the
applications  of  LLM-based  autonomous  agents  in  social
science,  natural  science,  and  engineering.  Finally,  we  delve
into  the  strategies  for  evaluating  LLM-based  autonomous
agents, focusing on both subjective and objective strategies.

In  summary,  this  survey  conducts  a  systematic  review  and
establishes  comprehensive  taxonomies  for  existing  studies  in
the  burgeoning  field  of  LLM-based  autonomous  agents.  Our
focus  encompasses  three  primary  areas:  construction  of
agents, their applications, and methods of evaluation. Drawing
from  a  wealth  of  previous  studies,  we  identify  various
challenges in this field and discuss potential future directions.
We  expect  that  our  survey  can  provide  newcomers  of  LLM-
based  autonomous  agents  with  a  comprehensive  background
knowledge,  and  also  encourage  further  groundbreaking
studies.

 2    LLM-based autonomous agent
construction
LLM-based  autonomous  agents  are  expected  to  effectively
perform  diverse  tasks  by  leveraging  the  human-like
capabilities  of  LLMs.  In  order  to  achieve  this  goal,  there  are
two significant  aspects,  that  is,  (1)  which  architecture  should
be  designed  to  better  use  LLMs  and  (2)  give  the  designed
architecture, how to enable the agent to acquire capabilities for
accomplishing  specific  tasks.  Within  the  context  of
architecture  design,  we  contribute  a  systematic  synthesis  of
existing  research,  culminating  in  a  comprehensive  unified
framework.  As  for  the  second  aspect,  we  summarize  the
strategies  for  agent  capability  acquisition  based  on  whether
they  fine-tune  the  LLMs.  When  comparing  LLM-based

autonomous agents to traditional  machine learning,  designing
the agent architecture is analogous to determining the network
structure,  while  the  agent  capability  acquisition  is  similar  to
learning  the  network  parameters.  In  the  following,  we
introduce these two aspects more in detail.

 2.1    Agent architecture design
Recent advancements in LLMs have demonstrated their great
potential  to  accomplish  a  wide  range  of  tasks  in  the  form  of
question-answering  (QA).  However,  building  autonomous
agents is far from QA, since they need to fulfill specific roles
and autonomously perceive and learn from the environment to
evolve  themselves  like  humans.  To  bridge  the  gap  between
traditional LLMs and autonomous agents, a crucial aspect is to
design  rational  agent  architectures  to  assist  LLMs  in
maximizing  their  capabilities.  Along  this  direction,  previous
work has  developed a  number  of  modules  to  enhance LLMs.
In this section, we propose a unified framework to summarize
these  modules.  In  specific,  the  overall  structure  of  our
framework  is  illustrated Fig. 2,  which  is  composed  of  a
profiling module,  a  memory module,  a  planning module,  and
an  action  module.  The  purpose  of  the  profiling  module  is  to
identify  the  role  of  the  agent.  The  memory  and  planning
modules place the agent into a dynamic environment, enabling
it  to  recall  past  behaviors  and plan future  actions.  The action
module is responsible for translating the agent’s decisions into
specific  outputs.  Within  these  modules,  the  profiling  module
impacts  the  memory  and  planning  modules,  and  collectively,
these  three  modules  influence  the  action  module.  In  the
following, we detail these modules.

 2.1.1    Profiling module
Autonomous  agents  typically  perform  tasks  by  assuming
specific  roles,  such  as  coders,  teachers  and  domain  experts
[18,19]. The profiling module aims to indicate the profiles of
the  agent  roles,  which  are  usually  written  into  the  prompt  to

 

 
Fig. 1    Illustration of the growth trend in the field of LLM-based autonomous agents. We present the cumulative number of papers published
from January 2021 to August 2023. We assign different colors to represent various agent categories. For example, a game agent aims to simulate
a  game-player,  while  a  tool  agent  mainly  focuses  on  tool  using.  For  each time period,  we provide  a  curated  list  of  studies  with  diverse  agent
categories
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influence  the  LLM  behaviors.  Agent  profiles  typically
encompass  basic  information  such as  age,  gender,  and  career
[20],  as  well  as  psychology  information,  reflecting  the
personalities of the agent, and social information, detailing the
relationships  between  agents  [21].  The  choice  of  information
to  profile  the  agent  is  largely  determined  by  the  specific
application  scenarios.  For  instance,  if  the  application  aims  to
study  human  cognitive  process,  then  the  psychology
information  becomes  pivotal.  After  identifying  the  types  of
profile  information,  the  next  important  problem  is  to  create
specific  profiles  for  the  agents.  Existing  literature  commonly
employs the following three strategies.

Handcrafting  method:  in  this  method,  agent  profiles  are
manually  specified.  For  instance,  if  one  would  like  to  design
agents  with  different  personalities,  he  can  use “you  are  an
outgoing person” or “you are an introverted person” to profile
the agent. The handcrafting method has been leveraged in a lot
of  previous  work to  indicate  the  agent  profiles.  For  example,
Generative Agent [22] describes the agent by the information
like  name,  objectives,  and  relationships  with  other  agents.
MetaGPT  [23],  ChatDev  [18],  and  Self-collaboration  [24]
predefine  various  roles  and  their  corresponding
responsibilities  in  software  development,  manually  assigning
distinct  profiles  to  each  agent  to  facilitate  collaboration.
PTLLM  [25]  aims  to  explore  and  quantify  personality  traits
displayed  in  texts  generated  by  LLMs.  This  method  guides
LLMs  in  generating  diverse  responses  by  manfully  defining
various  agent  characters  through  the  use  of  personality
assessment  tools  such  as  IPIP-NEO  [26]  and  BFI  [27].  [28]
studies the toxicity of the LLM output by manually prompting
LLMs with different roles, such as politicians, journalists and
businesspersons.  In  general,  the  handcrafting  method  is  very
flexible,  since  one  can  assign  any  profile  information  to  the
agents.  However,  it  can  be  also  labor-intensive,  particularly
when dealing with a large number of agents.

LLM-generation method: in this method, agent profiles are
automatically  generated  based  on  LLMs.  Typically,  it  begins
by  indicating  the  profile  generation  rules,  elucidating  the

composition  and  attributes  of  the  agent  profiles  within  the
target  population.  Then,  one  can  optionally  specify  several
seed  agent  profiles  to  serve  as  few-shot  examples.  At  last,
LLMs  are  leveraged  to  generate  all  the  agent  profiles.  For
example,  RecAgent  [21]  first  creates  seed  profiles  for  a  few
number of agents by manually crafting their backgrounds like
age,  gender,  personal  traits,  and  movie  preferences.  Then,  it
leverages  ChatGPT to  generate  more  agent  profiles  based  on
the  seed  information.  The  LLM-generation  method  can  save
significant time when the number of agents is large, but it may
lack precise control over the generated profiles.

Dataset  alignment  method:  in  this  method,  the  agent
profiles  are obtained from real-world datasets.  Typically,  one
can  first  organize  the  information  about  real  humans  in  the
datasets into natural language prompts, and then leverage it to
profile  the  agents.  For  instance,  in  [29],  the  authors  assign
roles to GPT-3 based on the demographic backgrounds (such
as  race/ethnicity,  gender,  age,  and  state  of  residence)  of
participants  in  the  American  National  Election  Studies
(ANES).  They  subsequently  investigate  whether  GPT-3  can
produce  similar  results  to  those  of  real  humans.  The  dataset
alignment method accurately captures the attributes of the real
population,  thereby  making  the  agent  behaviors  more
meaningful and reflective of real-world scenarios.

Remark. While most of the previous work leverage the above
profile  generation  strategies  independently,  we  argue  that
combining  them  may  yield  additional  benefits.  For  example,
in  order  to  predict  social  developments  via  agent  simulation,
one can leverage real-world datasets to profile a subset of the
agents,  thereby  accurately  reflecting  the  current  social  status.
Subsequently, roles that do not exist in the real world but may
emerge  in  the  future  can  be  manually  assigned  to  the  other
agents,  enabling  the  prediction  of  future  social  development.
Beyond this example, one can also flexibly combine the other
strategies.  The  profile  module  serves  as  the  foundation  for
agent  design,  exerting  significant  influence  on  the  agent
memorization, planning, and action procedures.

 

 
Fig. 2    A unified framework for the architecture design of LLM-based autonomous agent
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 2.1.2    Memory module
The memory module plays a very important role in the agent
architecture  design.  It  stores  information  perceived  from  the
environment and leverages the recorded memories to facilitate
future  actions.  The  memory  module  can  help  the  agent  to
accumulate  experiences,  self-evolve,  and  behave  in  a  more
consistent,  reasonable,  and  effective  manner.  This  section
provides  a  comprehensive  overview  of  the  memory  module,
focusing on its structures, formats, and operations.

Memory  structures:  LLM-based  autonomous  agents
usually  incorporate  principles  and  mechanisms  derived  from
cognitive  science  research  on  human  memory  processes.
Human  memory  follows  a  general  progression  from  sensory
memory that registers perceptual inputs, to short-term memory
that  maintains  information  transiently,  to  long-term  memory
that  consolidates  information  over  extended  periods.  When
designing  the  agent  memory  structures,  researchers  take
inspiration from these aspects of human memory. In specific,
short-term  memory  is  analogous  to  the  input  information
within  the  context  window  constrained  by  the  transformer
architecture. Long-term memory resembles the external vector
storage  that  agents  can  rapidly  query  and  retrieve  from  as
needed.  In  the  following,  we  introduce  two  commonly  used
memory  structures  based  on  the  short-  and  long-term
memories.

● Unified memory. This structure only simulates the human
shot-term  memory,  which  is  usually  realized  by  in-context
learning,  and the  memory information is  directly  written  into
the  prompts.  For  example,  RLP [30]  is  a  conversation  agent,
which  maintains  internal  states  for  the  speaker  and  listener.
During each round of conversation, these states serve as LLM
prompts,  functioning  as  the  agent’s  short-term  memory.
SayPlan  [31]  is  an  embodied  agent  specifically  designed  for
task planning. In this agent, the scene graphs and environment
feedback serve as  the agent’s  short-term memory,  guiding its
actions.  CALYPSO  [32]  is  an  agent  designed  for  the  game
Dungeons  &  Dragons,  which  can  assist  Dungeon  Masters  in
the creation and narration of stories. Its short-term memory is
built  upon  scene  descriptions,  monster  information,  and
previous summaries. DEPS [33] is also a game agent, but it is
developed  for  Minecraft.  The  agent  initially  generates  task
plans  and  then  utilizes  them  to  prompt  LLMs,  which  in  turn
produce  actions  to  complete  the  task.  These  plans  can  be
deemed  as  the  agent’s  short-term  memory.  In  practice,
implementing  short-term  memory  is  straightforward  and  can
enhance  an  agent’s  ability  to  perceive  recent  or  contextually
sensitive  behaviors  and  observations.  However,  due  to  the
limitation  of  context  window  of  LLMs,  it’s  hard  to  put  all
memories into prompt, which may degrade the performance of
agents.  This  method  has  high  requirements  on  the  window
length  of  LLMs  and  the  ability  to  handle  long  contexts.
Therefore,  many  researchers  resort  to  hybrid  memory  to
alleviate  this  question.  However,  the  limited  context  window
of LLMs restricts incorporating comprehensive memories into
prompts, which can impair agent performance. This challenge
necessitates LLMs with larger context windows and the ability
to  handle  extended  contexts.  Consequently,  numerous
researchers  turn  to  hybrid  memory  systems  to  mitigate  this

issue.
●  Hybrid  memory.  This  structure  explicitly  models  the

human  short-term  and  long-term  memories.  The  short-term
memory  temporarily  buffers  recent  perceptions,  while  long-
term  memory  consolidates  important  information  over  time.
For  instance,  Generative  Agent  [20]  employs  a  hybrid
memory structure to facilitate agent behaviors. The short-term
memory  contains  the  context  information  about  the  agent
current  situations,  while  the  long-term  memory  stores  the
agent  past  behaviors  and  thoughts,  which  can  be  retrieved
according  to  the  current  events.  AgentSims  [34]  also
implements  a  hybrid  memory  architecture.  The  information
provided  in  the  prompt  can  be  considered  as  short-term
memory. In order to enhance the storage capacity of memory,
the authors propose a long-term memory system that utilizes a
vector  database,  facilitating  efficient  storage  and  retrieval.
Specifically,  the  agent’s  daily  memories  are  encoded  as
embeddings  and  stored  in  the  vector  database.  If  the  agent
needs  to  recall  its  previous  memories,  the  long-term memory
system  retrieves  relevant  information  using  embedding
similarities.  This  process  can  improve  the  consistency  of  the
agent’s behavior. In GITM [16], the short-term memory stores
the  current  trajectory,  and  the  long-term  memory  saves
reference plans summarized from successful prior trajectories.
Long-term  memory  provides  stable  knowledge,  while  short-
term memory allows flexible planning. Reflexion [12] utilizes
a  short-term  sliding  window  to  capture  recent  feedback  and
incorporates  persistent  long-term  storage  to  retain  condensed
insights.  This  combination  allows  for  the  utilization  of  both
detailed  immediate  experiences  and  high-level  abstractions.
SCM  [35]  selectively  activates  the  most  relevant  long-term
knowledge  to  combine  with  short-term  memory,  enabling
reasoning over complex contextual dialogues. SimplyRetrieve
[36]  utilizes  user  queries  as  short-term  memory  and  stores
long-term  memory  using  external  knowledge  bases.  This
design  enhances  the  model  accuracy  while  guaranteeing  user
privacy.  MemorySandbox  [37]  implements  long-term  and
short-term memory by utilizing a 2D canvas to store memory
objects,  which  can  then  be  accessed  throughout  various
conversations.  Users  can  create  multiple  conversations  with
different agents on the same canvas, facilitating the sharing of
memory objects  through a  simple  drag-and-drop interface.  In
practice,  integrating  both  short-term and  long-term memories
can  enhance  an  agent’s  ability  for  long-range  reasoning  and
accumulation  of  valuable  experiences,  which  are  crucial  for
accomplishing tasks in complex environments.

Remark.  Careful  readers  may  find  that  there  may  also  exist
another  type  of  memory  structure,  that  is,  only  based  on  the
long-term  memory.  However,  we  find  that  such  type  of
memory is rarely documented in the literature. Our speculation
is  that  the  agents  are  always  situated  in  continuous  and
dynamic environments,  with  consecutive  actions  displaying a
high correlation. Therefore, the capture of short-term memory
is very important and usually cannot be disregarded.

Memory  formats:  In  addition  to  the  memory  structure,
another perspective to analyze the memory module is based on
the  formats  of  the  memory  storage  medium,  for  example,
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natural  language  memory  or  embedding  memory.  Different
memory formats possess distinct strengths and are suitable for
various  applications.  In  the  following,  we  introduce  several
representative memory formats.

●  Natural  languages.  In  this  format,  memory  information
such  as  the  agent  behaviors  and  observations  are  directly
described  using  raw  natural  language.  This  format  possesses
several  strengths.  Firstly,  the  memory  information  can  be
expressed in a flexible and understandable manner. Moreover,
it  retains  rich  semantic  information  that  can  provide
comprehensive  signals  to  guide  agent  behaviors.  In  the
previous work,  Reflexion [12] stores experiential  feedback in
natural  language  within  a  sliding  window.  Voyager  [38]
employs  natural  language  descriptions  to  represent  skills
within  the  Minecraft  game,  which  are  directly  stored  in
memory.

●  Embeddings.  In  this  format,  memory  information  is
encoded  into  embedding  vectors,  which  can  enhance  the
memory  retrieval  and  reading  efficiency.  For  instance,
MemoryBank  [39]  encodes  each  memory  segment  into  an
embedding  vector,  which  creates  an  indexed  corpus  for
retrieval.  [16]  represents  reference  plans  as  embeddings  to
facilitate  matching  and  reuse.  Furthermore,  ChatDev  [18]
encodes dialogue history into vectors for retrieval.

● Databases. In this format, memory information is stored in
databases,  allowing  the  agent  to  manipulate  memories
efficiently  and  comprehensively.  For  example,  ChatDB  [40]
uses a database as a symbolic memory module. The agent can
utilize SQL statements to precisely add, delete, and revise the
memory information. In DB-GPT [41], the memory module is
constructed  based  on  a  database.  To  more  intuitively  operate
the  memory  information,  the  agents  are  fine-tuned  to
understand and execute SQL queries, enabling them to interact
with databases using natural language directly.

●  Structured  lists.  In  this  format,  memory  information  is
organized  into  lists,  and  the  semantic  of  memory  can  be
conveyed  in  an  efficient  and  concise  manner.  For  instance,
GITM  [16]  stores  action  lists  for  sub-goals  in  a  hierarchical
tree structure. The hierarchical structure explicitly captures the
relationships  between  goals  and  corresponding  plans.  RET-
LLM  [42]  initially  converts  natural  language  sentences  into
triplet phrases, and subsequently stores them in memory.

Remark.  Here  we  only  show  several  representative  memory
formats,  but  it  is  important  to  note  that  there  are  many
uncovered ones, such as the programming code used by [38].
Moreover, it  should be emphasized that these formats are not
mutually exclusive; many models incorporate multiple formats
to  concurrently  harness  their  respective  benefits.  A  notable
example is the memory module of GITM [16], which utilizes
a  key-value  list  structure.  In  this  structure,  the  keys  are
represented by embedding vectors, while the values consist of
raw  natural  languages.  The  use  of  embedding  vectors  allows
for efficient retrieval of memory records.  By utilizing natural
languages,  the  memory  contents  become  highly
comprehensive, enabling more informed agent actions.

Above,  we  mainly  discuss  the  internal  designs  of  the
memory  module.  In  the  following,  we  turn  our  focus  to
memory  operations,  which  are  used  to  interact  with  external

environments.
Memory  operations:  The  memory  module  plays  a  critical

role  in  allowing  the  agent  to  acquire,  accumulate,  and  utilize
significant  knowledge  by  interacting  with  the  environment.
The  interaction  between  the  agent  and  the  environment  is
accomplished  through  three  crucial  memory  operations:
memory reading,  memory writing,  and memory reflection.  In
the following, we introduce these operations more in detail.

●  Memory reading.  The objective  of  memory reading is  to
extract  meaningful  information  from  memory  to  enhance  the
agent’s  actions.  For  example,  using the  previously  successful
actions  to  achieve  similar  goals  [16].  The  key  of  memory
reading  lies  in  how  to  extract  valuable  information  from
history  actions.  Usually,  there  three  commonly  used  criteria
for information extraction, that is, the recency, relevance, and
importance [20]. Memories that are more recent, relevant, and
important  are  more  likely  to  be  extracted.  Formally,  we
conclude  the  following  equation  from  existing  literature  for
memory information extraction:
 

m∗ = arg min
m∈M
αsrec(q,m)+βsrel(q,m)+γsimp(m), (1)

q
M

srec(·) srel(·) simp(·)

m
srel(q,m)

simp

q α β
γ

α = γ = 0
srel

α = β = γ = 1.0

where  is  the  query,  for  example,  the  task  that  the  agent
should address or the context in which the agent is situated. 
is  the  set  of  all  memories. , ,  and  are  the
scoring  functions  for  measuring  the  recency,  relevance,  and
importance of the memory . These scoring functions can be
implemented  using  various  methods,  for  example, 
can be realized based on LSH, ANNOY, HNSW, FAISS, and
so on. It should be noted that  only reflects the characters
of the memory itself, thus it is unrelated to the query . , ,
and  are  balancing  parameters.  By  assigning  them  with
different  values,  one  can  obtain  various  memory  reading
strategies.  For  example,  by  setting ,  many  studies
[16,30,38,42]  only  consider  the  relevance  score  for
memory  reading.  By  assigning ,  [20]  equally
weights all the above three metrics to extract information from
memory.

●  Memory  writing.  The  purpose  of  memory  writing  is  to
store information about the perceived environment in memory.
Storing valuable information in memory provides a foundation
for retrieving informative memories in the future, enabling the
agent  to  act  more  efficiently  and  rationally.  During  the
memory writing process, there are two potential problems that
should  be  carefully  addressed.  On  one  hand,  it  is  crucial  to
address  how  to  store  information  that  is  similar  to  existing
memories  (i.e.,  memory  duplicated).  On  the  other  hand,  it  is
important  to  consider  how  to  remove  information  when  the
memory  reaches  its  storage  limit  (i.e.,  memory  overflow).  In
the  following,  we  discuss  these  problems  more  in  detail.
(1)  Memory  duplicated.  To  incorporate  similar  information,
people  have  developed  various  methods  for  integrating  new
and  previous  records.  For  instance,  in  [7],  the  successful
action  sequences  related  to  the  same sub-goal  are  stored  in  a
list. Once the size of the list reaches N(=5), all the sequences
in  it  are  condensed  into  a  unified  plan  solution  using  LLMs.
The  original  sequences  in  the  memory  are  replaced  with  the
newly  generated  one.  Augmented  LLM  [43]  aggregates
duplicate  information  via  count  accumulation,  avoiding
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redundant  storage.  (2)  Memory  overflow.  In  order  to  write
information  into  the  memory  when  it  is  full,  people  design
different  methods  to  delete  existing  information  to  continue
the  memorizing  process.  For  example,  in  ChatDB  [40],
memories can be explicitly deleted based on user commands.
RET-LLM  [42]  uses  a  fixed-size  buffer  for  memory,
overwriting  the  oldest  entries  in  a  first-in-first-out  (FIFO)
manner.

● Memory reflection. Memory reflection emulates humans’
ability to witness and evaluate their own cognitive, emotional,
and  behavioral  processes.  When  adapted  to  agents,  the
objective  is  to  provide  agents  with  the  capability  to
independently  summarize  and  infer  more  abstract,  complex
and  high-level  information.  More  specifically,  in  Generative
Agent [20], the agent has the capability to summarize its past
experiences stored in memory into broader and more abstract
insights.  To  begin  with,  the  agent  generates  three  key
questions based on its recent memories. Then, these questions
are used to query the memory to obtain relevant information.
Building  upon  the  acquired  information,  the  agent  generates
five  insights,  which  reflect  the  agent  high-level  ideas.  For
example, the low-level memories “Klaus Mueller is writing a
research paper”, “Klaus Mueller is engaging with a librarian to
further  his  research”,  and “Klaus  Mueller  is  conversing  with
Ayesha  Khan  about  his  research” can  induce  the  high-level
insight “Klaus  Mueller  is  dedicated  to  his  research”.  In
addition,  the  reflection  process  can  occur  hierarchically,
meaning  that  the  insights  can  be  generated  based  on  existing
insights.  In  GITM  [16],  the  actions  that  successfully
accomplish  the  sub-goals  are  stored  in  a  list.  When  the  list
contains more than five elements, the agent summarizes them
into  a  common  and  abstract  pattern  and  replaces  all  the
elements.  In  ExpeL  [44],  two  approaches  are  introduced  for
the  agent  to  acquire  reflection.  Firstly,  the  agent  compares
successful  or  failed  trajectories  within  the  same  task.
Secondly,  the  agent  learns  from  a  collection  of  successful
trajectories to gain experiences.

A  significant  distinction  between  traditional  LLMs and  the
agents is that the latter must possess the capability to learn and
complete  tasks  in  dynamic  environments.  If  we  consider  the
memory module as responsible for managing the agents’ past
behaviors,  it  becomes  essential  to  have  another  significant
module  that  can  assist  the  agents  in  planning  their  future
actions.  In  the  following,  we  present  an  overview  of  how
researchers design the planning module.

 2.1.3    Planning module
When faced with a complex task, humans tend to deconstruct
it  into  simpler  subtasks  and  solve  them  individually.  The
planning  module  aims  to  empower  the  agents  with  such
human capability, which is expected to make the agent behave
more  reasonably,  powerfully,  and  reliably.  In  specific,  we
summarize  existing  studies  based  on  whether  the  agent  can
receive feedback in the planing process, which are detailed as
follows:

Planning without feedback:  In  this  method,  the  agents  do
not  receive  feedback  that  can  influence  its  future  behaviors
after  taking  actions.  In  the  following,  we  present  several

representative strategies.
●  Single-path  reasoning.  In  this  strategy,  the  final  task  is

decomposed  into  several  intermediate  steps.  These  steps  are
connected  in  a  cascading  manner,  with  each  step  leading  to
only one subsequent step. LLMs follow these steps to achieve
the  final  goal.  Specifically,  Chain  of  Thought  (CoT)  [45]
proposes  inputting  reasoning  steps  for  solving  complex
problems  into  the  prompt.  These  steps  serve  as  examples  to
inspire LLMs to plan and act in a step-by-step manner. In this
method, the plans are created based on the inspiration from the
examples  in  the  prompts.  Zero-shot-CoT  [46]  enables  LLMs
to generate task reasoning processes by prompting them with
trigger  sentences  like “think  step  by  step”.  Unlike  CoT,  this
method  does  not  incorporate  reasoning  steps  as  examples  in
the  prompts.  Re-Prompting  [47]  involves  checking  whether
each step meets  the necessary prerequisites  before generating
a plan. If a step fails to meet the prerequisites, it introduces a
prerequisite error message and prompts the LLM to regenerate
the  plan.  ReWOO  [48]  introduces  a  paradigm  of  separating
plans  from  external  observations,  where  the  agents  first
generate  plans  and  obtain  observations  independently,  and
then  combine  them  together  to  derive  the  final  results.
HuggingGPT  [13]  first  decomposes  the  task  into  many  sub-
goals,  and  then  solves  each  of  them  based  on  Huggingface.
Different  from  CoT  and  Zero-shot-CoT,  which  outcome  all
the  reasoning  steps  in  a  one-shot  manner,  ReWOO  and
HuggingGPT produce the results by accessing LLMs multiply
times.

● Multi-path reasoning. In this strategy, the reasoning steps
for  generating  the  final  plans  are  organized  into  a  tree-like
structure.  Each  intermediate  step  may  have  multiple
subsequent  steps.  This  approach  is  analogous  to  human
thinking,  as  individuals  may  have  multiple  choices  at  each
reasoning step. In specific, Self-consistent CoT (CoT-SC) [49]
believes  that  each  complex  problem  has  multiple  ways  of
thinking  to  deduce  the  final  answer.  Thus,  it  starts  by
employing  CoT  to  generate  various  reasoning  paths  and
corresponding  answers.  Subsequently,  the  answer  with  the
highest  frequency  is  chosen  as  the  final  output.  Tree  of
Thoughts  (ToT)  [50]  is  designed  to  generate  plans  using  a
tree-like reasoning structure. In this approach, each node in the
tree  represents  a “thought,” which  corresponds  to  an
intermediate  reasoning  step.  The  selection  of  these
intermediate  steps  is  based  on  the  evaluation  of  LLMs.  The
final  plan  is  generated  using  either  the  breadth-first  search
(BFS)  or  depth-first  search  (DFS)  strategy.  Comparing  with
CoT-SC,  which  generates  all  the  planed  steps  together,  ToT
needs  to  query  LLMs  for  each  reasoning  step.  In  RecMind
[51],  the  authors  designed  a  self-inspiring  mechanism,  where
the discarded historical information in the planning process is
also leveraged to derive new reasoning steps. In GoT [52], the
authors  expand  the  tree-like  reasoning  structure  in  ToT  to
graph  structures,  resulting  in  more  powerful  prompting
strategies. In AoT [53], the authors design a novel method to
enhance  the  reasoning  processes  of  LLMs  by  incorporating
algorithmic  examples  into  the  prompts.  Remarkably,  this
method  only  needs  to  query  LLMs  for  only  one  or  a  few
times. In [54], the LLMs are leveraged as zero-shot planners.
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At  each  planning  step,  they  first  generate  multiple  possible
next  steps,  and  then  determine  the  final  one  based  on  their
distances to admissible actions. [55] further improves [54] by
incorporating  examples  that  are  similar  to  the  queries  in  the
prompts.  RAP  [56]  builds  a  world  model  to  simulate  the
potential  benefits  of  different  plans  based  on  Monte  Carlo
Tree Search (MCTS), and then, the final plan is generated by
aggregating  multiple  MCTS  iterations.  To  enhance
comprehension,  we  provide  an  illustration  comparing  the
strategies of single-path and multi-path reasoning in Fig. 3.

●  External  planner.  Despite  the  demonstrated  power  of
LLMs  in  zero-shot  planning,  effectively  generating  plans  for
domain-specific  problems  remains  highly  challenging.  To
address  this  challenge,  researchers  turn  to  external  planners.
These  tools  are  well-developed  and  employ  efficient  search
algorithms to rapidly identify correct,  or  even optimal,  plans.
In specific, LLM+P [57] first transforms the task descriptions
into  formal  Planning  Domain  Definition  Languages  (PDDL),
and  then  it  uses  an  external  planner  to  deal  with  the  PDDL.
Finally, the generated results are transformed back into natural
language by LLMs. Similarly, LLM-DP [58] utilizes LLMs to
convert the observations, the current world state, and the target
objectives  into  PDDL. Subsequently,  this  transformed data  is
passed to an external planner, which efficiently determines the
final action sequence. CO-LLM [22] demonstrates that LLMs
is good at  generating high-level plans,  but struggle with low-
level  control.  To  address  this  limitation,  a  heuristically
designed external low-level planner is employed to effectively
execute actions based on high-level plans.

Planning with feedback: In many real-world scenarios, the
agents  need to  make long-horizon planning to  solve complex
tasks.  When  facing  these  tasks,  the  above  planning  modules
without  feedback  can  be  less  effective  due  to  the  following
reasons:  firstly,  generating  a  flawless  plan  directly  from  the
beginning is extremely difficult as it needs to consider various
complex  preconditions.  As  a  result,  simply  following  the
initial  plan  often  leads  to  failure.  Moreover,  the  execution  of
the  plan  may  be  hindered  by  unpredictable  transition
dynamics,  rendering  the  initial  plan  non-executable.
Simultaneously, when examining how humans tackle complex
tasks, we find that individuals may iteratively make and revise

their  plans  based  on  external  feedback.  To  simulate  such
human  capability,  researchers  have  designed  many  planning
modules,  where  the  agent  can  receive  feedback  after  taking
actions.  The  feedback  can  be  obtained  from  environments,
humans, and models, which are detailed in the following.

● Environmental  feedback.  This  feedback is  obtained from
the  objective  world  or  virtual  environment.  For  instance,  it
could  be  the  game’s  task  completion  signals  or  the
observations made after the agent takes an action. In specific,
ReAct  [59]  proposes  constructing prompts  using thought-act-
observation triplets. The thought component aims to facilitate
high-level reasoning and planning for guiding agent behaviors.
The  act  represents  a  specific  action  taken  by  the  agent.  The
observation corresponds to the outcome of the action, acquired
through external feedback, such as search engine results.  The
next thought is influenced by the previous observations, which
makes the generated plans more adaptive to the environment.
Voyager  [38]  makes  plans  by  incorporating  three  types  of
environment  feedback  including  the  intermediate  progress  of
program  execution,  the  execution  error  and  self-verification
results.  These signals can help the agent to make better plans
for  the  next  action.  Similar  to  Voyager,  Ghost  [16]  also
incorporates  feedback  into  the  reasoning  and  action  taking
processes. This feedback encompasses the environment states
as  well  as  the  success  and  failure  information  for  each
executed  action.  SayPlan  [31]  leverages  environmental
feedback derived from a scene graph simulator to validate and
refine  its  strategic  formulations.  This  simulator  is  adept  at
discerning  the  outcomes  and  state  transitions  subsequent  to
agent  actions,  facilitating  SayPlan’s  iterative  recalibration  of
its  strategies until  a  viable plan is  ascertained.  In DEPS [33],
the  authors  argue  that  solely  providing  information  about  the
completion  of  a  task  is  often  inadequate  for  correcting
planning  errors.  Therefore,  they  propose  informing  the  agent
about the detail reasons for task failure, allowing them to more
effectively  revise  their  plans.  LLM-Planner  [60]  introduces  a
grounded  re-planning  algorithm  that  dynamically  updates
plans  generated  by  LLMs  when  encountering  object
mismatches  and  unattainable  plans  during  task  completion.
Inner Monologue [61] provides three types of feedback to the
agent after it takes actions: (1) whether the task is successfully

 

 
Fig. 3    Comparison between the strategies of single-path and multi-path reasoning. LMZSP is the model proposed in [54]
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completed, (2) passive scene descriptions, and (3) active scene
descriptions.  The  former  two  are  generated  from  the
environments,  which  makes  the  agent  actions  more
reasonable.

● Human feedback. In addition to obtaining feedback from
the  environment,  directly  interacting  with  humans  is  also  a
very  intuitive  strategy  to  enhance  the  agent  planning
capability.  The  human  feedback  is  a  subjective  signal.  It  can
effectively  make  the  agent  align  with  the  human  values  and
preferences,  and  also  help  to  alleviate  the  hallucination
problem. In Inner Monologue [61], the agent aims to perform
high-level  natural  language  instructions  in  a  3D  visual
environment.  It  is  given  the  capability  to  actively  solicit
feedback from humans regarding scene descriptions. Then, the
agent  incorporates  the  human  feedback  into  its  prompts,
enabling more informed planning and reasoning. In the above
cases,  we  can  see,  different  types  of  feedback  can  be
combined  to  enhance  the  agent  planning  capability.  For
example, Inner Monologue [61] collects both environment and
human feedback to facilitate the agent plans.

● Model  feedback.  Apart  from  the  aforementioned
environmental  and  human  feedback,  which  are  external
signals,  researchers  have  also  investigated  the  utilization  of
internal  feedback  from  the  agents  themselves.  This  type  of
feedback is usually generated based on pre-trained models. In
specific,  [62]  proposes  a  self-refine  mechanism.  This
mechanism  consists  of  three  crucial  components:  output,
feedback,  and  refinement.  Firstly,  the  agent  generates  an
output.  Then,  it  utilizes  LLMs  to  provide  feedback  on  the
output  and  offer  guidance  on  how  to  refine  it.  At  last,  the
output  is  improved  by  the  feedback  and  refinement.  This
output-feedback-refinement  process  iterates  until  reaching
some  desired  conditions.  SelfCheck  [63]  allows  agents  to
examine  and  evaluate  their  reasoning  steps  generated  at
various stages. They can then correct any errors by comparing
the  outcomes.  InterAct  [64]  uses  different  language  models
(such as ChatGPT and InstructGPT) as auxiliary roles, such as
checkers  and  sorters,  to  help  the  main  language  model  avoid
erroneous and inefficient actions. ChatCoT [65] utilizes model
feedback to improve the quality of its reasoning process. The
model  feedback  is  generated  by  an  evaluation  module  that
monitors  the  agent  reasoning  steps.  Reflexion  [12]  is
developed to enhance the agent’s planning capability through
detailed  verbal  feedback.  In  this  model,  the  agent  first
produces  an  action  based  on  its  memory,  and  then,  the
evaluator generates feedback by taking the agent trajectory as
input.  In  contrast  to  previous  studies,  where  the  feedback  is
given as a scalar value, this model leverages LLMs to provide
more  detailed  verbal  feedback,  which  can  provide  more
comprehensive supports for the agent plans.

Remark.  In  conclusion,  the  implementation  of  planning
module  without  feedback  is  relatively  straightforward.
However,  it  is  primarily  suitable  for  simple  tasks  that  only
require  a  small  number  of  reasoning  steps.  Conversely,  the
strategy of planning with feedback needs more careful designs
to  handle  the  feedback.  Nevertheless,  it  is  considerably  more
powerful and capable of effectively addressing complex tasks
that involve long-range reasoning.

 2.1.4    Action module
The  action  module  is  responsible  for  translating  the  agent’s
decisions into specific outcomes. This module is located at the
most  downstream  position  and  directly  interacts  with  the
environment.  It  is  influenced  by  the  profile,  memory,  and
planning  modules.  This  section  introduces  the  action  module
from four perspectives: (1) Action goal: what are the intended
outcomes  of  the  actions?  (2)  Action  production:  how are  the
actions  generated?  (3)  Action  space:  what  are  the  available
actions? (4) Action impact:  what are the consequences of the
actions? Among these perspectives, the first two focus on the
aspects  preceding  the  action  (“before-action” aspects),  the
third focuses on the action itself  (“in-action” aspect),  and the
fourth  emphasizes  the  impact  of  the  actions  (“after-action”
aspect).

Action  goal:  The  agent  can  perform  actions  with  various
objectives.  Here,  we present  several  representative  examples:
(1) Task Completion.  In  this  scenario,  the  agent’s  actions  are
aimed at accomplishing specific tasks, such as crafting an iron
pickaxe in Minecraft [38] or completing a function in software
development  [18].  These  actions  usually  have  well-defined
objectives,  and  each  action  contributes  to  the  completion  of
the  final  task.  Actions  aimed  at  this  type  of  goal  are  very
common  in  existing  literature.  (2) Communication.  In  this
case,  the  actions  are  taken  to  communicate  with  the  other
agents  or  real  humans  for  sharing  information  or
collaboration.  For  example,  the  agents  in  ChatDev  [18]  may
communicate  with  each  other  to  collectively  accomplish
software  development  tasks.  In  Inner  Monologue  [61],  the
agent  actively  engages  in  communication  with  humans  and
adjusts  its  action  strategies  based  on  human  feedback.
(3) Environment Exploration.  In this example, the agent aims
to  explore  unfamiliar  environments  to  expand  its  perception
and  strike  a  balance  between  exploring  and  exploiting.  For
instance,  the  agent  in  Voyager  [38]  may  explore  unknown
skills  in  their  task  completion process,  and continually  refine
the  skill  execution  code  based  on  environment  feedback
through trial and error.

Action  production:  Different  from  ordinary  LLMs,  where
the  model  input  and  output  are  directly  associated,  the  agent
may  take  actions  via  different  strategies  and  sources.  In  the
following,  we  introduce  two  types  of  commonly  used  action
production  strategies.  (1)  Action  via  memory  recollection.  In
this strategy, the action is generated by extracting information
from the agent memory according to the current task. The task
and the extracted memories are used as prompts to trigger the
agent  actions.  For  example,  in  Generative  Agents  [20],  the
agent  maintains  a  memory  stream,  and  before  taking  each
action,  it  retrieves  recent,  relevant  and  important  information
from the memory steam to guide the agent  actions.  In  GITM
[16],  in  order  to  achieve  a  low-level  sub-goal,  the  agent
queries  its  memory  to  determine  if  there  are  any  successful
experiences  related  to  the  task.  If  similar  tasks  have  been
completed  previously,  the  agent  invokes  the  previously
successful  actions  to  handle  the  current  task  directly.  In
collaborative agents such as ChatDev [18] and MetaGPT [23],
different  agents  may  communicate  with  each  other.  In  this
process, the conversation history in a dialog is remembered in
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the agent memories. Each utterance generated by the agent is
influenced  by  its  memory.  (2)  Action  via  plan  following.  In
this  strategy,  the  agent  takes  actions  following  its  pre-
generated plans. For instance, in DEPS [33], for a given task,
the  agent  first  makes  action  plans.  If  there  are  no  signals
indicating  plan  failure,  the  agent  will  strictly  adhere  to  these
plans.  In  GITM  [16],  the  agent  makes  high-level  plans  by
decomposing  the  task  into  many  sub-goals.  Based  on  these
plans,  the  agent  takes  actions  to  solve  each  sub-goal
sequentially to complete the final task.

Action  space:  Action  space  refers  to  the  set  of  possible
actions that can be performed by the agent. In general, we can
roughly  divide  these  actions  into  two  classes:  (1)  external
tools  and  (2)  internal  knowledge  of  the  LLMs.  In  the
following, we introduce these actions more in detail.

● External tools. While LLMs have been demonstrated to be
effective in accomplishing a large amount of  tasks,  they may
not  work  well  for  the  domains  which  need  comprehensive
expert  knowledge.  In  addition,  LLMs  may  also  encounter
hallucination  problems,  which  are  hard  to  be  resolved  by
themselves.  To  alleviate  the  above  problems,  the  agents  are
empowered  with  the  capability  to  call  external  tools  for
executing  action.  In  the  following,  we  present  several
representative  tools  which  have  been  exploited  in  the
literature.

(1)  APIs.  Leveraging  external  APIs  to  complement  and
expand action space is a popular paradigm in recent years. For
example,  HuggingGPT  [13]  leverages  the  models  on
HuggingFace  to  accomplish  complex  user  tasks.  [66,67]
propose  to  automatically  generate  queries  to  extract  relevant
content  from  external  Web  pages  when  responding  to  user
request.  TPTU  [67]  interfaces  with  both  Python  interpreters
and  LaTeX  compilers  to  execute  sophisticated  computations
such as square roots, factorials and matrix operations. Another
type of APIs is the ones that can be directly invoked by LLMs
based on natural language or code inputs. For instance, Gorilla
[68] is  a fine-tuned LLM designed to generate accurate input
arguments for API calls and mitigate the issue of hallucination
during external API invocations. ToolFormer [15] is an LLM-
based  tool  transformation  system  that  can  automatically
convert  a  given  tool  into  another  one  with  different
functionalities  or  formats  based  on  natural  language
instructions.  API-Bank  [69]  is  an  LLM-based  API
recommendation  agent  that  can  automatically  search  and
generate  appropriate  API  calls  for  various  programming
languages and domains. API-Bank also provides an interactive
interface for users to easily modify and execute the generated
API  calls.  ToolBench  [14]  is  an  LLM-based  tool  generation
system  that  can  automatically  design  and  implement  various
practical  tools  based  on  natural  language  requirements.  The
tools  generated  by  ToolBench  include  calculators,  unit
converters,  calendars,  maps,  charts,  etc.  RestGPT  [70]
connects  LLMs  with  RESTful  APIs,  which  follow  widely
accepted standards for Web services development, making the
resulting  program  more  compatible  with  real-world
applications.  TaskMatrix.AI  [71]  connects  LLMs  with
millions  of  APIs  to  support  task  execution.  At  its  core  lies  a
multimodal  conversational  foundational  model  that  interacts

with  users,  understands  their  goals  and  context,  and  then
produces executable code for particular tasks. All these agents
utilize  external  APIs  as  their  tools,  and  provide  interactive
interfaces for users to easily modify and execute the generated
or transformed tools.

(2)  Databases  &  Knowledge  Bases.  Integrating  external
database or  knowledge base enables  agents  to  obtain  specific
domain information for generating more realistic actions.  For
example,  ChatDB  [40]  employs  SQL  statements  to  query
databases,  facilitating  actions  by  the  agents  in  a  logical
manner.  MRKL  [72]  and  OpenAGI  [73]  incorporate  various
expert  systems  such  as  knowledge  bases  and  planners  to
access domain-specific information.

(3)  External  models.  Previous  studies  often  utilize  external
models to expand the range of possible actions. In comparison
to APIs, external models typically handle more complex tasks.
Each  external  model  may  correspond  to  multiple  APIs.  For
example,  to  enhance  the  text  retrieval  capability,
MemoryBank  [39]  incorporates  two  language  models:  one  is
designed  to  encode  the  input  text,  while  the  other  is
responsible for matching the query statements. ViperGPT [74]
firstly  uses  Codex,  which  is  implemented  based  on  language
model,  to  generate  Python  code  from  text  descriptions,  and
then executes the code to complete the given tasks. TPTU [67]
incorporates  various  LLMs  to  accomplish  a  wide  range  of
language generation tasks such as generating code, producing
lyrics,  and more.  ChemCrow [75] is  an LLM-based chemical
agent  designed  to  perform  tasks  in  organic  synthesis,  drug
discovery,  and  material  design.  It  utilizes  seventeen  expert-
designed  models  to  assist  its  operations.  MM-REACT  [76]
integrates  various  external  models,  such  as  VideoBERT  for
video  summarization,  X-decoder  for  image  generation,  and
SpeechBERT for audio processing, enhancing its capability in
diverse multimodal scenarios.

● Internal knowledge. In addition to utilizing external tools,
many agents rely solely on the internal knowledge of LLMs to
guide  their  actions.  We  now  present  several  crucial
capabilities  of  LLMs  that  can  support  the  agent  to  behave
reasonably  and  effectively.  (1)  Planning  capability.  Previous
work  has  demonstrated  that  LLMs  can  be  used  as  decent
planers  to  decompose  complex  task  into  simpler  ones  [45].
Such  capability  of  LLMs  can  be  even  triggered  without
incorporating  examples  in  the  prompts  [46].  Based  on  the
planning capability of LLMs, DEPS [33] develops a Minecraft
agent,  which  can  solve  complex  task  via  sub-goal
decomposition.  Similar  agents  like  GITM  [16]  and  Voyager
[38]  also  heavily  rely  on  the  planning  capability  of  LLMs to
successfully  complete  different  tasks.  (2)  Conversation
capability.  LLMs  can  usually  generate  high-quality
conversations.  This  capability  enables  the  agent  to  behave
more  like  humans.  In  the  previous  work,  many  agents  take
actions based on the strong conversation capability of LLMs.
For example, in ChatDev [18], different agents can discuss the
software  developing  process,  and  even  can  make  reflections
on  their  own  behaviors.  In  RLP  [30],  the  agent  can
communicate  with  the  listeners  based  on  their  potential
feedback  on  the  agent’s  utterance.  (3)  Common  sense
understanding  capability.  Another  important  capability  of
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LLMs  is  that  they  can  well  comprehend  human  common
sense.  Based  on  this  capability,  many  agents  can  simulate
human  daily  life  and  make  human-like  decisions.  For
example,  in  Generative  Agent,  the  agent  can  accurately
understand its current state, the surrounding environment, and
summarize  high-level  ideas  based  on  basic  observations.
Without the common sense understanding capability of LLMs,
these  behaviors  cannot  be  reliably  simulated.  Similar
conclusions  may  also  apply  to  RecAgent  [21]  and  S3 [77],
where  the  agents  aim  to  simulate  user  recommendation  and
social behaviors.

Action impact: Action impact refers to the consequences of
the action. In fact, the action impact can encompass numerous
instances,  but  for  brevity,  we  only  provide  a  few  examples.
(1)  Changing  environments.  Agents  can  directly  alter
environment states by actions, such as moving their positions,
collecting  items,  and  constructing  buildings.  For  instance,  in
GITM [16]  and  Voyager  [38],  the  environments  are  changed
by the  actions  of  the  agents  in  their  task  completion process.
For  example,  if  the  agent  mines  three  woods,  then  they  may
disappear  in  the  environments.  (2)  Altering  internal  states.
Actions  taken  by  the  agent  can  also  change  the  agent  itself,
including  updating  memories,  forming  new  plans,  acquiring
novel  knowledge,  and  more.  For  example,  in  Generative
Agents  [20],  memory  streams  are  updated  after  performing
actions within the system. SayCan [78] enables agents to take
actions  to  update  understandings  of  the  environment.
(3)  Triggering  new  actions.  In  the  task  completion  process,
one  agent  action  can  be  triggered  by  another  one.  For
example,  Voyager  [38]  constructs  buildings  once  it  has
gathered all the necessary resources.

 2.2    Agent capability acquisition
In the above sections,  we mainly focus on how to design the
agent  architecture  to  better  inspire  the  capability  of  LLMs to
make  it  qualified  for  accomplishing  tasks  like  humans.  The
architecture  functions  as  the “hardware” of  the  agent.
However,  relying  solely  on  the  hardware  is  insufficient  for
achieving  effective  task  performance.  This  is  because  the
agent  may  lack  the  necessary  task-specific  capabilities,  skills
and  experiences,  which  can  be  regarded  as “software”
resources.  In  order  to  equip  the  agent  with  these  resources,
various strategies have been devised. Generally, we categorize
these strategies into two classes based on whether they require
fine-tuning of the LLMs. In the following, we introduce each
of them more in detail.

Capability acquisition with fine-tuning: A straightforward
method to enhance the agent capability for task completion is
fine-tuning  the  agent  based  on  task-dependent  datasets.
Generally,  the  datasets  can  be  constructed  based  on  human
annotation,  LLM  generation  or  collected  from  real-world
applications.  In  the  following,  we  introduce  these  methods
more in detail.

●  Fine-tuning  with  human annotated  datasets.  To  fine-tune
the  agent,  utilizing  human  annotated  datasets  is  a  versatile
approach  that  can  be  employed  in  various  application
scenarios. In this approach, researchers first design annotation
tasks and then recruit workers to complete them. For example,

in  CoH  [79],  the  authors  aim  to  align  LLMs  with  human
values  and  preferences.  Different  from  the  other  models,
where  the  human  feedback  is  leveraged  in  a  simple  and
symbolic  manner,  this  method  converts  the  human  feedback
into  detailed  comparison  information  in  the  form  of  natural
languages.  The  LLMs  are  directly  fine-tuned  based  on  these
natural language datasets. In RET-LLM [42], in order to better
convert natural languages into structured memory information,
the  authors  fine-tune  LLMs  based  on  a  human  constructed
dataset, where each sample is a “triplet-natural language” pair.
In  WebShop [80],  the  authors  collect  1.18  million  real-world
products form amazon.com, and put them onto a simulated e-
commerce website, which contains several carefully designed
human shopping scenarios. Based on this website, the authors
recruit 13 workers to collect a real-human behavior dataset. At
last, three methods based on heuristic rules, imitation learning
and  reinforcement  learning  are  trained  based  on  this  dataset.
Although the authors do not fine-tune LLM-based agents, we
believe that the dataset proposed in this paper holds immense
potential  to  enhance  the  capabilities  of  agents  in  the  field  of
Web  shopping.  In  EduChat  [81],  the  authors  aim  to  enhance
the  educational  functions  of  LLMs,  such  as  open-domain
question  answering,  essay  assessment,  Socratic  teaching,  and
emotional  support.  They  fine-tune  LLMs  based  on  human
annotated  datasets  that  cover  various  educational  scenarios
and tasks.  These datasets  are  manually evaluated and curated
by  psychology  experts  and  frontline  teachers.  SWIFTSAGE
[82]  is  an  agent  influenced  by  the  dual-process  theory  of
human cognition [83], which is effective for solving complex
interactive  reasoning  tasks.  In  this  agent,  the  SWIFT module
constitutes a compact encoder-decoder language model, which
is fine-tuned using human-annotated datasets.

●  Fine-tuning  with  LLM  generated  datasets.  Building
human annotated dataset needs to recruit people, which can be
costly,  especially when one needs to annotate a large amount
of  samples.  Considering  that  LLMs  can  achieve  human-like
capabilities  in  a  wide  range  of  tasks,  a  natural  idea  is  using
LLMs  to  accomplish  the  annotation  task.  While  the  datasets
produced from this method can be not as perfect as the human
annotated  ones,  it  is  much  cheaper,  and  can  be  leveraged  to
generate  more  samples.  For  example,  in  ToolBench  [14],  to
enhance  the  tool-using  capability  of  open-source  LLMs,  the
authors collect 16,464 real-world APIs spanning 49 categories
from  the  RapidAPI  Hub.  They  used  these  APIs  to  prompt
ChatGPT  to  generate  diverse  instructions,  covering  both
single-tool  and  multi-tool  scenarios.  Based  on  the  obtained
dataset,  the  authors  fine-tune  LLaMA  [9],  and  obtain
significant  performance  improvement  in  terms  of  tool  using.
In  [84],  to  empower  the  agent  with  social  capability,  the
authors  design  a  sandbox,  and  deploy  multiple  agents  to
interact  with  each  other.  Given  a  social  question,  the  central
agent  first  generates  initial  responses.  Then,  it  shares  the
responses  to  its  nearby  agents  for  collecting  their  feedback.
Based on the feedback as well as its detailed explanations, the
central  agent  revise  its  initial  responses  to  make  them  more
consistent  with  social  norms.  In  this  process,  the  authors
collect  a  large amount  of  agent  social  interaction data,  which
is then leveraged to fine-tune the LLMs.
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●  Fine-tuning  with  real-world  datasets.  In  addition  to
building datasets based on human or LLM annotation, directly
using  real-world  datasets  to  fine-tune  the  agent  is  also  a
common  strategy.  For  example,  in  MIND2WEB  [85],  the
authors  collect  a  large  amount  of  real-world  datasets  to
enhance the agent capability in the Web domain. In contrast to
prior studies,  the dataset  presented in this paper encompasses
diverse  tasks,  real-world  scenarios,  and  comprehensive  user
interaction  patterns.  Specifically,  the  authors  collect  over
2,000  open-ended  tasks  from  137  real-world  websites
spanning 31 domains. Using this dataset, the authors fine-tune
LLMs  to  enhance  their  performance  on  Web-related  tasks,
including movie discovery and ticket  booking,  among others.
In SQL-PALM [86], researchers fine-tune PaLM-2 based on a
cross-domain  large-scale  text-to-SQL  dataset  called  Spider.
The  obtained  model  can  achieve  significant  performance
improvement on text-to-SQL tasks.

Capability  acquisition  without  fine-tuning:  In  the  era  of
tradition  machine  learning,  the  model  capability  is  mainly
acquired  by  learning  from  datasets,  where  the  knowledge  is
encoded  into  the  model  parameters.  In  the  era  of  LLMs,  the
model capability can be acquired either by training/fine-tuning
the  model  parameters  or  designing  delicate  prompts  (i.e.,
prompt  engineer).  In  prompt  engineer,  one  needs  to  write
valuable  information  into  the  prompts  to  enhance  the  model
capability  or  unleash existing LLM capabilities.  In  the  era  of
agents,  the  model  capability  can  be  acquired  based  on  three
strategies:  (1)  model  fine-tuning,  (2)  prompt  engineer,  and
(3) designing proper agent evolution mechanisms (we called it
as mechanism  engineering).  Mechanism  engineering  is  a
broad  concept  that  involves  developing  specialized  modules,
introducing  novel  working  rules,  and  other  strategies  to
enhance  agent  capabilities.  For  clearly  understanding  such
transitions on the strategy of model capability acquisition, we
illustrate  them  in Fig. 4.  In  the  following,  we  introduce
prompting  engineering  and  mechanism  engineering  for  agent
capability acquisition.

●  Prompting  engineering.  Due  to  the  strong  language
comprehension  capabilities,  people  can  directly  interact  with
LLMs  using  natural  languages.  This  introduces  a  novel
strategy  for  enhancing  agent  capabilities,  that  is,  one  can
describe the desired capability using natural language and then

use  it  as  prompts  to  influence  LLM actions.  For  example,  in
CoT  [45],  in  order  to  empower  the  agent  with  the  capability
for  complex  task  reasoning,  the  authors  present  the
intermediate  reasoning  steps  as  few-shot  examples  in  the
prompt. Similar techniques are also used in CoT-SC [49] and
ToT  [50].  In  SocialAGI  [30],  in  order  to  enhance  the  agent
self-awareness  capability  in  conversation,  the  authors  prompt
LLMs  with  the  agent  beliefs  about  the  mental  states  of  the
listeners and itself, which makes the generated utterance more
engaging  and  adaptive.  In  addition,  the  authors  also
incorporate  the  target  mental  states  of  the  listeners,  which
enables the agents to make more strategic plans.  Retroformer
[87]  presents  a  retrospective  model  that  enables  the  agent  to
generate  reflections  on  its  past  failures.  The  reflections  are
integrated into the prompt of LLMs to guide the agent’s future
actions.  Additionally,  this  model  utilizes  reinforcement
learning  to  iteratively  improve  the  retrospective  model,
thereby refining the LLM prompt.

●  Mechanism  engineering.  Unlike  model  fine-tuning  and
prompt  engineering,  mechanism  engineering  is  a  unique
strategy  to  enhance  agent  capability.  In  the  following,  we
present  several  representative  methods  of  mechanism
engineering.

(1)  Trial-and-error.  In  this  method,  the agent  first  performs
an action, and subsequently, a pre-defined critic is invoked to
judge  the  action.  If  the  action  is  deemed  unsatisfactory,  then
the agent reacts by incorporating the critic’s feedback. In RAH
[88],  the  agent  serves  as  a  user  assistant  in  recommender
systems. One of the agent’s crucial roles is to simulate human
behavior  and  generate  responses  on  behalf  of  the  user.  To
fulfill  this  objective,  the  agent  first  generates  a  predicted
response and then compares it  with the real  human feedback.
If  the predicted response and the real  human feedback differ,
the critic generates failure information, which is subsequently
incorporated  into  the  agent’s  next  action.  In  DEPS  [33],  the
agent  first  designs  a  plan  to  accomplish  a  given  task.  In  the
plan  execution  process,  if  an  action  fails,  the  explainer
generates  specific  details  explaining  the  cause  of  the  failure.
This information is then incorporated by the agent to redesign
the plan. In RoCo [89], the agent first proposes a sub-task plan
and  a  path  of  3D  waypoints  for  each  robot  in  a  multi-robot
collaboration task. The plan and waypoints are then validated

 

 
Fig. 4    Illustration of transitions in strategies for acquiring model capabilities
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by a set of environment checks, such as collision detection and
inverse  kinematics.  If  any  of  the  checks  fail,  the  feedback  is
appended to each agent’s prompt and another round of dialog
begins.  The  agents  use  LLMs  to  discuss  and  improve  their
plan and waypoints until they pass all validations. In PREFER
[90],  the  agent  first  evaluates  its  performance  on  a  subset  of
data. If it fails to solve certain examples, LLMs are leveraged
to generate  feedback information reflecting on the reasons of
the  failure.  Based  on  this  feedback,  the  agent  improves  itself
by iteratively refining its actions.

(2)  Crowd-sourcing.  In  [91],  the  authors  design  a  debating
mechanism  that  leverages  the  wisdom  of  crowds  to  enhance
agent  capabilities.  To  begin  with,  different  agents  provide
separate  responses  to  a  given  question.  If  their  responses  are
not  consistent,  they  will  be  prompted  to  incorporate  the
solutions from other agents and provide an updated response.
This  iterative  process  continues  until  reaching  a  final
consensus answer. In this method, the capability of each agent
is  enhanced  by  understanding  and  incorporating  the  other
agents’ opinions.

(3) Experience accumulation. In GITM [16], the agent does
not know how to solve a task in the beginning. Then, it makes
explorations, and once it has successfully accomplished a task,
the actions used in this task are stored into the agent memory.
In  the  future,  if  the  agent  encounters  a  similar  task,  then  the
relevant  memories  are  extracted to complete  the current  task.
In this process, the improved agent capability comes from the
specially  designed  memory  accumulation  and  utilization
mechanisms.  In  Voyager  [38],  the  authors  equip  the  agent
with a skill library, and each skill in the library is represented
by  executable  codes.  In  the  agent-environment  interaction
process,  the  codes  for  each  skill  will  be  iteratively  refined
according  to  the  environment  feedback  and  the  agent  self-
verification results. After a period of execution, the agent can
successfully  complete  different  tasks  efficiently  by  accessing
the  skill  library.  In  AppAgent  [92],  the  agent  is  designed  to
interact  with  apps  in  a  manner  akin  to  human users,  learning
through  both  autonomous  exploration  and  observation  of
human demonstrations.  Throughout  this  process,  it  constructs
a knowledge base, which serves as a reference for performing
intricate tasks across various applications on a mobile phone.
In  MemPrompt  [93],  the  users  are  requested  to  provide
feedback  in  natural  language  regarding  the  problem-solving
intentions of the agent, and this feedback is stored in memory.
When the agent encounters similar tasks, it attempts to retrieve
related memories to generate more suitable responses.

(4)  Self-driven  evolution.  In  LMA3  [94],  the  agent  can
autonomously  set  goals  for  itself,  and  gradually  improve  its
capability  by  exploring  the  environment  and  receiving
feedback from a  reward function.  Following this  mechanism,
the  agent  can  acquire  knowledge  and  develop  capabilities
according  to  its  own  preferences.  In  SALLM-MS  [95],  by
integrating advanced large language models like GPT-4 into a
multi-agent  system,  agents  can  adapt  and  perform  complex
tasks,  showcasing  advanced  communication  capabilities,
thereby  realizing  self-driven  evolution  in  their  interactions
with  the  environment.  In  CLMTWA  [96],  by  using  a  large
language model as a teacher and a weaker language model as a

student,  the  teacher  can  generate  and  communicate  natural
language  explanations  to  improve  the  student’s  reasoning
skills via theory of mind. The teacher can also personalize its
explanations  for  the  student  and  intervene  only  when
necessary,  based  on  the  expected  utility  of  intervention.  In
NLSOM  [97],  different  agents  communicate  and  collaborate
through  natural  language  to  solve  tasks  that  a  single  agent
cannot  solve.  This  can  be  seen  as  a  form  of  self-driven
learning, utilizing the exchange of information and knowledge
between  multiple  agents.  However,  unlike  other  models  such
as  LMA3,  SALLM-MS,  and  CLMTWA, NLSOM allows  for
dynamic  adjustment  of  agent  roles,  tasks,  and  relationships
based on the task requirements and feedback from other agents
or the environment.

Remark.  Upon  comparing  the  aforementioned  strategies  for
agent  capability  acquisition,  we  can  find  that  the  fine-tuning
method  improves  the  agent  capability  by  adjusting  model
parameters,  which  can  incorporate  a  large  amount  of  task-
specific  knowledge,  but  is  only  suitable  for  open-source
LLMs.  The  method  without  fine-tuning  usually  enhances  the
agent  capability  based  on  delicate  prompting  strategies  or
mechanism engineering. They can be used for both open- and
closed-source  LLMs.  However,  due  to  the  limitation  of  the
input  context  window  of  LLMs,  they  cannot  incorporate  too
much  task  information.  In  addition,  the  designing  spaces  of
the  prompts  and  mechanisms  are  extremely  large,  which
makes it not easy to find optimal solutions.

In  the  above sections,  we have  detailed  the  construction  of
LLM-based agents,  where we focus on two aspects including
the architecture design and capability acquisition. We present
the  correspondence  between  existing  work  and  the  above
taxonomy in Table 1.  It  should  be  noted  that,  for  the  sake  of
integrity, we have also incorporated several studies, which do
not  explicitly  mention  LLM-based  agents  but  are  highly
related to this area.

 3    LLM-based autonomous agent
application
Owing  to  the  strong  language  comprehension,  complex  task
reasoning,  and  common  sense  understanding  capabilities,
LLM-based  autonomous  agents  have  shown  significant
potential to influence multiple domains. This section provides
a  succinct  summary  of  previous  studies,  categorizing  them
according  to  their  applications  in  three  distinct  areas:  social
science,  natural  science,  and  engineering  (see  the  left  part  of
Fig. 5 for a global overview).

 3.1    Social science
Social science is one of the branches of science, devoted to the
study  of  societies  and  the  relationships  among  individuals
within  those  societies.  LLM-based  autonomous  agents  can
promote  this  domain  by  leveraging  their  impressive  human-
like  understanding,  thinking  and  task  solving  capabilities.  In
the  following,  we  discuss  several  key  areas  that  can  be
affected by LLM-based autonomous agents.

Psychology:  For  the  domain  of  psychology,  LLM-based
agents  can  be  leveraged  for  conducting  simulation
experiments,  providing  mental  health  support  and  so  on
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[102–105].  For  example,  in  [102],  the  authors  assign  LLMs
with  different  profiles,  and  let  them  complete  psychology
experiments. From the results, the authors find that LLMs are
capable of generating results that align with those from studies

involving  human  participants.  Additionally,  it  was  observed
that  larger  models  tend  to  deliver  more  accurate  simulation
results  compared to  their  smaller  counterparts.  An interesting
discovery is that, in many experiments, models like ChatGPT

   
Table  1    For  the  profile  module,  we  use ①, ②,  and ③ to  represent  the  handcrafting  method,  LLM-generation  method,  and  dataset  alignment  method,
respectively. For the memory module, we focus on the implementation strategies for memory operation and memory structure. For memory operation, we use
① and ② to indicate that the model only has read/write operations and has read/write/reflection operations, respectively. For memory structure, we use ① and
② to represent unified and hybrid memories, respectively. For the planning module, we use ① and ② to represent planning w/o feedback and w/ feedback,
respectively.  For  the  action  module,  we  use ① and ② to  represent  that  the  model  does  not  use  tools  and  use  tools,  respectively.  For  the  agent  capability
acquisition (CA) strategy, we use ① and ② to represent the methods with and without fine-tuning, respectively. “−” indicates that the corresponding content is
not explicitly discussed in the paper

Model Profile
Memory

Planning Action CA Time
Operation Structure

WebGPT [66] − − − − ② ① 12/2021
SayCan [78] − − − ① ① ② 04/2022
MRKL [72] − − − ① ② − 05/2022
Inner Monologue [61] − − − ② ① ② 07/2022
Social Simulacra [98] ② − − − ① − 08/2022
ReAct [59] − − − ② ② ① 10/2022
MALLM [43] − ① ② − ① − 01/2023
DEPS [33] − − − ② ① ② 02/2023
Toolformer [15] − − − ① ② ① 02/2023
Reflexion [12] − ② ② ② ① ② 03/2023
CAMEL [99] ① ② − − ② ① − 03/2023
API-Bank [69] − − − ② ② ② 04/2023
ViperGPT [74] − − − − ② − 03/2023
HuggingGPT [13] − − ① ① ② − 03/2023
Generative Agents [20] ① ② ② ② ① − 04/2023
LLM+P [57] − − − ① ① − 04/2023
ChemCrow [75] − − − ② ② − 04/2023
OpenAGI [73] − − − ② ② ① 04/2023
AutoGPT [100] − ① ② ② ② ② 04/2023
SCM [35] − ② ② − ① − 04/2023
Socially Alignment [84] − ① ② − ① ① 05/2023
GITM [16] − ② ② ② ① ② 05/2023
Voyager [38] − ② ② ② ① ② 05/2023
Introspective Tips [101] − − − ② ① ② 05/2023
RET-LLM [42] − ① ② − ① ① 05/2023
ChatDB [40] − ① ② ② ② − 06/2023
S 3 [77] ③ ② ② − ① − 07/2023
ChatDev [18] ① ② ② ② ① ② 07/2023
ToolLLM [14] − − − ② ② ① 07/2023
MemoryBank [39] − ② ② − ① − 07/2023
MetaGPT [23] ① ② ② ② ② − 08/2023
 

 

 
Fig. 5    The applications (left) and evaluation strategies (right) of LLM-based agents
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and  GPT-4  can  provide  too  perfect  estimates  (called “hyper-
accuracy  distortion”),  which  may  influence  the  downstream
applications.  In  [104],  the  authors  systematically  analyze  the
effectiveness  of  LLM-based  conversation  agents  for  mental
well-being  support.  They  collect  120  posts  from  Reddit,  and
find that such agents can help users cope with anxieties, social
isolation  and  depression  on  demand.  At  the  same  time,  they
also  find  that  the  agents  may  produce  harmful  contents
sometimes.

Political science and economy: LLM-based agents can also
be  utilized  to  study  political  science  and  economy
[29,105,106].  In  [29],  LLM-based  agents  are  utilized  for
ideology detection and predicting voting patterns. In [105], the
authors  focuses  on  understanding  the  discourse  structure  and
persuasive elements of political speech through the assistance
of  LLM-based  agents.  In  [106],  LLM-based  agents  are
provided  with  specific  traits  such  as  talents,  preferences,  and
personalities  to  explore  human  economic  behaviors  in
simulated scenarios.

Social simulation: Previously, conducting experiments with
human  societies  is  often  expensive,  unethical,  or  even
infeasible.  With  the  ever  prospering  of  LLMs,  many  people
explore  to  build  virtual  environment  with  LLM-based  agents
to  simulate  social  phenomena,  such  as  the  propagation  of
harmful  information,  and  so  on  [20,34,77,79,107–110].  For
example,  Social  Simulacra  [79]  simulates  an  online  social
community and explores the potential of utilizing agent-based
simulations  to  aid  decision-makers  to  improve  community
regulations.  [107,108]  investigates  the  potential  impacts  of
different  behavioral  characteristics  of  LLM-based  agents  in
social  networks.  Generative  Agents  [20]  and AgentSims [34]
construct  multiple  agents  in  a  virtual  town  to  simulate  the
human daily life. SocialAI School [109] employs LLM-based
agents  to  simulate  and  investigate  the  fundamental  social
cognitive  skills  during  the  course  of  child  development.  S3

[77]  builds  a  social  network  simulator,  focusing  on  the
propagation of information, emotion and attitude. CGMI [111]
is  a  framework  for  multi-agent  simulation.  CGMI  maintains
the  personality  of  the  agents  through  a  tree  structure  and
constructs  a  cognitive  model.  The  authors  simulated  a
classroom scenario using CGMI.

Jurisprudence:  LLM-based  agents  can  serve  as  aids  in
legal  decision-making  processes,  facilitating  more  informed
judgements  [112,113].  Blind  Judgement  [113]  employs
several  language  models  to  simulate  the  decision-making
processes  of  multiple  judges.  It  gathers  diverse  opinions  and
consolidates  the  outcomes  through  a  voting  mechanism.
ChatLaw [112]  is  a  prominent  Chinese  legal  model  based on
LLM.  It  adeptly  supports  both  database  and  keyword  search
strategies,  specifically  designed  to  mitigate  the  hallucination
issue  prevalent  in  such  models.  In  addition,  this  model  also
employs  self-attention  mechanism  to  enhance  the  LLM’s
capability via mitigating the impact of reference inaccuracies.

Research assistant: Beyond their application in specialized
domains,  LLM-based  agents  are  increasingly  adopted  as
versatile assistants in the broad field of social science research
[105,114].  In  [105],  LLM-based  agents  offer  multifaceted
assistance,  ranging  from  generating  concise  article  abstracts

and extracting pivotal keywords to crafting detailed scripts for
studies,  showcasing  their  ability  to  enrich  and  streamline  the
research  process.  Meanwhile,  in  [114],  LLM-based  agents
serve  as  a  writing  assistant,  demonstrating  their  capability  to
identify  novel  research  inquiries  for  social  scientists,  thereby
opening  new  avenues  for  exploration  and  innovation  in  the
field.  These  examples  highlight  the  potential  of  LLM-based
agents  in  enhancing  the  efficiency,  creativity,  and  breadth  of
social science research.

 3.2    Natural science
Natural  science  is  one  of  the  branches  of  science  concerned
with  the  description,  understanding  and  prediction  of  natural
phenomena,  based  on  empirical  evidence  from  observation
and  experimentation.  With  the  ever  prospering  of  LLMs,  the
application of LLM-based agents in natural sciences becomes
more  and  more  popular.  In  the  following,  we  present  many
representative  areas,  where  LLM-based  agents  can  play
important roles.

Documentation  and  data  management:  Natural  scientific
research  often  involves  the  collection,  organization,  and
synthesis of substantial amounts of literature, which requires a
significant  dedication  of  time  and  human  resources.  LLM-
based  agents  have  shown  strong  capabilities  on  language
understanding  and  employing  tools  such  as  the  internet  and
databases for text processing. These capabilities empower the
agent  to  excel  in  tasks  related  to  documentation  and  data
management  [75,115,116].  In  [115],  the  agent  can  efficiently
query  and  utilize  internet  information  to  complete  tasks  such
as  question  answering  and  experiment  planning.  ChatMOF
[116] utilizes LLMs to extract important information from text
descriptions  written  by  humans.  It  then  formulates  a  plan  to
apply relevant tools for predicting the properties and structures
of  metal-organic  frameworks.  ChemCrow  [75]  utilizes
chemistry-related  databases  to  both  validate  the  precision  of
compound  representations  and  identify  potentially  dangerous
substances.  This  functionality  enhances  the  reliability  and
comprehensiveness  of  scientific  inquiries  by  ensuring  the
accuracy of the data involved.

Experiment  assistant:  LLM-based  agents  have  the  ability
to independently conduct experiments,  making them valuable
tools  for  supporting  scientists  in  their  research  projects
[75,115].  For  instance,  [115]  introduces  an  innovative  agent
system that utilizes LLMs for automating the design, planning,
and  execution  of  scientific  experiments.  This  system,  when
provided  with  the  experimental  objectives  as  input,  accesses
the  Internet  and  retrieves  relevant  documents  to  gather  the
necessary information. It subsequently utilizes Python code to
conduct  essential  calculations  and  carry  out  the  following
experiments.  ChemCrow  [75]  incorporates  17  carefully
developed  tools  that  are  specifically  designed  to  assist
researchers  in  their  chemical  research.  Once  the  input
objectives  are  received,  ChemCrow  provides  valuable
recommendations  for  experimental  procedures,  while  also
emphasizing  any  potential  safety  risks  associated  with  the
proposed experiments.

Natural  science  education:  LLM-based  agents  can
communicate  with  humans  fluently,  often  being  utilized  to
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develop  agent-based  educational  tools  [115,117–119].  For
example,  [115]  develops  agent-based  education  systems  to
facilitate  students  learning  of  experimental  design,
methodologies, and analysis. The objective of these systems is
to  enhance  students’ critical  thinking  and  problem-solving
skills,  while  also  fostering  a  deeper  comprehension  of
scientific principles. Math Agents [117] can assist researchers
in  exploring,  discovering,  solving  and  proving  mathematical
problems. Additionally, it can communicate with humans and
aids  them  in  understanding  and  using  mathematics.  [118]
utilize the capabilities  of  CodeX [119] to automatically solve
and  explain  university-level  mathematical  problems,  which
can  be  used  as  education  tools  to  teach  students  and
researchers.  CodeHelp  [120]  is  an  education  agent  for
programming.  It  offers  many  useful  features,  such  as  setting
course-specific  keywords,  monitoring  student  queries,  and
providing  feedback  to  the  system.  EduChat  [81]  is  an  LLM-
based agent designed specifically for the education domain. It
provides  personalized,  equitable,  and  empathetic  educational
support  to  teachers,  students,  and  parents  through  dialogue.
FreeText [121] is an agent that utilizes LLMs to automatically
assess  students’ responses  to  open-ended  questions  and  offer
feedback.

 3.3    Engineering
LLM-based autonomous agents have shown great potential in
assisting and enhancing engineering research and applications.
In  this  section,  we review and summarize  the  applications  of
LLM-based agents in several major engineering domains.

Civil  engineering:  In  civil  engineering,  LLM-based  agents
can be used to design and optimize complex structures such as
buildings, bridges, dams, roads. [122] proposes an interactive
framework  where  human  architects  and  agents  collaborate  to
construct  structures  in  a  3D  simulation  environment.  The
interactive agent can understand natural language instructions,
place  blocks,  detect  confusion,  seek  clarification,  and
incorporate  human  feedback,  showing  the  potential  for
human-AI collaboration in engineering design.

Computer  science  &  software  engineering:  In  the  field
of  computer  science  and  software  engineering,  LLM-
based  agents  offer  potential  for  automating  coding,
testing,  debugging,  and  documentation  generation
[14,18,23,24,123–125].  ChatDev [18] proposes an end-to-end
framework,  where  multiple  agent  roles  communicate  and
collaborate  through  natural  language  conversations  to
complete the software development life cycle. This framework
demonstrates  efficient  and  cost-effective  generation  of
executable software systems. ToolBench [14] can be used for
tasks such as code auto-completion and code recommendation.
MetaGPT  [23]  abstracts  multiple  roles,  such  as  product
managers,  architects,  project  managers,  and  engineers,  to
supervise code generation process and enhance the quality of
the  final  output  code.  This  enables  low-cost  software
development. [24] presents a self-collaboration framework for
code  generation  using  LLMs.  In  this  framework,  multiple
LLMs  are  assumed  to  be  distinct “experts” for  specific  sub-
tasks.  They  collaborate  and  interact  according  to  specified
instructions, forming a virtual team that facilitates each other’s

work.  Ultimately,  the  virtual  team  collaboratively  addresses
code  generation  tasks  without  requiring  human  intervention.
LLIFT  [126]  employs  LLMs  to  assist  in  conducting  static
analysis,  specifically  for  identifying  potential  code
vulnerabilities.  This  approach  effectively  manages  the  trade-
off  between  accuracy  and  scalability.  ChatEDA  [127]  is  an
agent  developed  for  electronic  design  automation  (EDA)  to
streamline  the  design  process  by  integrating  task  planning,
script  generation,  and  execution.  CodeHelp  [120]  is  an  agent
designed  to  assist  students  and  developers  in  debugging  and
testing  their  code.  Its  features  include  providing  detailed
explanations of error messages, suggesting potential fixes, and
ensuring  the  accuracy  of  the  code.  PENTESTGPT [128]  is  a
penetration testing tool based on LLMs, which can effectively
identify  common vulnerabilities,  and  interpret  source  code  to
develop  exploits.  DB-GPT  [41]  utilizes  the  capabilities  of
LLMs  to  systematically  assess  potential  root  causes  of
anomalies in databases. Through the implementation of a tree
of  thought  approach,  DB-GPT enables  LLMs to  backtrack to
previous  steps  in  case  the  current  step  proves  unsuccessful,
thus enhancing the accuracy of the diagnosis process.

Industrial  automation:  In  the  field  of  industrial
automation,  LLM-based  agents  can  be  used  to  achieve
intelligent planning and control of production processes. [129]
proposes  a  novel  framework  that  integrates  large  language
models  (LLMs)  with  digital  twin  systems  to  accommodate
flexible  production  needs.  The  framework  leverages  prompt
engineering techniques to create LLM agents that can adapt to
specific  tasks  based  on  the  information  provided  by  digital
twins.  These  agents  can  coordinate  a  series  of  atomic
functionalities  and  skills  to  complete  production  tasks  at
different  levels  within the automation pyramid.  This  research
demonstrates the potential of integrating LLMs into industrial
automation  systems,  providing  innovative  solutions  for  more
agile,  flexible  and  adaptive  production  processes.  IELLM
[130] showcases a case study on LLMs’ role in the oil and gas
industry,  covering  applications  like  rock  physics,  acoustic
reflectometry, and coiled tubing control.

Robotics & embodied artificial intelligence: Recent works
have  developed  more  efficient  reinforcement  learning  agents
for  robotics  and  embodied  artificial  intelligence
[16,38,78,131–138].  The  focus  is  on  enhancing  autonomous
agents’ abilities  for  planning,  reasoning,  and  collaboration  in
embodied environments.  In specific,  [135] proposes a unified
agent  system  for  embodied  reasoning  and  task  planning.  In
this system, the authors design high-level commands to enable
improved  planning  while  propose  low-level  controllers  to
translate  commands  into  actions.  Additionally,  one  can
leverage  dialogues  to  gather  information  [136]  to  accelerate
the  optimization  process.  [137,138]  employ  autonomous
agents  for  embodied  decision-making  and  exploration.  To
overcome  the  physical  constraints,  the  agents  can  generate
executable  plans  and  accomplish  long-term  tasks  by
leveraging multiple skills. In terms of control policies, SayCan
[78]  focuses  on  investigating  a  wide  range  of  manipulation
and  navigation  skills  utilizing  a  mobile  manipulator  robot.
Taking inspiration from typical tasks encountered in a kitchen
environment, it presents a comprehensive set of 551 skills that
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cover  seven  skill  families  and  17  objects.  These  skills
encompass  various  actions  such  as  picking,  placing,  pouring,
grasping,  and  manipulating  objects,  among  others.  TidyBot
[139] is an embodied agent designed to personalize household
cleanup  tasks.  It  can  learn  users’ preferences  on  object
placement  and  manipulation  methods  through  textual
examples.

To  promote  the  application  of  LLM-based  autonomous
agents,  researchers  have  also  introduced  many  open-source
libraries,  based  on  which  the  developers  can  quickly
implement  and evaluate  agents  according to  their  customized
requirements [19,108,124,140–153]. For example, LangChain
[145]  is  an  open-source  framework  that  automates  coding,
testing,  debugging,  and  documentation  generation  tasks.  By
integrating language models with data sources and facilitating
interaction with the environment, LangChain enables efficient
and  cost-effective  software  development  through  natural
language  communication  and  collaboration  among  multiple
agent roles. Based on LangChain, XLang [143] comes with a
comprehensive  set  of  tools,  a  complete  user  interface,  and
support  three  different  agent  scenarios,  namely  data
processing,  plugin  usage,  and  Web  agent.  AutoGPT  [100]  is
an  agent  that  is  fully  automated.  It  sets  one  or  more  goals,
breaks  them  down  into  corresponding  tasks,  and  cycles
through the tasks until the goal is achieved. WorkGPT [146] is
an  agent  framework  similar  to  AutoGPT and  LangChain.  By
providing it with an instruction and a set of APIs, it engages in
back-and-forth  conversations  with  AI  until  the  instruction  is
completed.  GPT-Engineer  [125],  SmolModels  [123]  and
DemoGPT  [124]  are  open-source  projects  that  focus  on
automating  code  generation  through  prompts  to  complete
development tasks. AGiXT [142] is a dynamic AI automation
platform  designed  to  orchestrate  efficient  AI  command
management  and  task  execution  across  many  providers.
AgentVerse  [19]  is  a  versatile  framework  that  facilitates
researchers  in  creating  customized  LLM-based  agent
simulations  efficiently.  GPT  Researcher  [148]  is  an
experimental application that leverages large language models
to  efficiently  develop  research  questions,  trigger  Web  crawls

to  gather  information,  summarize  sources,  and  aggregate
summaries.  BMTools  [149]  is  an  open-source  repository  that
extends  LLMs  with  tools  and  provides  a  platform  for
community-driven  tool  building  and  sharing.  It  supports
various  types  of  tools,  enables  simultaneous  task  execution
using multiple tools, and offers a simple interface for loading
plugins  via  URLs,  fostering  easy  development  and
contribution to the BMTools ecosystem.

Remark. Utilization of LLM-based agents in supporting above
applications  may  also  entail  risks  and  challenges.  On  one
hand,  LLMs  themselves  may  be  susceptible  to  illusions  and
other  issues,  occasionally  providing  erroneous  answers,
leading to incorrect conclusions, experimental failures, or even
posing  risks  to  human  safety  in  hazardous  experiments.
Therefore,  during  experimentation,  users  must  possess  the
necessary  expertise  and  knowledge  to  exercise  appropriate
caution.  On  the  other  hand,  LLM-based  agents  could
potentially  be  exploited  for  malicious  purposes,  such  as  the
development  of  chemical  weapons,  necessitating  the
implementation  of  security  measures,  such  as  human
alignment, to ensure responsible and ethical use.

In summary, in the above sections, we introduce the typical
applications  of  LLM-based  autonomous  agents  in  three
important  domains.  To  facilitate  a  clearer  understanding,  we
have  summarized  the  relationship  between  previous  studies
and their respective applications in Table 2.

 4    LLM-based autonomous agent
evaluation
Similar  to  LLMs  themselves,  evaluating  the  effectiveness  of
LLM-based  autonomous  agents  is  a  challenging  task.  This
section  outlines  two  prevalent  approaches  to  evaluation:
subjective  and  objective  methods.  For  a  comprehensive
overview, please refer to the right portion of Fig. 5.

 4.1    Subjective evaluation
Subjective evaluation measures the agent capabilities based on
human  judgements  [20,22,29,79,158].  It  is  suitable  for  the
scenarios  where  there  are  no  evaluation  datasets  or  it  is  very

   
Table 2    Representative applications of LLM-based autonomous agents

Domain Work

Social
Science

Psychology TE [102], Akata et al. [103], Ziems et al. [105], Ma et al. [104]
Political Science and

Economy Out of One [29], Horton [106], Ziems et al. [105]

Social Simulation Social Simulacra [79], Generative Agents [20], SocialAI School [109], AgentSims [34],
S3 [77], Williams et al. [110], Li et al. [107], Chao et al. [108]

Jurisprudence ChatLaw [112], Blind Judgement [113]
Research Assistant Ziems et al. [105], Bail et al. [114]

Natural
Science

Documentation and
Data Management ChemCrow [75], Boiko et al. [115]

Experiment Assistant ChemCrow [75], Boiko et al. [115], Grossmann et al. [154]
Natural Science

Education ChemCrow [75], CodeHelp [120], Boiko et al. [115], MathAgent [117], Drori et al. [118]

Engineering

CS & SE RestGPT [70], Self-collaboration [24], SQL-PALM [86], RAH [88], DB-GPT [41], RecMind [51], ChatEDA [127],
InteRecAgent [155], PentestGPT [128], CodeHelp [120], SmolModels [123], DemoGPT [124], GPTEngineer [125]

Industrial
Automation GPT4IA [129], IELLM [130], TaskMatrix.AI [71]

Robotics &
Embodied AI

ProAgent [156], LLM4RL [131], PET [132], REMEMBERER [133], DEPS [33], Unified Agent [134], SayCan [78],
LMMWM [157], TidyBot [139], RoCo [89], SayPlan [31]
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hard  to  design  quantitative  metrics,  for  example,  evaluating
the  agent’s  intelligence or  user-friendliness.  In  the  following,
we  present  two  commonly  used  strategies  for  subjective
evaluation.

Human  annotation:  This  evaluation  method  involves
human  evaluators  directly  scoring  or  ranking  the  outputs
generated by various agents [22,29,102]. For example, in [20],
the authors employ many annotators, and ask them to provide
feedback  on  five  key  questions  that  directly  associated  with
the  agent  capability.  Similarly,  [159]  assess  model
effectiveness by having human participants rate the models on
harmlessness,  honesty,  helpfulness,  engagement,  and
unbiasedness,  subsequently  comparing  these  scores  across
different  models.  In  [79],  annotators  are  asked  to  determine
whether  the  specifically  designed  models  can  significantly
enhance the development of rules within online communities.

Turing  test:  This  evaluation  strategy  necessitates  that
human  evaluators  differentiate  between  outputs  produced  by
agents  and  those  created  by  humans.  If,  in  a  given  task,  the
evaluators  cannot  separate  the  agent  and  human  results,  it
demonstrates  that  the  agent  can  achieve  human-like
performance  on  this  task.  For  instance,  researchers  in  [29]
conduct  experiments  on  free-form  Partisan  text,  and  the
human evaluators are asked to guess whether the responses are
from  human  or  LLM-based  agent.  In  [20],  the  human
evaluators  are  required  to  identify  whether  the  behaviors  are
generated  from  the  agents  or  real-humans.  In  EmotionBench
[160],  human  annotations  are  collected  to  compare  the
emotional  states  expressed  by  LLM  software  and  human
participants  across  various  scenarios.  This  comparison  serves
as  a  benchmark  for  evaluating  the  emotional  intelligence  of
the  LLM  software,  illustrating  a  nuanced  approach  to
understanding  agent  capabilities  in  mimicking  human-like
performance and emotional expression.

Remark.  LLM-based  agents  are  usually  designed  to  serve
humans. Thus, subjective agent evaluation plays a critical role,
since  it  reflects  human  criterion.  However,  this  strategy  also
faces  issues  such  as  high  costs,  inefficiency,  and  population
bias. To address these issues, a growing number of researchers
are  investigating  the  use  of  LLMs  themselves  as
intermediaries  for  carrying  out  these  subjective  assessments.
For  example,  in  ChemCrow  [75],  researchers  assess  the
experimental  results  using  GPT.  They  consider  both  the
completion  of  tasks  and  the  accuracy  of  the  underlying
processes.  Similarly,  ChatEval  [161]  introduces  a  novel
approach by employing multiple agents to critique and assess
the  results  generated  by  various  candidate  models  in  a
structured  debate  format.  This  innovative  use  of  LLMs  for
evaluation  purposes  holds  promise  for  enhancing  both  the
credibility  and  applicability  of  subjective  assessments  in  the
future.  As  LLM  technology  continues  to  evolve,  it  is
anticipated  that  these  methods  will  become  increasingly
reliable and find broader applications, thereby overcoming the
current limitations of direct human evaluation.

 4.2    Objective evaluation
Objective  evaluation  refers  to  assessing  the  capabilities  of
LLM-based autonomous agents using quantitative metrics that

can be computed, compared and tracked over time. In contrast
to  subjective  evaluation,  objective  metrics  aim  to  provide
concrete, measurable insights into the agent performance. For
conducting  objective  evaluation,  there  are  three  important
aspects,  that  is,  the  evaluation  metrics,  protocols  and
benchmarks.  In  the  following,  we  introduce  these  aspects
more in detail.

Metrics: In order to objectively evaluate the effectiveness of
the agents, designing proper metrics is significant, which may
influence  the  evaluation  accuracy  and  comprehensiveness.
Ideal evaluation metrics should precisely reflect the quality of
the  agents,  and  align  with  the  human  feelings  when  using
them  in  real-world  scenarios.  In  existing  work,  we  can
conclude  the  following  representative  evaluation  metrics.
(1) Task success metrics: These metrics measure how well an
agent can complete tasks and achieve goals. Common metrics
include  success  rate  [12,22,57,59],  reward/score  [22,59,122],
coverage  [16],  and  accuracy  [18,40,102].  Higher  values
indicate greater task completion ability.  (2) Human similarity
metrics: These metrics quantify the degree to which the agent
behaviors closely resembles that of humans. Typical examples
include  trajectory/location  accuracy  [38,162],  dialogue
similarities  [79,102],  and  mimicry  of  human  responses
[29,102].  Higher  similarity  suggests  better  human  simulation
performance.  (3) Efficiency  metrics:  In  contrast  to  the
aforementioned  metrics  used  to  evaluate  the  agent
effectiveness,  these  metrics  aim  to  assess  the  efficiency  of
agent. Commonly considered metrics encompass the length of
planning [57],  the cost  associated with development [18],  the
speed  of  inference  [16,38],  and  number  of  clarification
dialogues [122].

Protocols:  In  addition  to  the  evaluation  metrics,  another
important  aspect  for  objective  evaluation  is  how  to  leverage
these  metrics.  In  the  previous  work,  we  can  identify  the
following  commonly  used  evaluation  protocols:  (1) Real-
world  simulation:  In  this  method,  the  agents  are  evaluated
within  immersive  environments  like  games  and  interactive
simulators.  The  agents  are  required  to  perform  tasks
autonomously,  and  then  metrics  like  task  success  rate  and
human  similarity  are  leveraged  to  evaluate  the  capability  of
the agents based on their trajectories and completed objectives
[16,22,33,38,59,80,122,162,163,164]. This method is expected
to  evaluate  the  agents’ practical  capabilities  in  real-world
scenarios.  (2) Social  evaluation:  This  method utilizes  metrics
to assess social intelligence based on the agent interactions in
simulated  societies.  Various  approaches  have  been  adopted,
such  as  collaborative  tasks  to  evaluate  teamwork  skills,
debates  to  analyze  argumentative  reasoning,  and  human
studies to measure social aptitude [34,98,102,165,166]. These
approaches  analyze  qualities  such  as  coherence,  theory  of
mind,  and  social  IQ  to  assess  agents’ capabilities  in  areas
including  cooperation,  communication,  empathy,  and
mimicking  human  social  behavior.  By  subjecting  agents  to
complex  interactive  settings,  social  evaluation  provides
valuable  insights  into  agents’ higher-level  social  cognition.
(3) Multi-task  evaluation:  In  this  method,  people  use  a  set
of  diverse  tasks  from  different  domains  to  evaluate  the
agent,  which  can  effectively  measure  the  agent
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generalization  capability  in  open-domain  environments
[29,80,153,163,165,166,167].  (4) Software  testing:  In  this
method,  researchers  evaluate  the  agents  by  letting  them
conduct  tasks  such  as  software  testing  tasks,  such  as
generating test  cases,  reproducing bugs,  debugging code,  and
interacting  with  developers  and  external  tools
[166,168,169,170].  Then,  one  can  use  metrics  like  test
coverage  and  bug  detection  rate  to  measure  the  effectiveness
of LLM-based agents.

Benchmarks:  Given  the  metrics  and  protocols,  a  crucial
remaining aspect is the selection of an appropriate benchmark
for  conducting  the  evaluation.  In  the  past,  people  have  used
various benchmarks in their  experiments.  For example,  many
researchers use simulation environments like ALFWorld [59],
IGLU  [122],  and  Minecraft  [16,33,38]  as  benchmarks  to
evaluate  the  agent  capabilities.  Tachikuma  [164]  is  a
benchmark that leverages TRPG game logs to evaluate LLMs’
ability  to  understand  and  infer  complex  interactions  with
multiple  characters  and  novel  objects.  AgentBench  [167]
provides a comprehensive framework for evaluating LLMs as
autonomous agents across diverse environments. It  represents
the  first  systematic  assessment  of  LLMs  as  agents  on  real-
world  challenges  across  diverse  domains.  SocKET [165]  is  a
comprehensive  benchmark  for  evaluating  the  social
capabilities of LLMs across 58 tasks covering five categories
of  social  information  such  as  humor  and  sarcasm,  emotions
and  feelings,  and  credibility.  AgentSims  [34]  is  a  versatile
framework  for  evaluating  LLM-based  agents,  where  one  can
flexibly  design  the  agent  planning,  memory  and  action
strategies,  and  measure  the  effectiveness  of  different  agent
modules  in  interactive  environments.  ToolBench  [149]  is  an
open-source  project  that  aims  to  support  the  development  of
powerful  LLMs  with  general  tool-use  capability.  It  provides
an  open  platform  for  training,  serving,  and  evaluating  LLMs
based on tool  learning.  WebShop [80] develops a  benchmark
for evaluating LLM-based agents in terms of their capabilities
for product search and retrieval. The benchmark is constructed
using  a  collection  of  1.18  million  real-world  items.  Mobile-
Env [163] is an extendable interactive platform which can be
used  to  evaluate  the  multi-step  interaction  capabilities  of
LLM-based  agents.  WebArena  [171]  offers  a  comprehensive
website environment that spans multiple domains. Its purpose
is  to  evaluate  agents  in  an  end-to-end  fashion  and  determine
the  accuracy  of  their  completed  tasks.  GentBench  [172]  is  a
benchmark  designed  to  evaluate  the  agent  capabilities,
including  their  reasoning,  safety,  and  efficiency,  when
utilizing tools to complete complex tasks. RocoBench [89] is a
benchmark with six tasks evaluating multi-agent collaboration
across  diverse  scenarios,  emphasizing  communication  and
coordination  strategies  to  assess  adaptability  and
generalization  in  cooperative  robotics.  EmotionBench  [160]
evaluates  the  emotion  appraisal  ability  of  LLMs,  i.e.,  how
their  feelings change when presented with specific situations.
It  collects  over  400  situations  that  elicit  eight  negative
emotions  and  measures  the  emotional  states  of  LLMs  and
human  subjects  using  self-report  scales.  PEB  [128]  is  a
benchmark  tailored  for  assessing  LLM-based  agents  in
penetration  testing  scenarios,  comprising  13  diverse  targets

from leading platforms. It offers a structured evaluation across
varying  difficulty  levels,  reflecting  real-world  challenges  for
agents.  ClemBench  [173]  contains  five  Dialogue  Games  to
assess  LLMs’ ability  as  a  player.  E2E [174]  is  an end-to-end
benchmark for testing the accuracy and usefulness of chatbots.

Remark.  Objective  evaluation  facilitates  the  quantitative
analysis of capabilities in LLM-based agents through a variety
of metrics. While current techniques can not perfectly measure
all  types  of  agent  capabilities,  objective  evaluation  provides
essential  insights  that  complement  subjective  assessment.
Continued  advancements  in  benchmarks  and  methodologies
for  objective  evaluation  will  enhance  the  development  and
understanding of LLM-based autonomous agents further.

In  the  above  sections,  we  introduce  both  subjective  and
objective  strategies  for  LLM-based  autonomous  agents
evaluation. The evaluation of the agents play significant roles
in  this  domain.  However,  both  subjective  and  objective
evaluation have their own strengths and weakness. Maybe, in
practice,  they  should  be  combined  to  comprehensively
evaluate  the  agents.  We  summarize  the  correspondence
between  the  previous  work  and  these  evaluation  strategies  in
Table 3.

 5    Related surveys
With  the  vigorous  development  of  large  language  models,  a
variety  of  comprehensive  surveys  have  emerged,  providing
detailed  insights  into  various  aspects.  [176]  extensively
introduces  the  background,  main  findings,  and  mainstream
technologies of  LLMs, encompassing a vast  array of  existing
works.  On  the  other  hand,  [177]  primarily  focus  on  the
applications  of  LLMs  in  various  downstream  tasks  and  the
challenges  associated  with  their  deployment.  Aligning  LLMs
with  human  intelligence  is  an  active  area  of  research  to
address  concerns  such  as  biases  and  illusions.  [178]  have
compiled existing techniques  for  human alignment,  including
data  collection  and  model  training  methodologies.  Reasoning
is  a  crucial  aspect  of  intelligence,  influencing  decision-
making,  problem-solving,  and  other  cognitive  abilities.  [179]
presents  the  current  state  of  research  on  LLMs’ reasoning
abilities,  exploring  approaches  to  improve  and  evaluate  their
reasoning  skills.  [180]  propose  that  language  models  can  be
enhanced with reasoning capabilities and the ability to utilize
tools,  termed  Augmented  Language  Models  (ALMs).  They
conduct a comprehensive review of the latest advancements in
ALMs. As the utilization of large-scale models becomes more
prevalent, evaluating their performance is increasingly critical.
[181]  shed  light  on  evaluating  LLMs,  addressing  what  to
evaluate,  where  to  evaluate,  and  how  to  assess  their
performance  in  downstream  tasks  and  societal  impact.  [182]
also  discusses  the  capabilities  and  limitations  of  LLMs  in
various  downstream  tasks.  The  aforementioned  research
encompasses  various  aspects  of  large  models,  including
training,  application,  and  evaluation.  However,  prior  to  this
paper,  no  work  has  specifically  focused  on  the  rapidly
emerging and highly promising field of LLM-based Agents. In
this  study,  we  have  compiled  100  relevant  works  on  LLM-
based  Agents,  covering  their  construction,  applications,  and
evaluation processes.
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 6    Challenges
While  previous  work  on  LLM-based  autonomous  agent  has
obtained  many  remarkable  successes,  this  field  is  still  at  its
initial  stage,  and  there  are  several  significant  challenges  that
need to be addressed in its development. In the following, we
present many representative challenges.

 6.1    Role-playing capability
Different  from  traditional  LLMs,  autonomous  agent  usually
has  to  play  as  specific  roles  (e.g.,  program coder,  researcher,
and  chemist)  for  accomplishing  different  tasks.  Thus,  the
capability  of  the  agent  for  role-playing  is  very  important.
Although LLMs can effectively simulate many common roles
such  as  movie  reviewers,  there  are  still  various  roles  and
aspects that they struggle to capture accurately. To begin with,
LLMs  are  usually  trained  based  on  web-corpus,  thus  for  the
roles  which  are  seldom  discussed  on  the  Web  or  the  newly
emerging  roles,  LLMs  may  not  simulate  them  well.  In
addition, previous research [30] has shown that existing LLMs
may  not  well  model  the  human  cognitive  psychology
characters,  leading  to  the  lack  of  self-awareness  in
conversation  scenarios.  Potential  solution  to  these  problems
may  include  fine-tuning  LLMs  or  carefully  designing  the
agent  prompts/architectures  [183].  For  example,  one  can

firstly  collect  real-human  data  for  uncommon  roles  or
psychology characters, and then leverage it to fine-tune LLMs.
However,  how  to  ensure  that  fine-tuned  model  still  perform
well  for  the  common  roles  may  pose  further  challenges.
Beyond  fine-tuning,  one  can  also  design  tailored  agent
prompts/architectures  to  enhance  the  capability  of  LLM  on
role-playing.  However,  finding  the  optimal  prompts/
architectures  is  not  easy,  since  their  designing  spaces  are  too
large.

 6.2    Generalized human alignment
Human  alignment  has  been  discussed  a  lot  for  traditional
LLMs.  In  the  field  of  LLM-based  autonomous  agent,
especially  when  the  agents  are  leveraged  for  simulation,  we
believe  this  concept  should  be  discussed  more  in  depth.  In
order  to  better  serve  human-beings,  traditional  LLMs  are
usually fine-tuned to be aligned with correct human values, for
example,  the  agent  should  not  plan  to  make  a  bomb  for
avenging society. However, when the agents are leveraged for
real-world  simulation,  an  ideal  simulator  should  be  able  to
honestly  depict  diverse  human traits,  including  the  ones  with
incorrect  values.  Actually,  simulating  the  human  negative
aspects  can  be  even  more  important,  since  an  important  goal
of  simulation  is  to  discover  and  solve  problems,  and  without

   

✓
Table 3    For subjective evaluation, we use ① and ② to represent human annotation and the Turing test, respectively. For objective evaluation, we use ①, ②,
③, and ④ to represent environment simulation, social evaluation, multi-task evaluation, and software testing, respectively. “ ” indicates that the evaluations
are based on benchmarks

Model Subjective Objective Benchmark Time
WebShop [80] − ① ③ ✓ 07/2022
Social Simulacra [98] ① ② − 08/2022
TE [102] − ② − 08/2022
LIBRO [168] − ④ − 09/2022
ReAct [59] − ① ✓ 10/2022
Out of One, Many [29] ② ② ③ − 02/2023
DEPS [33] − ① ✓ 02/2023
Jalil et al. [169] − ④ − 02/2023
Reflexion [12] − ① ③ − 03/2023
IGLU [122] − ① ✓ 04/2023
Generative Agents [20] ① ② − − 04/2023
ToolBench [149] − ③ ✓ 04/2023
GITM [16] − ① ✓ 05/2023
Two-Failures [162] − ③ − 05/2023
Voyager [38] − ① ✓ 05/2023
SocKET [165] − ② ③ ✓ 05/2023
MobileEnv [163] − ① ③ ✓ 05/2023
Clembench [173] − ① ③ ✓ 05/2023
Dialop [175] − ② ✓ 06/2023
Feldt et al. [170] − ④ − 06/2023
CO-LLM [22] ① ① − 07/2023
Tachikuma [164] ① ① ✓ 07/2023
WebArena [171] − ① ✓ 07/2023
RocoBench [89] − ① ② ③ − 07/2023
AgentSims [34] − ② − 08/2023
AgentBench [167] − ③ ✓ 08/2023
BOLAA [166] − ① ③ ④ ✓ 08/2023
Gentopia [172] − ③ ✓ 08/2023
EmotionBench [160] ① − ✓ 08/2023
PTB [128] − ④ − 08/2023
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negative aspects means no problem to be solved. For example,
to  simulate  the  real-world  society,  we may have to  allow the
agent to plan for making a bomb, and observe how it will act
to implement the plan as well as the influence of its behaviors.
Based on these observations, people can make better actions to
stop  similar  behaviors  in  real-world  society.  Inspired  by  the
above  case,  maybe  an  important  problem  for  agent-based
simulation  is  how  to  conduct  generalized  human  alignment,
that  is,  for  different  purposes  and  applications,  the  agent
should be able to align with diverse human values. However,
existing  powerful  LLMs  including  ChatGPT  and  GPT-4  are
mostly  aligned  with  unified  human  values.  Thus,  an
interesting  direction  is  how  to “realign” these  models  by
designing proper prompting strategies.

 6.3    Prompt robustness
To ensure rational behavior in agents, it’s a common practice
for  designers  to  embed  supplementary  modules,  such  as
memory  and  planning  modules,  into  LLMs.  However,  the
inclusion  of  these  modules  necessitates  the  development  of
more  complex  prompts  in  order  to  facilitate  consistent
operation  and  effective  communication.  Previous  research
[184,185]  has  highlighted  the  lack  of  robustness  in  prompts
for  LLMs,  as  even  minor  alterations  can  yield  substantially
different  outcomes.  This  issue  becomes  more  pronounced
when constructing autonomous agents, as they encompass not
a  single  prompt  but  a  prompt  framework  that  considers  all
modules, wherein the prompt for one module has the potential
to  influence  others.  Moreover,  the  prompt  frameworks  can
vary significantly across different LLMs. The development of
a  unified  and  resilient  prompt  framework  applicable  across
diverse  LLMs  remains  a  critical  and  unresolved  challenge.
There  are  two  potential  solutions  to  the  aforementioned
problems: (1) manually crafting the essential prompt elements
through  trial  and  error,  or  (2)  automatically  generating
prompts using GPT.

 6.4    Hallucination
Hallucination  poses  a  fundamental  challenge  for  LLMs,
characterized  by  the  models’ tendency  to  produce  false
information with a high level of confidence. This challenge is
not limited to LLMs alone but is also a significant concern in
the  domain  of  autonomous  agents.  For  instance,  in  [186],  it
was  observed  that  when  confronted  with  simplistic
instructions  during  code  generation  tasks,  the  agent  may
exhibit  hallucinatory  behavior.  Hallucination  can  lead  to
serious  consequences  such  as  incorrect  or  misleading  code,
security risks, and ethical issues [186]. To mitigate this issue,
incorporating  human  correction  feedback  directly  into  the
iterative process of  human-agent  interaction presents  a  viable
approach [23]. More discussions on the hallucination problem
can be seen in [176].

 6.5    Knowledge boundary
A pivotal application of LLM-based autonomous agents lies in
simulating  diverse  real-world  human  behaviors  [20].  The
study of  human simulation has  a  long history,  and the  recent
surge  in  interest  can  be  attributed  to  the  remarkable
advancements  made  by  LLMs,  which  have  demonstrated

significant  capabilities  in  simulating  human  behavior.
However, it is important to recognize that the power of LLMs
may  not  always  be  advantageous.  Specifically,  an  ideal
simulation  should  accurately  replicate  human  knowledge.  In
this  context,  LLMs  may  display  overwhelming  capabilities,
being  trained  on  a  vast  corpus  of  Web  knowledge  that  far
exceeds what an average individual might know. The immense
capabilities of LLMs can significantly impact the effectiveness
of simulations. For instance, when attempting to simulate user
selection behaviors  for  various  movies,  it  is  crucial  to  ensure
that LLMs assume a position of having no prior knowledge of
these movies. However, there is a possibility that LLMs have
already  acquired  information  about  these  movies.  Without
implementing  appropriate  strategies,  LLMs  may  make
decisions  based  on  their  extensive  knowledge,  even  though
real-world users would not have access to the contents of these
movies  beforehand.  Based  on  the  above  example,  we  may
conclude  that  for  building  believable  agent  simulation
environment,  an  important  problem  is  how  to  constrain  the
utilization of user-unknown knowledge of LLM.

 6.6    Efficiency
Due to their autoregressive architecture, LLMs typically have
slow inference speeds. However, the agent may need to query
LLMs  for  each  action  multiple  times,  such  as  extracting
information  from  memory,  make  plans  before  taking  actions
and  so  on.  Consequently,  the  efficiency  of  agent  actions  is
greatly affected by the speed of LLM inference.

 7    Conclusion
In this survey, we systematically summarize existing research
in the field of LLM-based autonomous agents. We present and
review  these  studies  from  three  aspects  including  the
construction,  application,  and  evaluation  of  the  agents.  For
each of these aspects, we provide a detailed taxonomy to draw
connections  among  the  existing  research,  summarizing  the
major techniques and their  development histories.  In addition
to  reviewing  the  previous  work,  we  also  propose  several
challenges in this field, which are expected to guide potential
future directions.
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