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Abstract Removing the smog from digital images is a chal-
lenging pre-processing tool in various imaging systems. There-
fore, many smog removal (i.e., desmogging) models are pro-
posed so far to remove the effect of smog from images. The
desmogging models are based upon a physical model, it means
it requires efficient estimation of transmission map and atmo-
spheric veil from a single smoggy image. Therefore, many prior
based restoration models are proposed in the literature to esti-
mate the transmission map and an atmospheric veil. However,
these models utilized computationally extensive minimization
of an energy function. Also, the existing restoration models suf-
fer from various issues such as distortion of texture, edges, and
colors. Therefore, in this paper, a convolutional neural network
(CNN) is used to estimate the physical attributes of smoggy
images. Oblique gradient channel prior (OGCP) is utilized to
restore the smoggy images. Initially, a dataset of smoggy and
sunny images are obtained. Thereafter, we have trained CNN
to estimate the smog gradient from smoggy images. Finally,
based upon the computed smog gradient, OGCP is utilized to
restore the still smoggy images. Performance analyses reveal
that the proposed CNN-OGCP based desmogging model out-
performs the existing desmogging models in terms of various
performance metrics.

Keywords convolutional neural networks, desmogging,
smog, oblique gradient channel prior

1 Introduction
Images taken in poor weather conditions such as fog, haze,
smog, etc., greatly suffer from the poor visibility issue. Smog is
a kind of air pollution, originally named for the mixture of haze
and fog in the air. Figure 1 shows the impact of fog, haze, and
smog on the natural image.

Smoggy images can reduce the efficiency of many imaging
applications, therefore, the development of an efficient smog
removal model i.e., desmogging is desirable. But, in the litera-
ture majority of the researchers have focused on hazy or foggy
images. Therefore, the existing methods can not be applied di-
rectly to smoggy images to restore them. Because it may cause
adversarial artifacts. Therefore, in this paper, we have focused
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Fig. 1 A synthetic image in which (a) shows natural image, (b) shows foggy
image, (c) shows hazy image, and (d) shows a smoggy image. This is a synthetic
image. It is found that the smoggy image has very poor visibility compared to
the natural, foggy, and hazy images

on the development of a novel smog restoration model which
can restore the visual degradation due to smog by utilizing the
inversion of an optical smog imaging model. Therefore, effi-
cient estimation of the physical attributes of smoggy images is
required to be estimated carefully.

Therefore, many visibility restoration models are proposed
in the literature to restore smoggy images. Enhancement based
methods such as minimum information loss and histogram dis-
tribution prior [1], partial differential equation-based enhance-
ment [2], optimized contrast enhancement [3], etc., are not so
effective to restore the smoggy images. These methods only try
to enhance the visual characteristics of images and not try to
restore them [4]. Therefore, the enhancement based restoration
models fail to restore smoggy images [5].

To overcome these issues many channel priors are imple-
mented in literature which can be used to restore smoggy im-
ages. Some most commonly used channel priors are as optimal
transmission map under scene priors (OTSP) [6], color ellipsoid
prior (CEP) [7], block-to-pixel interpolation and adaptive dark
channel prior (BDCP) [8], dark channel prior loss (DCPL) [9],
energy minimization and dark channel prior (EMDCP) [10],
scene-aware sky-segmented dark channel prior (SSDCP) [11],
gradient channel prior (GCP) [12], variational minimization
based oblique gradient profile prior (VMOGPP) [13], etc.
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The prime contributions of the proposed smog removal
model are as follows:

1) A convolutional neural network (CNN) is utilized to ap-
proximate the physical attributes of smoggy images.

2) Oblique gradient channel prior (OGCP) is used to remove
the smog from still images.

3) Initially, a dataset of smoggy and sunny images are ob-
tained.

4) Thereafter, we have trained the constitutional neural net-
work to estimate the smog gradient on smoggy images.

5) Finally, based upon the computed smog gradient, OGCP
is utilized to restore the still smoggy images.

The remaining paper is decomposed into the following sec-
tions: related work about the visibility restoration models
is presented in Section 2. The proposed visibility restoration
model is discussed in Section 3. Performance analyses are il-
lustrated in Section 4. Finally, the conclusion is presented in
Section 5.

2 Literature review
Zhao et al. [14] used multi scale fusion model to improve the es-
timation of transmission region for image desmogging. In this,
transmission map is fused patch-wise and pixel-wise to prevent
misestimated transmission region. Jiang et al. [15] combined
the bright and dark channel priors on superpixels to restore the
smoggy images. This technique can also correct the misesti-
mation of atmospheric light and transmission map for black
and white pixels. Wang et al. [16] designed a convex model
to desmog the images based on sparse dark channel prior. In
this technique, l1 regularization term, a data-fitting term, and
two total variation regularization terms are utilized to recover
the smog free image. Gui et al. [17] implemented a model to
recover the smog-free images using support vector machine.
The idea behind this is that every desmogging approach shows
good results when it works for some smog concentration. Yin et
al. [18] utilized the parallel spatial/channel-wise attention block
to recover the smoggy images. Channel-wise and spatial atten-
tion modules are used to explore the inter-dependencies among
the channel-wise features and spatial positions of features, re-
spectively. Liang et al. [19] used attenuation map and detailed
preservation method to recover the smoggy images. A piece-
wise linear transform is used for each color channel of attenua-
tion map to process the information. Multiscale decomposition
is used to preserve the lost details. Zhang et al. [20] proposed a
method to recover the smoggy images based on improved dark
channel prior. It also determines the enhancement parameters
optimally using logarithmic enhancement algorithm. Emberton
et al. [21] recovered the smoggy images by detecting and seg-
menting the pure smoggy regions. A semantic white balanc-
ing method is also applied to address the spectral distortion
present in the smoggy images. Xiao et al. [22] utilized deep
learning to recover the smoggy images. Guided filter is also
used to eliminate the halos and block artefacts. Guo et al. [23]
proposed a desmogging technique based on deep convolutional
network and fusion strategy. In this, five maps such as expo-
sure map, saliency map, balance map, gamma correction map,

and haze veil map are obtained from original smoggy image.
a U-shaped deep convolutional network is used to blend these
maps to generate a smog-free image. Gao et al. [24] studied a
dual fusion approach to recover the smoggy images. It creates
sky and non-sky regions using a segmentation method. There-
after, a multi-region fusion strategy is applied to optimize the
transmission map. Khan et al. [25] utilized wavelet domain to
estimate the atmospheric light and transmission map of smoggy
image. Smog is eliminated from the low frequency sub-band of
smoggy image. Borkar and Mukherjee [26] used adaptive near-
est neighbor regularization to recover the smog-free images. To
preserve the texture detail, small patches with intensity distri-
bution of smoggy images are used. Soft matting technique is
used to evaluate the transmission map for smog removal. Xu
et al. XU201950 used iterative desmogging technique to elim-
inate the smog from the images. In this technique, pixel-wise
and patch-wise operations are also combined to remove the
artefacts. Galdran [27] used gamma-correction and multi-scale
Laplacian blending to remove the smog from the images. The
benefit of this method is that it does not require estimation of
costly depth in scene. Singh and Kumar [28] used a gradient
profile prior to eliminate the smog from the images. Yuan et
al. [29] proposed a transmission fusion method using automatic
image matting to obtain the smog-free images. Wang et al. [30]
implemented a desmogging technique using variational model.
A gradient algorithm is used to solve the problem of constrained
optimization. Alajarmeh and Salam [31] proposed a method
to recover smog-free images using estimation of constant-time
airlight and linear transmission.

From the extensive review, it has been found that the devel-
opment of an efficient smog removal model is an open area of
research. Also, the use of machine and deep learning techniques
to predict smog density is ignored in the literature.

3 Proposed visibility restoration model
This section discusses the proposed smog removal model.

3.1 Physical model
A physical smog imaging model can be represented as [12, 32,
33]:

Si(q) = η(q)Ir(q) + (1 − η(q))γ,

η(q) = e−βd(q).
(1)

Here, the Si(q) ∈ RN×3 shows a smoggy image. Ir(q) de-
fines actual scene radiance. γ shows atmospheric light and in
color domain γ =

(
Ar, Ag, Ab

)
. η(q) ∈ RN defines transmission

map.q ∈ RN shows pixel coordinates. The transmission map
depends upon d(q) of an actual radiance. The main objective
of desmogging is to restore the smoggy images by efficiently
approximating the η and γ from Si(q) [34–38].

3.2 Oblique gradient channel prior
An OGCP is based upon the statistical observations that in
3 × 3 mask of smog-free images, the majority of the gradient
values are dark and model toward 0 (for more details please
see [39–41]). It is mathematically evaluated as:

Ir
O(q) = Δ

c∈{r,g,b}
(Delta
ι∈Ω(q)

(Ir
c(ι))). (2)
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Here, Ω(q) shows 3 × 3 mask centered at q. Δ defines oblique
gradient operator.

Let γ is already known and the transmission in masks is
depicted using η̃(q) is constant. Therefore, a gradient opera-
tor over color channels and pixels in a smog imaging model
(Eq. (1)) (significantly normalized by using Ir

c(ι)) and obtain
an estimated transmission map as:

η̃(q) = 1 − ω · Δ
c

(
Δ

ι∈Ω(q)

(
Si

c(ι)
Ac

))
. (3)

Here ω = 0.97 is used to prevent cartoon effect issue which
may occur if we completely restores smoggy images. For sky
segments, an OGCP does not always exist, thus, we assume that
the Si/γ→ 1. Therefore, η̃(q)→ 0. The obtained η̃(q) needs to
be improved by using filtering.

3.3 Energy minimization function
The smog imaging model (see Eq. (1)) is almost identical to
the image matting model [42]. The obtained image is a convex
linear collection of background and foreground images. These
are constrained by a α matte. If we replace the α-matte with
obtained η̃(q), then the an energy function [42] can be defined
to improve η(q) as:

E(η, η̃) = ηTλη + �(η − η̃)T(η − η̃). (4)

Here, � is control attribute and set as � = 10−39. λ defines a
Laplacian-like matrix and can be defined as [42]:

λi j =
∑

n|(i, j)∈pn

(δi j − wn
i j), ∀i, j = 1 · · ·N,

wn
i j =

1
|pn|

(
1 + (Sii − µn)T(Σn +

ε

|pn|ψ3)−1(Si j − µn)

)
.

(5)

Here, pixels i, j ∈ pn around pixel n. |pn| is a mask size. µn ∈ R3

and Σn ∈ R3×3 define an average and co-variance of mask. ψ3

defines an identity matrix. ε shows a filtering attribute and set
to ε = 10−55.

3.4 Loss function
The energy function in Eq. (4) is like a Laplacian matrix by con-
sidering their respective coefficients as in Eq. (5). By rewriting
Eq. (4) in terms of coefficients as:

E1(η, η̃) = ηTλη =

N∑

n=1

m∑

j=1

m∑

i=1

wn
i j(ηi − η j)

2. (6)

Here, m = 9. The summation of every overlapping masks over
N pixels is used to obtain η in a 3 × 3 mask. Now vectorization
is achieved by using data fidelity term as:

E(η, η̃) =
N∑

n=1

K∑

k=1

φ � (τI − τJ)2 + �
N∑

n=1

(η − η̃)2. (7)

Here, � represent element-wise projection. k ∈ [1 · · ·m2] show
various set of pixels in a 3 × 3 mask. φ ∈ RN×m2

define vec-
torization of coefficients. τI , τJ ∈ RN×m2

defines the computed
transmission map. Initially, transmission masks are placed in
I → (1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m) ∈ Rm2

, and then the re-
maining are placed in J → (1, 2, . . . ,m, 1, 2, . . . ,m, . . . , 1,
2, . . . ,m) ∈ Rm2

.

Te estimated transmission map is controlled using ηθ. The
hyper-parameters are optimized by using minimizing Eq. (7)
over a training set of smoggy images, {Sir}Rr=1:

θ∗ = arg min
θ

⎡⎢⎢⎢⎢⎢⎣
1
R

R∑

r=1

E(ηθ, η̃(Sir))

⎤⎥⎥⎥⎥⎥⎦ . (8)

Here, R shows total number of smoggy images.

3.5 Smog restoration model
After model building, ηθ(q) of a smoggy image can be esti-
mated by using a forward-pass process. It is utilized to restore
the smoggy image by considering Eq. (1) as:

Ir(q) =
Si(q) − γ

max(ηθ(q), η0)
+ γ. (9)

Here, η0 = 0.1 is used to prevent over restoration and cartoonist
effect issues. To obtain airlight, i.e., γ, top 0.1% maximum pix-
els are selected from the obtained OGCP of a smoggy image.
The respective indexes of the brightest pixel in Si are selected
to obtain γ.

3.6 Architecture
Initially, we have trained CNN [33, 37, 43, 44] on a set of
smoggy and smog-free images to by setting smog density as
a target label (see Fig. 2). We have used 0 to 9 levels of smog
density. 0 means very less smog and 9 means heavy smog
density. Thereafter, OGCP is used to estimate the physical

Fig. 2 Diagrammatic flow of the proposed CNN based smog gradient classi-
fication model
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Fig. 3 Proposed architecture of CNN based smog gradient prediction model

parameters of a smoggy image. The obtained transmission map
is then improved using the proposed energy minimization func-
tion. Finally, the restored smog-free image can be obtained us-
ing the restoration model.

The complete layout of the CNN based training and smog
gradient prediction model is shown in Fig. 3. Four maxpool-
ing and ReLU function are used to compute the features from
the smoggy and smog-free images i.e., four convolution oper-
ators are applied. Thereafter, softmax is used to evaluate the
probability density function for the images. Finally, probability
density function is used to predict the smog density from the
images [43].

4 Performance analysis

We have collected 500 smog-free and 500 smoggy images for
training purposes. It is assumed that during training purpose
the smog density of every image is known. Seven haze removal
models are used for evaluating the performance of the proposed
smog removal model. These models are OTSP [6], CEP [7],

Fig. 4 Transmission map analyses: (a) Input image, (b) OTSP [6], (c) CEP
[7], (d) BDCP [8], (e) DCPL [9], (f) EMDCP [10], (g) SSDCP [11], (h)
VMOGPP [13] and (i) proposed model

BDCP [8], DCPL [9], EMDCP [10], SSDCP [11], and CLT.
The proposed smog removal model is implemented on a core i5
processor with 8-GB RAM on MATLAB 2018a software. All
the considered smog removal models are also implemented in
the same environment. Their hyper-parameters are defined as
they are reported in their respective papers. We have obtained
a natural image and add a synthetic smog in them by using a
MATLAB code for experimental purposes.

4.1 Visual analysis
Figure 4 shows the computed transmission map analyses among
the proposed and the competitive smog restoration models. It
has been found that the transmission map obtained from the
proposed model is not affected by the noise and over-saturation
issues as compared to the existing smog restoration models.

Visual analyses among the existing and the proposed smog
restoration models are shown in Figs. 5, 6, and 7. It has been
observed that OTSP [6] and BDCP [8] suffer from texture dis-
tortion, halo and gradient reversal artifacts, and color distortion

Fig. 5 Visual comparative analyses among the proposed and the competitive
smog restoration models (a) Smoggy image, (b) OTSP [6], (c) CEP [7], (d)
BDCP [8], (e) DCPL [9], (f) EMDCP [10], (g) SSDCP [11], (h) VMOGPP [13]
and (i) proposed model
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Fig. 6 Visual analyses among the existing and the proposed smog restora-
tion models (a) smoggy image, (b) OTSP [6], (c) CEP [7], (d) BDCP [8], (e)
DCPL [9], (f) EMDCP [10], (g) SSDCP [11], (h) VMOGPP [13] and (i) pro-
posed model

Fig. 7 Visual analyses among the existing and the proposed smog restora-
tion models (a) Smoggy image, (b) OTSP [6], (c) CEP [7], (d) BDCP [8], (e)
DCPL [9], (f) EMDCP [10], (g) SSDCP [11], (h) VMOGPP [13], and (i) pro-
posed model

issues. Also, the red marked areas show that these models per-

form poorly especially for regions that are similar to sky-region
or contain more smog gradient.

The computed smog-free images from CEP [7] and DCPL
[9] perform significantly better as compared to OTSP [6] and
BDCP [8]. However, these models suffer from edge and texture
distortion issues.

The smog free images obtained by using EMDCP [10], SS-
DCP [11], and VMOGPP [13] provide efficient results as com-
pared to OTSP [6], BDCP [8], CEP [7] and DCPL [9]. But
these techniques are unable to preserve texture information of
images.

The proposed smog removal model is capable of effectively
remove smog while preserving an edge, texture information,
and vivid color of restored images. It is due to the use of fusion-
based coarse transmission map estimation and novel regular-
ized based variational model.

4.2 Quantitative analysis
The percentage of saturated pixels values between the proposed
and the existing models are depicted in Table 1. It is desirable to
be a minimum value. It has been found that the proposed model
achieves significantly minimum saturated values as compared
to the competitive models. Therefore, the proposed model ob-
tains significantly remarkable images as it has a lesser number
of saturated pixels.

The ratio of new visible edges (e) and ratio of mean gradi-
ent (r̄) analyses among the existing and the proposed visibility
restoration models are shown in Tables 2 and 3. From these ta-
bles, it has been found that the proposed model obtains signif-
icantly better values as compared to the existing smog restora-
tion models in terms of e and r̄.

5 Conclusion
From the extensive review, it has been found that the restoration
of smoggy images is defined as an ill-posed problem. There-
fore, many smog removal (i.e., desmogging) models were im-
plemented so far to restore smoggy images. It has been found
that the smog removal models were based on a physical model.
Therefore, an efficient approximation of physical attributes
from a single smoggy image was achieved by utilizing CNN
and OGCP to restore the smoggy images. Initially, a dataset of
smoggy and sunny images was obtained. Thereafter, we have
trained CNN to approximate the smog gradient of smoggy im-
ages. Finally, based upon the computed smog gradient, OGCP
was utilized to restore the still smoggy images. Performance
analyses have shown that the proposed CNN-OGCP based

Table 1 Comparative analyses among the existing and the proposed smog restoration models in terms of Percentage of saturated pixels (ρ) (Minimum is better)

Img. OTSP CEP BDCP DCPL EMDCP SSDCP VMOGPP Proposed

I1 0.11±0.016 0.13±0.011 0.16±0.016 0.15±0.012 0.13±0.016 0.15±0.014 0.09±0.015 0.08±0.011
I2 0.17±0.016 0.10±0.014 0.20±0.011 0.18±0.016 0.10±0.016 0.17±0.011 0.09±0.014 0.09±0.015
I3 0.11±0.016 0.18±0.012 0.12±0.013 0.18±0.012 0.09±0.016 0.12±0.012 0.11±0.016 0.09±0.012
I4 0.19±0.013 0.20±0.012 0.09±0.015 0.09±0.013 0.17±0.014 0.19±0.014 0.12±0.011 0.09±0.012
I5 0.09±0.013 0.10±0.013 0.19±0.013 0.13±0.013 0.16±0.014 0.10±0.011 0.13±0.013 0.08±0.012
I6 0.14±0.012 0.19±0.011 0.16±0.015 0.14±0.012 0.12±0.013 0.13±0.013 0.12±0.012 0.10±0.013
I7 0.16±0.011 0.15±0.014 0.20±0.01 0.13±0.011 0.20±0.011 0.09±0.016 0.12±0.016 0.09±0.013
I8 0.10±0.013 0.12±0.013 0.19±0.012 0.12±0.014 0.14±0.011 0.19±0.011 0.17±0.011 0.09±0.016
I9 0.16±0.011 0.15±0.012 0.12±0.012 0.17±0.014 0.12±0.013 0.11±0.011 0.21±0.014 0.11±0.015
I10 0.15±0.013 0.14±0.012 0.17±0.016 0.20±0.015 0.10±0.012 0.13±0.015 0.09±0.016 0.08±0.014
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Table 2 Comparative analyses among the existing and the proposed smog restoration models in terms of ratio of new visible edges (e)

Img. OTSP CEP BDCP DCPL EMDCP SSDCP VMOGPP Proposed

I1 2.298±0.14 2.218±0.13 1.651±0.12 1.965±0.12 2.15±0.13 1.722±0.14 1.881±0.12 2.555±0.07
I2 1.713±0.12 2.015±0.13 1.989±0.12 1.676±0.15 2.247±0.16 1.665±0.13 1.834±0.16 2.479±0.09
I3 2.167±0.15 1.853±0.12 1.916±0.14 1.764±0.13 1.991±0.16 1.962±0.11 1.658±0.14 2.399±0.08
I4 1.771±0.13 2.037±0.11 2.271±0.16 2.178±0.13 2.204±0.16 2.137±0.11 2.275±0.13 2.507±0.12
I5 1.786±0.13 1.542±0.11 2.262±0.13 2.306±0.11 2.291±0.14 1.889±0.16 2.317±0.15 2.549±0.09
I6 1.574±0.14 2.116±0.11 2.177±0.15 2.323±0.14 2.009±0.13 2.231±0.15 1.819±0.13 2.555±0.09
I7 2.112±0.14 2.231±0.15 1.942±0.11 2.054±0.12 1.867±0.16 1.575±0.11 1.816±0.15 2.463±0.07
I8 2.129±0.16 2.048±0.11 2.319±0.13 2.097±0.13 1.957±0.13 2.067±0.16 1.834±0.15 2.551±0.07
I9 2.262±0.11 2.208±0.12 2.183±0.12 2.077±0.15 2.282±0.14 2.021±0.15 2.182±0.14 2.514±0.11
I10 1.772±0.15 1.963±0.12 1.786±0.15 1.747±0.16 2.274±0.12 2.165±0.13 2.141±0.16 2.506±0.07

Table 3 Comparative analyses among the existing and the proposed smog restoration models in terms of ratio of mean gradient (r̄)

Img. OTSP CEP BDCP DCPL EMDCP SSDCP VMOGPP Proposed

I1 2.133±0.13 2.035±0.14 2.242±0.15 2.144±0.14 2.189±0.15 2.301±0.11 2.054±0.13 2.533±0.11
I2 2.134±0.14 2.322±0.16 2.023±0.12 2.088±0.11 2.295±0.13 2.255±0.15 2.098±0.12 2.554±0.07
I3 2.239±0.14 2.138±0.12 2.231±0.13 2.177±0.14 2.301±0.13 2.124±0.16 2.288±0.13 2.533±0.07
I4 2.071±0.13 2.121±0.15 2.236±0.13 2.099±0.11 2.112±0.14 2.101±0.16 2.179±0.11 2.468±0.11
I5 2.039±0.16 2.059±0.14 2.047±0.12 2.057±0.13 2.208±0.15 2.281±0.15 2.122±0.16 2.513±0.12
I6 2.098±0.13 2.153±0.12 2.233±0.11 2.242±0.15 2.138±0.13 2.102±0.15 2.07±0.13 2.474±0.07
I7 2.192±0.15 2.248±0.11 2.232±0.12 2.089±0.11 2.208±0.16 2.275±0.12 2.193±0.11 2.507±0.09
I8 2.143±0.15 2.081±0.15 2.115±0.16 2.088±0.14 2.308±0.15 2.031±0.16 2.196±0.15 2.544±0.08
I9 2.248±0.11 2.097±0.15 2.254±0.11 2.247±0.13 2.321±0.11 2.213±0.11 2.044±0.15 2.553±0.08
I10 2.262±0.11 2.259±0.14 2.083±0.16 2.111±0.15 2.128±0.12 2.119±0.13 2.087±0.16 2.494±0.12

desmogging model outperforms the existing desmogging mod-
els in terms of various performance metrics. In this paper, we
have not considered the optimal selection of hyper-parameters,
therefore, in near future various algorithms such as genetic
algorithm [45], parallel strength pareto evolutionary algorithm-
II [46], multi-objective genetic algorithm [47, 48], memetic
differential evolution, [49], etc., can be used to tune the hyper-
parameters of the proposed model.
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