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Abstract Effective exploration is key to a successful search
process. The recently proposed negatively correlated search
(NCS) tries to achieve this by coordinated parallel exploration,
where a set of search processes are driven to be negatively cor-
related so that different promising areas of the search space can
be visited simultaneously. Despite successful applications of
NCS, the negatively correlated search behaviors were mostly
devised by intuition, while deeper (e.g., mathematical) under-
standing is missing. In this paper, a more principled NCS,
namely NCNES, is presented, showing that the parallel explo-
ration is equivalent to a process of seeking probabilistic models
that both lead to solutions of high quality and are distant from
previous obtained probabilistic models. Reinforcement learn-
ing, for which exploration is of particular importance, are con-
sidered for empirical assessment. The proposed NCNES is ap-
plied to directly train a deep convolution network with 1.7 mil-
lion connection weights for playing Atari games. Empirical re-
sults show that the significant advantages of NCNES, especially
on games with uncertain and delayed rewards, can be highly
owed to the effective parallel exploration ability.

Keywords evolutionary computation, reinforcement learn-
ing, exploration

1 Introduction
Negatively correlated search (NCS) [1] is a recently proposed
evolutionary algorithm (EA) [2] of iteratively searching for op-
timal solutions. Driven by that a properly diversified population
can be more beneficial to search [3], NCS explicitly asks differ-
ent subsets of the population to periodically share their prob-
abilistic distributions so that they can cooperatively model and
control the diversity of the whole population. As the probabilis-
tic distribution actually determines how the new solutions will
be sampled, NCS is featured in explicitly modeling the diver-
sity of the next population at the current iteration. On this basis,
NCS is capable of capturing the on-going interactions between
successive iterations and effectively controlling the diversity of
the next population, distinguishing itself from traditional EAs
who only measure the diversity of sampled population [3].

Specifically, NCS explicitly divides the population into mul-
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tiple sub-populations. The evolution of each sub-population is
regarded as a separate search process and is conducted by a tra-
ditional EA for exploitation. Meanwhile, the search processes
are coordinated to explore different search space by driving
their probabilistic distributions to be negatively correlated. As a
result, NCS has shown to perform a parallel exploration search
behavior that multiple search processes are guided to search dif-
ferent promising areas of the search space simultaneously (see
Fig.2 in [1] for illustration). Although the basic idea of NCS has
attracted increasing research interests [4–7] and has shown very
promising performance in various real-world problems [7–12],
the original instantiation of NCS [1] was mostly devised by in-
tuition, lacking the mathematical explanations of why the neg-
atively correlated search processes can lead to a parallel explo-
ration and the guidance of how to optimally obtain the nega-
tively correlated search processes.

In this paper, a mathematically principled NCS framework is
proposed to address this issue. The new NCS explicitly regards
the exploration and exploitation as two objectives of the general
search procedure, and works by mathematically modeling and
maximizing both a diversity model (for exploration) and a fit-
ness model (for exploitation) of the next population. The diver-
sity model measures the total negative correlations of the prob-
abilistic distributions between pairwise search processes, and
the fitness model describes the total expectation of the solution
qualities that can be sampled under the probabilistic distribu-
tions. In other words, these two models respectively represent
how different and how good the new solutions can be gener-
ated. By maximizing the diversity model, the search processes
tend to be more negatively correlated as the overlaps among
probabilistic distributions are getting smaller. By maximizing
the fitness model, the expectation of solution qualities that can
be sampled by the search processes is improved.

In practice, by employing the natural evolution strategy [13]
to evolve each search process, both the diversity model and the
fitness model can be optimally maximized via partially gradient
descending with respect to each search process. That is, each
search process can independently maximize the negative corre-
lation to the others and the expectation of sampling better solu-
tions. On this basis, by gradient descending the two models at
the same time, the resultant Negatively Correlated Natural Evo-
lution Strategy (NCNES) is able to form a parallel exploration
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search behavior that different search processes will in parallel
evolve to distinct yet promising areas of the search space.

To verify the effectiveness of NCNES, the reinforcement
learning problem is considered for empirical studies, as it is
widely acknowledged that the exploration ability has great
impacts on the performance of a reinforcement learner [14].
Three popular Atari games [15] covering shooting and obsta-
cles avoidance tasks are selected as the test instances. To play
the Atari games, NCNES is required to directly train a deep
convolution network with 1.7 million connection weights for
optimizing the policy, which imposes great challenges to NC-
NES as the search space is both large-scale and highly multi-
modal. Even worse, the environmental rewards are highly un-
certain and heavily delayed, making the training further difficult
without the help of traditional back-propagation. Empirical re-
sults have successfully shown that, NCNES can achieve signif-
icantly more scores than the state-of-the-art algorithms (includ-
ing both EA-based and gradient-based solutions).Furthermore,
due to the parallel exploration search behavior, it has shown
that NCNES can facilitate the search more computationally ef-
ficiently with parallel computing resources.

The rest of this paper are organized as follows. In Section 2,
the new mathematically principled NCS is presented in detail,
and the weakness of the original NCS that was designed by
intuition is also discussed. An instantiation of the new NCS
framework, i.e., NCNES, is described in Section 3. In Section 4,
the effectiveness of NCNES is verified on three reinforcement
learning problems by playing Atari. The conclusions are given
in the Section 5.

2 NCS for coordinated parallel exploration
NCS stems from re-thinking of how does population facilitate
the search? Although it has been widely acknowledged that
effective information sharing among population is the key to
successful cooperative search, an open question remains what
information to share and how [16]. By mimicking the coopera-
tion in human, NCS asks the individuals in a population to have
different search behaviors, so as to avoid repetitively search-
ing a same region of the search space. Similar idea has also
been adopted for ensemble learning [17]. Each search behav-
ior is defined as how the offspring will be sampled based on
their parents, and usually can be represented as a probabilistic
distribution. The mathematical correlation among distributions
is utilized to statistically model the diversity among the popu-
lation. As a result, by explicitly driving multiple probabilistic
distributions to be negatively correlated, NCS suffices to control
the diversity of the next population.

By implementing the above idea, it is necessary to instantiate
a way for modeling the diversity and balancing it with exploita-
tion. In the original NCS, such steps are mainly motivated by
intuition, lacking mathematical explanations for in-depth analy-
sis and shown to be sub-optimal. In this section, we first provide
the mathematical model that describes the idea of re-designing
NCS for parallel exploration; then the new NCS framework is
born from the mathematical model by adopting the Gaussian

Table 1 The summarization of the major mathematical denotations

Denotation Description

λ The number of sub-populations (search processes) at each itera-
tion.

μ The number of samplings (solutions) in each sub-population at
each iteration.

p(θi) The probabilistic distribution of the ith sub-population with the
parameter θi.

f (x) The fitness value of a sample x.
d(p(θi)) The diversity value between the ith probabilistic distribution and

the others.
∇θi The partial gradient of a function with respect to θi.
J The reformed objective to be optimized in NCS.
F The fitness model in the reformed objective.
D The diversity model in the reformed objective.
ϕ The trade-off parameter balancing the fitness and diversity dur-

ing the search.
(mi,Σi) The mean vector and covariance matrix of the ith probabilistic

distribution.
F The fisher information matrix.

distribution for generating new solutions. It is clearly seen that
the new framework is better motivated from mathematical anal-
ysis and its advantages over the original NCS are also discussed
in detail.

Before that, the major mathematical denotations of the NCS
models are summarized in Table 1 for quick reference.

2.1 The mathematical model of NCS
Basically, the idea of NCS requires the population being ex-
clusively grouped into λ sub-populations, each of which is then
evolved as a separate search process by a traditional EA, prefer-
ably those who sample solutions from an explicit probabilistic
distribution [18]. To re-design NCS, let us start a thought game
from what kind of probabilistic distribution can facilitate the
search better by covering promising areas of the search space
and generating new solutions therein.

It is usually straightforward to build a simple well-defined
distribution like Gaussian distribution and Cauchy distribu-
tion [18]. Unfortunately, such distribution maybe incapable of
capturing the complex problem characteristics like the multi-
modality [19]. Usually, it is non-trivial to properly set up one
complicated distribution. Similar to a Gaussian Mixture Model
[20], we can have multiple simple distributions instead of one
complicated distribution. Another advantage of constructing
multiple distributions is that we can explicitly sample differ-
ent solutions therefrom for the purpose of finding multiple op-
tima [21]. Then this problem can be turned into how to add new
simple distributions to the first simple distribution. Clearly, the
new distributions should be able to sample new solutions with
high fitness values. Moreover, the new distributions should have
fewer overlaps (correlations) with existing ones, so that they
can be used to sample different regions of the solution space.

For clarity, let us construct the multi-distribution model from
scratch. If we initially have one distribution p(θi)1) , there is no
worry of overlap. Thus it is only required to sample solutions
with higher enough fitness values. Mathematically, this objec-

1) θ denotes the parameters of the distribution of the ith search process. For simplicity, in this paper, we assume all the distributions are with the same type, e.g.,
Gaussian distribution, while the parameters of the distribution, e.g., mean and covariance, can be different.
2) Without loss of generality, the maximization problem is taken for example in this paper.
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tive J (to be maximized) can be modeled as the expectation
of fitness values2) of the solutions x sampled from p(θi) [13],
shown as Eq. (1).

J =
∫

f (x)p (x | θ1) dx. (1)

If we want to add a new distribution p(θ2) to p(θ1), it has
to minimize the correlation between them, as well as maximiz-
ing the expected fitness values of both p(θ1) and p(θ2). For that
purpose, the following Eq.(2) should be maximized.

J =
∫

f (x)p (x | θ1) dx +
∫

f (x)p (x | θ2) dx+(
−C

(
p (θ1) , p (θ2)

)
−C

(
p (θ2) , p (θ1)

))
,

(2)

where C
(
p (θi) , p

(
θ j

))
means the correlation between the ith

and the jth distributions. Now suppose λ distributions are con-
sidered, Eq.(2) can be readily extended to Eq.(3).

J =
λ∑

i=1

∫
f (x)p (x | θi) dx

+

λ∑
i=1

λ∑
j=1,i� j

(
−C

(
p (θi) , p

(
θ j

)))
.

(3)

By maximizing the first additive term, it says that all the dis-
tributions should be able to sample solutions with high fitness
values. And by maximizing the second additive term, it means
that all the distributions should be mutually negatively corre-
lated, by which the overlaps among λ distributions can be max-
imized. Given that the distributions reflect how new solutions
are generated, the first additive term is able to give an expecta-
tion of how good the next population might be, and the second
additive term is thus capable of modeling the diversity of the
next population. On this basis, the diversity model D for all λ
distributions is defined as Eq.(4).

D =
λ∑

i=1

λ∑
j=1,i� j

−C
(
p (θi) , p

(
θ j

))
=

λ∑
i=1

d (p (θi)) , (4)

where d (p (θi)) =
∑λ

j=1,i� j −C
(
p (θi) , p

(
θ j

))
is the derived di-

versity component for the ith search process. By further de-
noting the first additive term as F and its ith component as
f (θi) =

∫
f (x)p (x | θi) dx, Eq.(3) can be re-written as Eq.(5)

for clarity.

J = F +D =
λ∑

i=1

f (θi) +
λ∑

i=1

d (p (θi)) . (5)

Thus, the mathematical explanation of NCS can be expressed
as maximizing the general objective J , which turns into the
maximization of both the diversity modelD for exploration and
the fitness model F for exploitation. It is highly desired that J
can be maximized in parallel to eliminate the interdependencies
among search processes and to enjoy the computational acceler-
ation. Since the distribution of a search process is independent
from each other by definition, one way to achieve the parallel

maximization ofJ is to apply the partial gradient descent toJ
with respect to each θi. The gradient of Eq.(5) can be calculated
as Eq.(6).

∇θiJ = ∇θiF + ∇θiD
= ∇θi f (θi) + ∇θi d (p (θi)) , i = 1, . . . , λ. (6)

Clearly, by applying the gradient descent to J , both the di-
versity modelD and the fitness modelF of each search process
can be independently maximized to enable NCS a parallel ex-
ploration search behavior, where each search process is highly
likely to evolve to an unexplored promising area of the search
space, respectively.

2.2 The new NCS framework
To implement Eq.(6), it is required to know how to calculate
∇θi f (θi) and ∇θi d (p (θi)), and how to update θi based on them.

For ∇θi f (θi), the work in [13] has derived the following for-
mulation (Eq.(7)) that can be directly employed.

∇θi f (θi) = ∇θi

∫
f (x)p (x | θi) dx

= Eθi

[
f (x)∇θi log p (x | θi)

]

≈ 1
μ

μ∑
k=1

f
(
xk

i

)
∇θi log p

(
xk

i | θi

)
, (7)

where xk
i indicates the kth solution in the ith sub-population and

μ is the number of the solutions in the ith sub-population. For
more details, please refer to [13].

To calculate ∇θi d (p (θi)) by Eq.(4), a correlation measure-
ment C

(
p (θi) , p

(
θ j

))
should be specified for the pair of p(θ1)

and p(θ2). Following the original NCS, let the Bhattacharyya
distance [22] be the negative correlation measurement, i.e.,

C
(
p (θi) , p

(
θ j

))
= − log

(∫ √
p (x | θi) p

(
x | θ j

)
dx

)
,

for continuous distributions and

C
(
p (θi) , p

(
θ j

))
= − log

⎛⎜⎜⎜⎜⎜⎝
∑
x∈X

√
p (x | θi) p

(
x | θ j

)⎞⎟⎟⎟⎟⎟⎠
for discrete distributions, respectively. Then ∇θi d (p (θi)) can be
given as Eq.(8).

∇θi d (p (θi)) =
λ∑

j=1

∇θi log

(∫ √
p (x | θi) p

(
x | θ j

)
dx

)

∇θi d (p (θi)) =
λ∑

j=1

∇θi log

⎛⎜⎜⎜⎜⎜⎝
∑
x∈X

√
p (x | θi) p

(
x | θ j

)⎞⎟⎟⎟⎟⎟⎠ . (8)

After obtaining ∇θi f (θi) and ∇θi d (p (θi)), it is straightfor-
ward to obtain ∇θiJ by Eq.(6). Alternatively, a parameter ϕ can
be introduced to trade-off ∇θi f (θi) and ∇θi d (p(θi)) for a subtle
balance between exploitation and exploration, using Eq.(9).

∇θiJ = ∇θi f (θi) + ϕ · ∇θi d (p (θi)) . (9)

Similar to standard gradient descent methods [23], the objec-
tive function J can be maximized by optimizing the distribu-
tion parameters with Eq.(10).

θi = θi + η · ∇θiJ , (10)
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Algorithm 1 The new NCS framework

Input: f , d, λ, μ, η, ϕ;
1: Initialize λ search processes defined by probabilistic model p(θi), i =

1, ....λ;
2: while stopping-criteria not met: do
3: for each ith search process do;
4: Generate μ solutions according to p(θi);
5: Evaluate the fitness of all μ generated solutions;
6: Update x∗ as the best solution ever found;
7: Calculate the gradient of fitness as ∇θi f (θi);
8: Calculate the gradient of diversity as ∇θi d(p(θi));
8: ∇θiJ ← ∇θi f (θi) + ϕ · ∇θi d(p(θi));

10: θi ← θi + η · ∇θiJ;
Output: x∗, f (x∗);

where η is a step-size parameter for the gradient descending.
Based on the discussions above, the new NCS framework is

listed in Algorithm 1 and described as follows. At the beginning
stage, λ probabilistic distributions are initialized to form a set of
parallel search processes. For each iteration, the following steps
are executed in parallel: 1) each ith search process first gener-
ates μ candidate solutions according to its probabilistic distribu-
tion p(θi) at step 4; 2) the fitness values of all μ newly generated
solutions are evaluated with respect to the fitness function f at
step 5; 3) the gradient of the fitness model locally approximated
by the ith sub-population, i.e., ∇θi f (θi), is calculated according
to Eq.(7) at step 7; the gradient of the diversity model with
respect to the ith sub-population, i.e., ∇θi d (p (θi)) , is calcu-
lated according to Eq.(8) at step 8; then the gradient of the gen-
eral objective function, i.e., ∇θiJ , can be accumulated based
on Eq.(9) at step 9; the general objective function J is thus
maximized by using gradient descent method (see Eq.(10)), as
shown in step 10. Finally, the best ever-found solution x∗ that
is iteratively recorded (see step 6) will be output as the result of
NCS before its halting (see step 11).

2.3 The advantages of the new NCS
In the original NCS, there is no concept of both diversity model
and fitness model. But if we look at the original NCS from
this perspective, it can be found that the original NCS did not
measure the expectation of qualities of unsampled solutions as
the fitness model. Instead, to improve the solution qualities, it
heuristically compared the fitness values of two sampled so-
lutions for survival. This means that the original NCS cannot
utilize the gradient descent method for maximizing the fitness
model. Similarly, the diversity model was also maximized by
such heuristic comparisons, leaving two technical issues for
the original NCS, except for the unclear mathematical expla-
nations.

To be specific, the original diversity model is basically a de-
centralized model. That is, the diversity of each search process
was modeled individually and maximized separately. Compar-
atively, the new diversity model can be viewed as a centralized
model since all correlations between pairwise search processes
are counted together. The original diversity model of the ith
search process, denoted as d̄ (p (θi)), was defined as the mini-
mum of the negative correlation between its distribution p (θi)
and the distributions of the other search processes, shown as

Eq.(11),

d̄ (p (θi)) = min
j

{
−C

(
p (θi) , p

(
θ j

))
| j � i

}
,

∀i, j = 1, . . . , λ. (11)

To maximize each d̄ (p (θi)) of the ith search process, the
original NCS works by comparing the diversity of the current
distribution, i.e., the parent distribution p (θi) estimated from
the parent sub-population, and the offspring distribution p

(
θ′i

)
estimated from the offspring sub-population, and then selecting
the larger one to update the distribution p (θi) for the next iter-
ation. In order to obtain good balance between exploration and
exploitation, the fitness values are also considered during the
maximization of diversity. Let xi be the parents in the ith search
process, and x′i be their offspring. Then the heuristic compari-
son goes as Eq.(12),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
discard xi and θi, if f (xi) + ϕ · d̄ (p (θi)) <

f
(
x′i

)
+ ϕ · d̄

(
p
(
θ′i

))
,

discard x′i and θ′i , otherwise ,

(12)

where ϕ ∈ (0,+∞) is a trade-off parameter, and f (xi) are the
fitness values of xi. For more details of the original NCS, please
refer to [1].

It can be clearly seen from Eq. (12) that the maximization of
both the diversity and the fitness highly depends on the sam-
plings of the candidate solutions (note that the distribution pa-
rameters θ here are also directly estimated from the sampled
solutions). However, existing sampling techniques in EAs are
usually randomized and thus may involve significant noise,
which may mislead the maximization of both the diversity and
the fitness. Another issue is that, the above heuristic compari-
son suffers from the interdependencies among search processes.
Specifically, by substituting Eq.(11) to Eq.(12), it can be seen
that the heuristic comparison in the ith search process explic-
itly requires the parent distribution p

(
θ j

)
from all the other jth

search processes to decide its own parent sub-population and
parent distribution at the next iteration, while the heuristic com-
parisons in other sub-populations also require doing so. Conse-
quently, the heuristic comparison in one search process will be
interdependent from that in the others, since the parent distri-
butions of different search processes have to be decided in se-
quential. Due to the above-mentioned two issues, the diversity
and the fitness of each sub-population may not be maximized in
parallel, possibly making the parallel exploration of NCS less
effective.

Comparatively, in the new NCS, it is no longer needed to
compete the exact values of the fitness and diversity pairwise
between the parent and offspring sub-populations for survival,
as the gradient descent mathematically provides the optimal di-
rection for maximizing both the fitness models and diversity
models. On this basis, the random noise of samplings and the
interdependencies among sub-populations introduced by the
original heuristic comparisons are avoided. As a result, the pro-
posed new NCS framework has successfully addressed the two
technical issues of the original NCS, and brings a much clearer
explanation to the idea of NCS.
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∇mi f (θi) =
1
μ

μ∑
k=1

Σ−1
i

(
xk

i − mi

)
· f

(
xk

i

)
,

∇Σi f (θi) =
1
μ

μ∑
k=1

(
1
2
Σ−1

i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i −
1
2
Σ−1

i

)
· f

(
xk

i

)
, (13)

d (p (θi)) =
λ∑

j=1

1
8

(
mi − m j

)T
(
Σi + Σ j

2

)−1 (
mi − m j

)
+

1
2

log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣ Σi+Σ j

2

∣∣∣∣√
|Σi| ·

∣∣∣Σ j

∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (14)

∇mi d (p (θi)) =
1
4

λ∑
j=1

(
Σi + Σ j

2

)−1 (
mi − m j

)
,

∇Σi d (p (θi)) =
1
4

λ∑
j=1

⎛⎜⎜⎜⎜⎜⎝
(
Σi + Σ j

2

)−1

− 1
4

(
Σi + Σ j

2

)−1 (
mi − m j

)
·
(
mi − m j

)T
(
Σi + Σ j

2

)−1

− Σ−1
i

⎞⎟⎟⎟⎟⎟⎠ , (15)

Fmi =
1
μ

μ∑
k=1

Σ−1
i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i ,

FΣi =
1

4μ

μ∑
k=1

(Σ−1
i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i − Σ−1
i )(Σ−1

i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i − Σ−1
i )T. (16)

3 Negatively correlated natural evolution
strategies
To instantiate the new NCS framework, the type of probabilistic
distribution p(θi) should be specified. In this paper, the Gaus-
sian distribution is employed, i.e., p(θi)) = N(mi,Σi) . The un-
derlying reason is three-folds: 1) the Gaussian distribution is
the most commonly used distribution in search [18]; 2) by us-
ing the Gaussian distribution, ∇θi f (θi) has an analytic closed
form for efficient computation [13]; 3) the Bhattacharyya dis-
tance is also analytic based on the Gaussian distribution [1].

By using the Gaussian distribution, ∇θi f (θi) can be further
represented by ∇mi f (θi) and ∇Σi f (θi), as proposed in NES [5].
Similarly, by using the Gaussian distribution, ∇θid (p(θi)) can
be further represented by ∇mi d (p(θi)) and ∇Σi d (p(θi)). Given
C(p(θi), p(θ j)) for Gaussian distribution [1], d (p(θi) can be an-
alytically obtained as Eq.(14),∇mi d (p(θi)) and ∇Σi d (p(θi)) can
be derived as Eq.(15).

Thus,∇miJ and∇ΣiJ can be readily obtained by substituting
Eqs.(13) and (15) into Eq.(9). Nevertheless, [13] notices that if
the above ∇miJ and ∇ΣiJ are used as the gradients for , there
is a serious issue for directly updating mi and Σi with respect to
Eq.(10). To be specific, it can be observed that ∇miJ ∝ 1

Σi
and

∇ΣiJ ∝ 1
Σ2

i
, which means that a large Σi can make the learn-

ing steps of mi and Σi insignificant, while a small Σi can result
in a significant update of mi and Σi. This can lead to an unsta-
ble search and thus become impossible to precisely locate the
optimum [13]. To address this issue, [13] derives the Fisher in-
formation matrix F from the natural gradient of a population.
Here we extend it to the multi-population cases where each pair
of Fmi and FΣi is respectively assigned for a sub-population,
shown as Eq.(16).

With the Fisher information matrix, mi and Σi are updated
using Eq.(17).

mi = mi + ηm · F−1
mi
· ∇miJ ,

Σi = Σi + ηΣ · F−1
Σi
· ∇ΣiJ , (17)

where ηm and ηΣ are step-size parameters for updating mi and
Σi, respectively. Intuitively, since F−1

mi
∝ Σ2

i and F−1
Σi
∝ Σ4

i , it
turns out that F−1

mi
· ∇miJ ∝ Σi and F−1

Σi
· ∇ΣiJ ∝ Σ2

i will no
longer oscillate the search.

Notice that, the above equations are computationally inten-
sive. Specially, the inversion of the Fisher matrix subjects to
the computational complexity of O(D6) if the full covariance
matrix are considered [13], where D indicates the dimensional-
ity of the search space. To alleviate the computational costs, we
simply restrict the covariance matrix and the Fisher matrix for
each distribution to be diagonals. This implies that the interde-
pendencies among decision variables are omitted. Although it
may make the algorithm less robust to non-separable problems,
it suffices to significantly reduce the computational complex-
ity to O(D), as well as to improve the scalability of the algo-
rithm [24].

Another technique adopted from [13] is the normalization
of the fitness values. This is motivated by the difficulty of set-
ting a proper trade-off parameter ϕ for aggregating∇θi f (θi) and
∇θi d(p(θi), as different problems may have quite varied scales
of fitness values. For that purpose, the utility function in [13]
is employed in this paper to reshape the fitness values in each
sub-population. Specifically, for each sub-population, all μ so-
lutions are first ranked based on their fitness values, where π(k)
indicates the rank of the kth solution. Then the utility function
for each ith sub-population, denoted as Ui, is carried out to re-
shape the fitness of each kth solution according to Eq.(18). Af-
ter that, the utility of each solution is used by replacing the term
of f (xk

i ) in Eq.(13).

Ui(π(k)) =
max

(
0, log

(
μ
2 + 1

)
− log(π(k))

)
∑μ

j=1 max
(
0, log

(
μ
2 + 1

)
− log(k)

) − 1
μ
. (18)

The step-size parameters ηm and ηΣ can be either tuned off-
line or adjusted during the search. In this paper, the following
strategy is used to adjust these two parameters at each iteration.
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Algorithm 2 The proposed NCNES

Input: f , d, λ, μ, ηinit
m , η

init
Σ
, ϕ,Tmax

1: for i = 1 to λ do
2: Initialize a Gaussian distribution for the ith Search Process as N(mi,Σi);
3: Tcur = 0;
4: while Tcur < Tmax do

5: ηm ← ηinit
m · e−e

Tcur
Tmax

e−1 ;

6: ηΣ ← ηinit
Σ
· e−e

Tcur
Tmax

e−1 ;
7: for i = 1 to λ do
8: Generate μ solutions xk

i ← N(mi,Σi),∀k = 1, ..., μ;

9: Evaluate the fitness f
(
xk

i

)
,∀k = 1, ..., μ;

10: Tmax ← Tcur + μ;
11: Update x∗ as the best solution ever found;
12: Rank the kth solution in terms of its fitness f (xk) as π(k), ∀k = 1, ... , μ;

13: Set Ui(π(k)) =
max

(
0,log

( μ
2 +1

)
−log(π(k))

)
∑μ

j=1 max
(
0,log

(
μ
2 +1

)
−log(k)

) − 1
μ ,∀k = 1, ..., μ;

14: ∇mi f ← 1
μ

∑μ
k=1 Σ

−1
i

(
mk

i − mi

)
· Ui(π(k))

15: ∇Σi f ← 1
2μ

∑μ
k=1

(
Σ−1

i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i − Σ−1
i

)
· Ui(π(k))

16: ∇mi d ← 1
4
∑λ

j=1

(
Σi+Σ j

2

)−1 (
mi − m j

)

17: ∇mi d ← 1
4
∑λ

j=1

((
Σi+Σ j

2

)−1
− 1

4

(
Σi+Σ j

2

)−1 (
mi − m j

) (
mi − m j

)T
(
Σi+Σ j

2

)−1
− Σ−1

i

)

18: Fmi ← 1
μ

∑μ
k=1 Σ

−1
i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i

19: FΣi ← 1
4μ

∑μ
k=1(Σ−1

i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i − Σ−1
i )(Σ−1

i

(
xk

i − mi

) (
xk

i − mi

)T
Σ−1

i − Σ−1
i )T

20: mi ← mi + ηm · F−1
mi

(
∇mi f + ϕ · ∇mi d

)
21: Σi ← Σi + ηΣ · F−1

Σi

(
∇Σi f + ϕ · ∇Σi d

)
Output: x∗, f (x∗)

ηm ← ηinit
m ·

e − e
Tcur
Tmax

e − 1
,

ηΣ ← ηinit
Σ ·

e − e
Tcur
Tmax

e − 1
, (19)

where Tmax is the total time budget for the whole search and Tcur

is the consumed budget up to now. e is the natural constant. ηinit
m

and ηinit
Σ

are the initialized values for both step-size parameters,
respectively. With Eq.(19), these two step-sizes will decrease
over iterations from the initialized values to zero.

So far, all the details have been presented to instantiate an
NCS algorithm. To summarize, the proposed algorithm is a
multi-Gaussian distribution based EA; Each distribution drives
the evolution of one sub-population with the well-established
NES; Multiple Gaussian distributions are driven to be nega-
tively correlated by the proposed diversity model. In this re-
gard, the proposed algorithm can also be regarded as a new
variant of NES that has the ability of parallel exploration. Thus,
it is named Negatively Correlated Natural Evolution Strategies
(NCNES) for intuition. The detailed steps of NCNES is listed
in Algorithm 2 for reference.

4 NCNES for reinforcement learning
To verify the effectiveness of the proposed new NCS framework
as well as NCNES, the reinforcement learning (RL) problem is
adopted as the test problem. The considerations are twofolds:1)
as a widely-existed multi-step decision making problem, the
solution procedure of RL can be naturally formulated as an op-
timization problem that is large-scale, multi-modal, and uncer-
tain. Such features make RL a more realistic and non-trivial

testing environment than the commonly used standard bench-
marks for verifying the exploration ability of EAs [14]. Fur-
thermore, as RL does not necessarily touch the domain-specific
knowledge, the empirical results maybe more representative
than testing on the concrete real-world problems. 2) EAs have
been shown to be promising solutions to RL problems as the
population-based nature of EAs not only provides the urgent
exploration ability to RL [15], but also provides other merits
such as parallel acceleration [25–27], noisy-resistance [28, 29],
and compatibility of training non-differentiable policies (e.g.,
trees [30]). Also notice that the canonical NES has been suc-
cessfully applied to playing Atari games [15]. On this basis,
this paper empirically studies the NCNES-based solution for
RL problems by playing Atari games.

For the purpose of performance assessment, the empirical
studies will uncover three-fold advantages about how effec-
tively the new NCS framework facilitates the search, how well
the proposed new diversity model contributes to NCNES, and
how well NCNES behaves on reinforcement learning problems.

4.1 Reinforcement learning
RL learns to make Markov decisions so that the long-term re-
wards can be maximized. In RL, the policy can be iteratively
learnt only by interacting with the environment. At each time
step, the agent picks an action according to the policy and the
observed state of environment, leading to a transition from ori-
gin state to the next state, then receives a reward as the feedback
to update the policy. The above steps keep going until termi-
nated.

To maximize the expected cumulative discounted reward in
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long term, numerous RL methods have been developed in the
last decades. Among them, the model-based methods [31–33]
try to first learn an accurate environment model, and then
get the most beneficial policy by looking up the environment
model. Though these methods are mathematically sound, they
can hardly scale-up well to the real-world cases, leading the
environment model to be either inaccurate or insufficient. The
value function based methods [34, 35] then try to learn the
value function which refers to the expectation of the accumu-
lated rewards in the future. In recent years, the policy search
based methods that adopt the deep neural networks as the policy
model have drawn most research attentions due to their pow-
erful performance [15, 35]. The key problem for this type of
methods turns into how to train the parameters of the deep net-
work in the RL settings, which faces three major difficulties.
First, the search space of training the deep neural networks is
highly large-scale and multi-modal; second, due to the Markov
decision process nature of RL, the policy learning process is
non-differentiable unless some derivable functions are specially
designed (e.g., the critic function in A3C [35]); last, the de-
layed rewards may involve considerable noise. NES is a suitable
method for directly training the continuous weights of the neu-
ral policy model due to its derivate-free, robust and parallel fea-
tures. Empirical studies on a set of Atari games have verified the
advantages of NES over several state-of-the-art methods [15].
For more details of RL methods, please refer to [36, 37].

It is widely discussed that the exploration ability is a key for
RL [38], which allows an agent to improve its current knowl-
edge about the environment, hopefully maximizing the long-
term benefit. Among them, Epsilon-Greedy [39] is a simple yet
effective method to balance exploration and exploitation in a
random way, where epsilon refers to the probability of choos-
ing the exploration strategy during the training. Gibbs sam-
pling [40] studies to model the importance of the action space
and sample new action therefrom, trying to recover new promis-
ing areas of the action space so as to improve the exploration.
Parameter/action space noise methods [41] inject randomized
noise directly into the parameters of the policy, making the
policy with more diverse behaviors and thus consistent explo-
ration. Curiosity-driven exploration methods [42] formulate the
error of a policy as an external objective of curiosity to enable
the exploration, which shows to be effective in the environment
with sparse rewards. The novelty search method [43, 44] from
the derivate-free optimization community explicitly build a new
objective to model the novelty to drive the exploration of the

parameter space of the policy, while the original objective is
abandoned. Though those methods have improved the explo-
ration of RL to some extent, they did not express the proposed
parallel exploration ability, where a set of candidate policies are
trained to be different yet effective at the same time.

4.2 NCNES for playing Atari
Atari 2600 is a set of video games that have been popular for
over 40 years. Atari games successfully cover different types
of difficult tasks, such as obstacle avoidance (e.g., Freeway and
Enduro), shooting (Beamrider) and other types. The player can
do various actions in each game so as to maximize the cumu-
lative reward solely by interacting with the game environment.
Due to these features, Atari games have been widely used as
the RL simulation platform for empirical studies.

The flowchart of applying NCNES to play Atari games can
be seen in Fig.1 for illustration. Basically, the agent aims to
learn the policy by iteratively imposing actions to the Atari en-
vironment and getting states and rewards therefrom. The policy
is modeled as a deep convolutional network for the purpose of
conveniently and effectively processing the high-dimensional
raw pixel data that is directly received from the video games.
NCNES is applied to optimize the connection weights of the
policy network without back-propagation. The network archi-
tecture of the agent consists of three convolution layers and two
full connection layers (see Table 2), as suggested by [34].

More specifically, each individual solution is represented
as a vector of all the connection weights of the policy model.
Accordingly, the distributions of NCNES search processes are
estimated based on those high-dimensional solutions. The train-
ing phase is divided into multiple epochs. At each epoch, the
agent starts from the beginning of the game and takes a se-
quence of actions from the policy model to react to the environ-
ment, so as to gain as many as possible scores until game overs.
After a game (i.e., an epoch) has been finished, the reward will
be returned back to the agent as well as NCNES. Then NC-
NES takes the reward of each epoch as the fitness value of each

Table 2 The network architecture of the DQN based agent

Input Output Kernel Size Stride Filters Activation
Conv1 4x84x84 32x20x20 8x8 4 32 ReLU
Conv2 32x20x20 64x9x9 4x4 2 64 ReLU
Conv3 64x9x9 64x7x7 3x3 1 64 ReLU

Fc1 64x7x7 512 - - - ReLU
Fc2 512 Actions - - - -

Fig. 1 The flowchart of NCNES based solution for playing Atari
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iteration to optimize the connection weights (generating a pop-
ulation of new policy models for the next epoch) in a parallel
exploration way, i.e., together with diversity among different
search processes. When the training budget runs out, the final
policy model will be output for further usages.

From the perspective of optimization, the above problem-
solving procedure suffers from three kinds of difficulties.
• First, the search space is extremely large-scale. The deep

architecture of the policy results in huge numbers of con-
nection weights to be optimized, where NCNES needs
to solve 1.7 million dimensional real-valued optimization
problems.

• Second, the search space is highly multi-modal due to the
complex architecture of the deep neural networks and the
non-uniform distribution of the rewards.

• Third, the feedback is quite uncertain. On one hand, the
reward is heavily delayed as the agent can only get the to-
tal reward from the environment after the game playing is
ended, which makes it very difficult to evaluate the subtle
action at each timestep of an epoch. On the other, the total
reward involves considerable noise introduced by the ran-
domized Atari games settings, which makes it even harder
to evaluate the policy.

Due to the large-scale, uncertain, and multi-modal nature, the
optimization problem is non-trivial at all.

4.3 Experiment setup
Three Atari games are selected for the empirical studies, i.e.,
Freeway, Enduro, and Beamrider. The screenshots of these
three games are shown in Fig.2 In freeway, the pedestrian
is controlled by three actions (up, down and wait), aiming
at avoiding dangerous collisions when goes across a ten-lane
highway with large traffic volume, and scores every time it
succeeds to reach the other side. The player in Enduro ma-
neuvers a race car to avoid other racers and achieves higher
mileage in an endurance race last for several days (counted in
the game). The decreased visibility in night or severe weather,
and the increased car speed as well as the frequency have
posted great challenges. Beamrider is a horizontal scrolling
short-range shooter targeted at shooting off destroyable com-
ing enemies with a limited supply of torpedoes and escaping
from other undefeatable enemies.

Three RL methods are selected for comparisons, denoted
as A3C [35], CES [15] and NCS-C [1], respectively. All
those methods are incorporated into the policy search based
RL framework for training the same deep neural network as
NCNES does, i.e., optimizing the connection weights. Among

Fig. 2 The screenshots of these three games, i.e., the Freeway, the Enduro and
the Beamrider from the left to the right of this figure

them, A3C is a state-of-the-art gradient-based method that
trains the network with the traditional back-propagation. The
other two algorithms are EA-based optimization method. CES
is the canonical NES that has been successfully applied to play
the Atari games [15]. NCS-C is the instantiation of the original
NCS framework. Both the well-established A3C and CES can
be used to demonstrate the effectiveness of NCNES on play-
ing Atari games. CES can also be used to assess how parallel
exploration can facilitate the search, as NCNES can be simply
viewed as a new variant NES with parallel exploration ability.
NCS-C is used to show the advantages of the proposed new
NCS framework over the original NCS.

For all the comparisons, each algorithm terminates the train-
ing phase in a game when the total time budget runs out, and the
final solution (policy network) will be returned for testing. The
quality of the final solution is measured with the testing score,
i.e., averaged score of 30 repeated run in one game-playing
without the time limitations. Considering that the environment
of a game-playing is randomly initialized, each game-playing
will be repeated for three times, i.e., there will be three testing
scores for each algorithm on each game. The total time budget
is set as the total game frames that each algorithm is allowed
to consume for training. For three EA-based methods, the total
game frames are set to 100 million. For A3C, as it works quite
differently with back-propagation, it is unfair to set the same
total game frames with the EA-based ones. In this regard, we
counted the game frames consumed by both well-established
CES and A3C on the same hardware conditions and in the same
game with the same given computational run time. It has been
found that the ratio of the consumed game frames between them
is about 2.5. As a result, the total game frames are set to 40 mil-
lion for A3C for fairness. To discretize the games for agents
actions execution and states acquiring, the skipping frame is set
to 4. That is, for each training phase, the agent is allowed to
take 25 million actions for EA-based methods and 10 million
actions for gradient-based method.

As both CES and A3C have been successfully applied to play
Atari games, we directly borrow the hyperparameters settings
from the corresponding papers [15, 35]. The hyperparameters
of both NCS-C and NCNES are given as follows. For NCS-C,
the number of search processes is set to 8, the sigma is ini-
tialized to 0.01, the learning rate of the sigma and the learning
epoch are set the same with its original paper [1]. To reduce
the noise of the environment, each solution will be re-evaluated
for 10 times at each epoch of the training phase, and the av-
eraged score will be returned to NCS-C as the fitness for the
solution. For NCNES, the hyperparameters are listed in Table 3
for brevity.

4.4 Results and analysis

Performance analysis on game scoring Three repeated testing
scores of each algorithm on three games are shown in Table 4.
It can be clearly seen that, NCNES can outperform all the
compared algorithms on the tested three games, which suc-
cessfully verifies the effectiveness of NCNES on reinforcement
learning problems. By comparing NCNES with CES, it suffices
to show that the parallel exploration can facilitate the search
much better as NCNES gains averagely twice scores over CES.
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Table 3 The hyperparameter settings of NCNES

Parameter Value Remark

λ 5 The number of sub-populations

μ 15 The individuals in each sub-population

ϕ 0.0001 The trade-off parameter for balancing the ex-
ploration and exploitation, set based on the
statistically approximated ratio between the
scales of fitness gradients and the diversity
gradients.

ηinit
m 0.5 The initial learning rate of mean vectors

ηinit
n 0.1 The initial learning rate of covariance matrix

t
Randomly pick
from [1,2,3,4,5]

The re-evaluation times of each solution to re-
duce the environmental uncertainty

Table 4 The averaged testing scores of four algorithms on three Atari games

Game CES A3C NCS-C NCNES
GameFrame 100M 40M 100M 100M

Freeway

Run 1
Run 2
Run 3
Average

15.9
12.7
14.1
14.2

0.0
0.0
0.0
0.0

7.0
9.4
3.7
6.7

22.7
21.1
22.1
22.0

Beamrider

Run 1
Run 2
Run 3
Average

401.0
508.2
414.1
441.1

908.0
490.2
336.0
646.7

602.0
686.0
482.0
590.0

856.8
620.4
719.3
732.2

Enduro

Run 1
Run 2
Run 3
Average

6.2
7.0
8.1
7.1

0.0
0.0
0.0
0.0

6.0
12.8
6.4
8.4

29.8
8.7
11.5
17.9

By comparing NCNES with NCS-C, it can be seen that NCNES
gains around three times scores over NCS-C on Freeway, and
NCNES also shows significant advantages on other two games.
This verifies the effectiveness of the mathematical NCS model.
A3C performs less robust than the other three algorithms as its
final policy model fails to gain any scores in two games. This
maybe because the population-based search can reduce the un-
certainty of the algorithms themselves, by 1) frequently sam-
pling from a small region of the search space, which plays the
role of re-evaluations to some extent; 2) only requiring the rela-
tive order of solutions to determine the search direction, which
is less sensitive to the evaluation noise.

Performance analysis on convergence speed To study from
the optimization perspective, the score curves of four algo-
rithms on three games are depicted in Fig.3. To depict the
curves, at the end of each epoch of the training phase, the cur-
rent best policy model in terms of the training scores, will be
additionally tested for 30 times. And the averaged testing score
will be recorded for the purpose of depicting the score curve.
Note that, this testing time will not be counted into the total
game frames budget, as this score will not be used for helping
training. Then the testing score is depicted epoch-by-epoch to
form the score curve. Generally, the score curve of an algo-
rithm can express the convergence speed of the optimization
algorithm. It can be seen that, NCNES (the red curve) can usu-
ally search a very good policy model in very short timesteps.
This means that even with a much smaller time budget, NC-
NES can still outperform the others. For NES and NCS-C, the
score curves increase much slower along with the timesteps.
This verifies that the new NCS framework can facilitate the

Fig. 3 The score curves of four algorithms on three games, respectively. (a)
Freeway; (b) Enduro; (c) BeamRider

search more effectively. Although A3C can occasionally gain
high scores, it is very unstable as the score curves oscillate
heavily, which even returns very bad policy models (i.e., the
averaged score is 0.0 for two games) as the final output. This
might be that A3C is less resistant to the environmental noise.

Performance analysis on policy behaviors It is expected
that the parallel exploration search behavior of NCNES can
help emerge some novel yet useful behaviors that traditional
policies are less likely to express. For BeamRider, the agent
trained by NCNES prefers staying in the left side of the avail-
able area and gains as many as 996 scores in a single testing
play (see Fig.4). The motivation behind this trick can be ex-
plained as that staying in the left side can prevent at most 50%
enemy attacks, and thus is beneficial to longer survival. For
Enduro, the agent prefers driving in the middle of the racing
track when the weather is good so as to preserve the maximal
freedom to move to both sides (see the leftmost figure in Fig.5).
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Fig. 4 Tricks learned in BeamRider: the agent prefers to stay in the left side
of the available area

Fig. 5 Tricks learned in Enduro: the agent prefers driving in the middle of the
racing track when the weather is good so as to preserve the maximal freedom to
move to both sides (see the leftmost figure). When the visibility decreases as it
is snowy, foggy, or night (see the other three figures), the agent prefers driving
at one side of the racing track for safety

When the visibility decreases as it is snowy, foggy, and night,
the agent prefers driving at one side of the racing track for
safety, similar to human behaviors (see the other three figures
in Fig.5).

Performance analysis on parallel acceleration Then, we
show how NCNES can utilize the parallel computing resources.

To be specific, three kinds of NCNES are implemented. For the
first kind (see Fig.6(a)), NCNES is run on one computing unit
in a serial manner. For the second kind (see Fig.6(b)), NCNES
is implemented in an island-model based architecture, i.e., five
search processes are run on five fixed computing cores respec-
tively during the whole optimization process; At each iteration,
information transferring among computing units only happens
when the diversity gradients are calculated (also see Algorithm
1, step 10). For the third kind (see Fig.6(c)), NCNES is imple-
mented in a hybrid architecture; Specifically, five search pro-
cesses are run in an island-model manner with 5 groups of com-
puting units, each group is organized in a master-slave model
that consists of 15 computing cores for the fitness evaluations
of 15 individuals of a search process, respectively. All three
implementations of NCNES are independently run on the same
workstation (Intel(R) Xeon(R) CPU E5-2699A v4 @ 2.40GHz)
with 44 cores (88 threads)3).

The above three implementations of NCNES are simulated
on three games with 100M training frames., where three inde-
pendent runs are conducted for each game. The runtime results
are listed in Table 5. It can be seen that, both island-model
and hybrid-model can effectively utilize the parallel computing
resources for acceleration. That is, by running on a common
lab-level workstation, the computing runtime can be largely
reduced from around 120 hours (by the serial model) to as
short as 2 hours (by the hybrid model). Furthermore, given that
the population size of NCNES (including both λ and μ) can be

Fig. 6 The flowcharts of three kinds of implementations for NCNES. (a) The serial model of NCNES; (b) the island-model of NCNES; (c) the
hybrid-model of NCNES

3) The tasks of calculating the diversity gradients (as well as fitness gradients calculation and search processes updating) are always fixed to different physical
cores, otherwise the memory sharing mechanism may influence the information transferring efficiency.
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Fig. 7 The sensitivity analysis of ϕ on three games. (a) Beamrider; (b) Freeway; (c) Enduro

Table 5 The runtime of three implementations of NCNES

Computing model Game Serial model Island-model Hybrid-model

Computing
Units(i.e., m)

1 5 75

Runtime(hours)
Freeway
BeamRider
Enduro

122.6 ± 0.5
116.0 ± 18.8
119.6 ± 0.7

31.2 ± 0.2
58.8 ± 22.2
30.4 ± 0.1

2.28 ± 0.0
19.48 ± 4.3
2.16 ± 0.0

Speedup Ratio
tserial

tparallel·m

Freeway
BeamRider
Enduro

-
-
-

0.78 ± 0.01
0.43 ± 0.20
0.79 ± 0.01

0.72 ± 0.00
0.09 ± 0.03
0.74 ± 0.02

easily enlarged to enhance the parallel exploration ability, it
would be interesting to assess how NCNES can be speedup with
large-scale computing resources. This can be measured with
the speedup ratio. Theoretically, the speedup ratio4) r ∈ [0, 1]
says that given m computing units, the parallel implementation
can reduce the runtime for m × r times. The speedup ratios of
both island-model and hybrid-model on Freeway and Enduro
are very promising, i.e., stably above 0.72.

On the other hand, the speedup ratio on Beamrider is unsat-
isfactory, i.e., 0.43 for island-model and 0.09 for hybrid model.
Actually, this is mostly caused by the blocking synchronization
used for transferring the distribution parameters while calculat-
ing the diversity gradients. Specifically, at each iteration of NC-
NES, the solutions are re-evaluated by playing multiple times of
the game. As the durations of each game playing can be various
for different solutions (e.g., from minutes to hours for Beam-
rider), each search process may reach the information transfer-
ring step at quite different timesteps. Unfortunately, the block-
ing synchronization would calculate the diversity gradients un-
less all the distribution parameters are received by each search
process. Fortunately, this waiting time can be greatly eliminated
by employing the non-blocking asynchronization for approxi-
mate information transferring, since the distribution parameters
to be transferred has already been obtained at the previous iter-
ation (see Algorithm 1, step 12) and can be transferred at any
time afterwards. The price to pay would be the accuracy of the
information transferring. To summarize, due to the parallel ex-
ploration feature, NCNES is able to be effectively accelerated
by parallel computing resources if the computational loads can
be well balanced.

Performance analysis on parameter sensitivity Lastly, we

present the sensitivity analysis on the most important and fea-
tured parameter ϕ, which trades-off the update of the fitnes
model and the diversity model for balancing the exploration
and exploitation of NCNES. For this purpose, NCNES is run on
three games with five different values of ϕ, i.e., 1e-1, 1e-2, 1e-3,
1e-4, and 1e-5. The averaged final testing results in depicted in
7. It can be seen that, the performance trends of NCNES with
different values of ϕ vary on different games, e.g., NCNES per-
forms better on Freeway if the value of ϕ is smaller and NCNES
performs better on Enduro if the value of ϕ is larger. However,
such differences are not very significant, i.e., most of them are
within 10% of the averaged performance. Thus, though the per-
formance of NCNES depends on the choice of ϕ, a simple grid
search can be enough to help decide a satisfactory ϕ for NC-
NES.

5 Conclusions
In this paper, we propose a new mathematically principled
NCS framework. The new NCS works by explicitly modeling
and maximizing the diversity model (for exploration) and the
fitness model (for exploitation) of the next population. Both
models can be maximized through gradient descending with
respect to each search process. Comparing to the original NCS,
the new NCS has clearer mathematical explanations of why
the negatively correlated search processes can lead to a paral-
lel exploration search behavior and how to optimally realize
it. Besides, the new NCS has also successfully addressed two
technical issues of the original NCS. To assess the performance
of the new NCS, an instantiation called NCNES is presented.
NCNES adopts the well-established NES as the search strat-
egy of each sub-population. NCNES is then applied to solve
RL problems for playing Atari games. Specially, NCNES is
used to directly train a set of 1.7 million connection weights of
the deep policy model under various uncertainties. Empirical
studies have shown that, on three typical Atari games, NC-
NES is able to significantly outperform the state-of-the-arts
methods (including both EA-based solution and gradient-based
solution). By pairwise comparisons, it also verifies that the
proposed new NCS model is better than the original NCS for
the purpose of parallel exploration, and the parallel exploration
ability can facilitate the search performance as well as the com-
putational efficiency of the new NCS.

4) The speedup ratio is measured as the ratio of the accumulated runtime on all computing units between the serial implementation and the parallel implementa-
tion. Suppose the serial model uses 1 computing unit and its runtime is denoted as , and the parallel model uses computing units and the runtime is denoted as ,
then the speedup ratio is calculated as . The theoretical speedup ratio varies from 0.0 to 1.0, where indicates the optimal linear speedup. Though some techniques
like memory sharing can practically boost over 1.0, they are avoided in this work as the footnote 3 mentioned.
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