
Front. Comput. Sci., 2015, 9(5): 806–826

DOI 10.1007/s11704-014-3369-2

Mathematical and computational approaches to epidemic
modeling: a comprehensive review

Wei DUAN , Zongchen FAN, Peng ZHANG, Gang GUO, Xiaogang QIU

Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management,

National University of Defense Technology, Changsha 410073, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract Mathematical and computational approaches are

important tools for understanding epidemic spread patterns

and evaluating policies of disease control. In recent years,

epidemiology has become increasingly integrated with math-

ematics, sociology, management science, complexity sci-

ence, and computer science. The cross of multiple disciplines

has caused rapid development of mathematical and computa-

tional approaches to epidemic modeling. In this article, we

carry out a comprehensive review of epidemic models to pro-

vide an insight into the literature of epidemic modeling and

simulation.We introduce major epidemic models in three di-

rections, including mathematical models, complex network

models, and agent-based models. We discuss the principles,

applications, advantages, and limitations of these models.

Meanwhile, we also propose some future research directions

in epidemic modeling.

Keywords mathematics, complex networks, agent-based

models, epidemic modeling, human dynamics, infectious dis-

eases

1 Introduction

Mathematical and computational approaches are dominant in

epidemic modeling [1–3]. These approaches play an impor-

tant role in understanding epidemic spread patterns and eval-

uating policies of disease control. In general, mathematical
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models focus on the macroscopic regularities of epidemic
spread [1]. Mathematical models make some reasonable as-
sumptions, such as a homogeneous and well-mixed popu-
lation, so as to represent the spread of epidemics at the
macro level. Mathematical models also simplify the com-

plex spreading process of epidemics. For example, only a
few key factors are taken into account in mathematical mod-
els. These factors are embodied in some variables parame-
terized with average quantities or mean values in equations.
These assumptions and simplifications endow mathematical

models with the advantage of performing theoretical analy-
sis of macroscopic regularities of epidemic diffusion, such
as the epidemic threshold and final epidemic size. However,
these assumptions and simplifications also limit the capabil-
ity of mathematical models to represent the spread of epi-
demics in detail. Computational approaches make use of a
wide array of simulation schemes to provide a more detailed

representation of realities [4,5]. Computational approaches
usually build epidemic models, such as complex network
models and agent-based models, at an individual level [6].
However, the higher granularity of computational models re-
quires large data availability and higher computational com-
plexity, as well as greater computational power. Recently,
with advances in data availability and affordable high per-
formance computing, computational approaches are increas-

ingly used to study the spread of epidemics.

The emergence of novel pathogens in human societies,

such as severe acute respiratory syndrome (SARS) in 2003

and H1N1 influenza in 2009, have ignited worldwide epi-

demic outbreaks that attracted much research attention. Re-

searchers in various fields have employed various mathemati-
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cal methods and computational techniques to study epidemic

diffusion in human societies, such as differential equations,

stochastic processes, statistical analysis, graph theory, artifi-

cial life, artificial society, computer simulation, geographic

information systems, and high performance computing. Epi-

demiology has become increasingly integrated with math-

ematics, sociology, management science, complexity sci-

ence, and computer science. The cross of multiple disciplines

causes the development of mathematical and computational

approaches to epidemic modeling.

In this article, we carry out a comprehensive review of epi-

demic models so as to provide an insight into the literature of

epidemic modeling and simulation. We aim at investigating

current work and future research directions in epidemic mod-

eling. Our contributions are twofold. On the one hand, we

introduce major epidemic models in three directions: math-

ematical models, complex network models, and agent-based

models. These models and their modeling methods discussed

in the following sections are illustrated in Table 1. We will

discuss the principles, applications, advantages, and limita-

tions of these models. We also propose some future research

directions for epidemic modeling.

Table 1 Classification of epidemic models

Types Names Methods

Mathematical models Compartmental models, Reed-Frost models Differential equations, stochastic process, Monte Carlo,
Markov chains

Complex network models System dynamics models in complex networks, numeri-
cal simulations of epidemics in complex networks, meta-
population models, weighted networks, adaptive networks

Differential equations, stochastic processes

Agent-based models BioWar, EpiSims, FluTE, MASON, GeoGraphs, EpiSim-
demics, EpiFast, Repast, Random walk, Levy flight, gravity
model

Algorithms, computational techniques, mathematics, com-
plex networks, cellular automaton, GIS, simulation

In Section 2, we introduce the mathematical model of epi-

demics in two directions: deterministic models and stochas-

tic models. We also discuss the advantages and limitations of

mathematical models of epidemics. In Section 3, we review

three current research topics in complex network models of

epidemics: the impact of network structures on epidemic dy-

namics, epidemic spread in weighted networks, and epidemic

spread in adaptive networks. Next, we discuss the advantages

and limitations of complex network models of epidemics. In

Section 4, we introduce several large scale agent-based simu-

lation systems of epidemics. We also discuss how to represent

individual contact patterns and mobility patterns in agent-

based models of epidemics. In Section 5, we propose some

future research directions in epidemic modeling, including

temporal-spatial modeling of epidemic spread, the hetero-

geneity of epidemic models, and the interplay between hu-

man dynamics and epidemic dynamics. In Section 6, we per-

form a comparison between mathematical models, complex

network models, and agent-based models, and then conclude

this article.

2 Mathematical models of epidemics

Mathematical modeling is the earliest method used to formu-

late epidemic spread [7,8]. In 1766 Daniel Bernoulli formu-

lated a model to evaluate the effect of vaccination against the

smallpox virus [7]. In 1906 Hamer proposed a discrete time

model to understand the recurrence of measles epidemics [7].

He recognized that the diminishing density of susceptible in-

dividuals bring epidemics to a halt. In 1911 Ross developed

differential equations to investigate the effectiveness of vari-

ous intervention strategies for malaria [7]. In the 1920s Low-

ell Reed and Wade Hampton Frost put forward a mathemat-

ical model to describe how diseases spread across a popula-

tion, which is known as the Reed-Frost model [9–10]. Ker-

mack and McKendrick extended Ross’s models to form a

system dynamics model of infectious disease transmission,

which is also called as the compartmental model [11]. They

found that only if the basic reproduction number was larger

than a threshold value, could an infectious disease spread in

a susceptible population. These precursors created the foun-

dations of mathematical models of epidemics. In the past

few decades, research has extended the existing mathematical

models of epidemics and developed new epidemic models.

Mathematical models of epidemics are usually classified

into two categories: deterministic epidemic models and

stochastic epidemic models.

2.1 Deterministic epidemic models

Compartmental models are the most widely used determin-

istic epidemic models [12–15]. The population is assumed to

be homogeneous, well-mixed, and aggregated into a small set

of compartments according to individual health states. Tran-

sitions of the population between different compartments are
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formulated using differential equations, with variables mod-

eling different factors such as the infection rate, onset rate of

symptoms, and recovery rate.

Due to the variance in epidemic progress of different dis-

eases, infected individuals may have a variety of health states.

Different kinds of compartmental models have been pro-

posed, such as SIR (susceptible, infectious, and recovered)

model, SIS (susceptible, infectious, and susceptible) model,

and SEIR (susceptible, exposed, infectious, and recovered)

model, these are illustrated in Fig. 1.

Fig. 1 Compartmental models

In the SIR model, individuals go through three health

states: susceptible, infectious, and recovered. When suscepti-

ble individuals are infected by an epidemic with infection rate

(β), their states become infectious. Meanwhile, infectious in-

dividuals are able to transmit the epidemic. After the infec-

tious period, infected individuals are then in a recovered state

with recovery rate (γ), and become immune to the epidemic.

In the SIS model, infectious individuals will not enter the re-

covered state after infectious period, but return to the suscep-

tible state. In the SEIR model, individuals go through one

more state, the exposed state, before reaching the infectious

state. The classic SIR model is represented as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt
= −βs(t)i(t),

di(t)
dt
= βs(t)i(t) − γi(t),

dr(t)
dt
= γi(t),

(1)

where s(t), i(t), and r(t) are the densities of susceptible in-

dividuals, infectious individuals, and recovered individuals,

respectively. β (β > 0) is infection rate; γ (γ > 0) is recovery

rate. The temporal evolution of s(t), i(t), and r(t) is described

in Fig. 2(a). It is shown that the density of infectious individ-

uals increases exponentially, approximating to i(t) ∼ βt.

Fig. 2 Results of the SIR model (number of individuals N = 104). (a)
Temporal evolution of densities of susceptible, infectious, and recovered in-
dividuals (β = 0.3, λ = 0.1, i(0) = 10−4); (b) temporal evolution of densities
of infectious individuals with different basic reproduction number (R0 = 0.8:
i(0) = 0.8; R0 = 1.5 and R0 = 3.0: i(0) = 10−4).

To obtain the basic reproduction number (R0), we rewrite

the second equation in Eq. (2) as

di(t)
dt
=

(
β

γ
s(t) − 1

)

γi(t). (2)

Due to s(t) ∈ [0, 1] and i(t) ∈ [0, 1], the density of infec-

tious individuals increases (di(t)/dt > 0) in case of β/γ > 1;

the density of infectious individuals decreases (di(t)/dt < 0)

in case of β/γ < 1. The basic reproduction number is de-

fined as R0 = β/γ. When R0 > 1, an infectious individual

can spread the epidemic across a susceptible population. The

temporal evolution of infectious individuals with different R0

is illustrated in Fig. 2 (b). Moreover, the final epidemic size

is a function of R0, described as

r(∞) = 1 − s(0)e−R0r(∞), (3)

where s(0) is the density of susceptible individuals at time

t = 0. The mathematical derivation of r(∞) in the SIR model

can be seen in [16,17].

2.2 Stochastic epidemic models

Stochastic epidemic models are usually built using a stochas-

tic process, such as Markov Chains, and the Monte Carlo
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method [16,18–23]. The Reed-Frost model is the most widely

used stochastic epidemic model [24–27], it assumes that an

infection event in contact between two individuals can be

modeled as a binomial stochastic process. This model is de-

fined as follows.

Consider a closed population consisting of N individuals.

Each individual has the same chance to contact with each

other. In a contact, a susceptible individual is infected with

a certain probability by an infectious individual. Infected in-

dividuals become recovered and immune after going through

the duration of infectious period. Initially, there is an infec-

tious individual in the population just as I(0) = 1. The initial

number of susceptible individuals is S (0) = N − 1. I(t) and

S (t) denote the number of infectious individuals and suscep-

tible individuals at time t, respectively. The infection prob-

ability in a contact between a susceptible individual and an

infectious individual is p. The probability that a susceptible

individual is not infected by an infectious individual in the

contact is then q = 1 − p. The probability that a susceptible

individual is not infected at time t is Qt+1 = qI(t). The reverse

probability is then Pt+1 = 1 − qI(t). Moreover, the expected

number of new infected individuals at time t + 1 is

E(I(t + 1)|I(t), S (t)) = S (t)(1 − qI(t)). (4)

The original Reed-Frost model only formulates a simple

binomial stochastic process of epidemic spread. Many re-

searchers have extended the original Reed-Frost model to

build stochastic epidemic models in their studies. It is rea-

sonable to represent uncertainty or randomness in epidemic

models. Thus, compared to deterministic epidemic models,

stochastic epidemic models can offer a more realistic repre-

sentation of epidemic diffusion. More comparisons between

stochastic epidemic models and deterministic epidemic mod-

els can be found in [16,28–31].

2.3 Advantages and limitations of mathematical models of

epidemics

Mathematical models make some assumptions and simplifi-

cations of the complex spreading process of epidemics. These

assumptions and simplifications endow mathematical mod-

els with the advantage of performing theoretical analysis of

macroscopic regularities of epidemic diffusion, such as the

epidemic threshold and final epidemic size. However, these

assumptions and simplifications also limit the capability of

mathematical models to represent the spread of epidemics in

detail. The limitations of mathematical models of epidemics

are summarized as follows.

• The assumption of homogeneous and well-mixed pop-

ulation results in difficulties in representing the variants

of individual microscopic attributes and behaviors.

• A small set of variables in mathematical models are

inadequate to capture the variety of factors associated

with the epidemic spread process, especially the deter-

mining factor, human behavior.

• The Reed-Frost model and compartmental model both

assume that individuals are fully connected and make

a contact with each other in a time step. This assump-

tion limits mathematical models to using heterogeneous

links between individuals.

• Variables parameterized with average quantities and

mean values, such as average infection rate and average

recovery rate, cannot be used to describe the heteroge-

neous nature of epidemic spread, such as the heteroge-

neous contagiousness of infectious individuals and the

heterogeneous time scale of epidemic progress.

To resolve these limitations, researchers have extended

compartmental model and Reed-Frost model in their stud-

ies. First, to represent the variations of individual attributes

and behaviors, the population is divided into more sub-

groups according to not only people’s health states, but also

their ages, occupations, and infectivity [32–36]. For example,

Mkhatshwa et al. [33] divided infectious individuals into two

subgroups: super spreaders and regular spreaders, when they

studied super spreading events by using compartmental mod-

els. Second, researchers extended the variables in mathemat-

ical models so as to capture various factors associated with

epidemic spread. For example, Fenichel et al. [37] integrated

human behavior into the variable of average infection rate in

order to study the impact that human behavioral change have

on epidemic spread. Li et al. [38] used empirical distributions

to realize the heterogeneous time scale of epidemic progress.

3 Complex network models of epidemics

The last decade has witnessed a remarkable development in

complex network models of epidemics [39–44]. Epidemic

systems are described as complex networks where nodes rep-

resent individuals and links represent interactions among in-

dividuals. In general, complex network models of epidemics

are classified into two categories: spreading dynamics in

complex networks and numerical simulations of epidemics in

complex networks. Models of spreading dynamics use mean-

field theory to parse complex networks, and then build differ-
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ential equations to represent the spread of epidemics [45,46].

As in compartmental models, individuals are divided into

different groups according to their health states in complex

networks models of spreading dynamics. The infectivity of

infectious nodes is described as a function of average node

degree in homogeneous networks. While, due to the het-

erogeneity of degrees, nodes are again divided into more

subgroups according to degrees in heterogeneous networks.

Numerical simulations of epidemics in complex networks

use individual-based models to represent contact patterns be-

tween individuals and infection probability on links. Numer-

ical simulations of epidemics in complex networks usually

integrate with the Reed-Frost model to formulate the spread-

ing process of epidemics [47,48].

Most complex network models of epidemics focus on the

impact that network topologies have on epidemic spread,

such as small-world networks and scale-free networks. In re-

cent years, many researchers have paid attention to epidemic

spread in weighted networks and adaptive networks.

3.1 The impact of network topologies on epidemic dynam-

ics

Many researchers have investigated epidemic spread in ran-

dom networks [49], small-world networks [50], and scale-

free networks [51]. Their studies indicate that the topologies

of social networks have a significant impact on epidemic dy-

namics [45,46,52–56]. For example, nodes with a higher de-

gree are infected with a higher probability; epidemics spread

faster in scale-free networks than in small-world networks at

the early stage of epidemic outbreaks.

Pastor-Satorras et al. [46] used mean-field theory to formu-

late an SIS spreading dynamics model in complex networks.

They assumed that a susceptible node is infected by an infec-

tious neighbor with probability ν for each time step, and en-

ters the infectious state. Meanwhile, infectious nodes become

susceptible again with a probability δ for each time step. The

average infection rate is then defined as λ = ν/δ. In homoge-

neous networks whose node degree approximates to average

connectivity 〈k〉, such as small-world networks and random

networks, the infectivity of infectious nodes is related to their

degree. Pastor-Satorras et al. [46] defined the SIS spreading

dynamics models in homogeneous networks as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ds(t)
dt
= −λ〈k〉s(t) + γi(t);

di(t)
dt
= −γi(t) + λ〈k〉s(t),

(5)

where s(t) and i(t) are the densities of susceptible nodes and

infectious nodes at time t. γ is average recovery rate. Pastor-

Satorras et al. set δ = 1 and derived the epidemic threshold as

λc = 1/〈k〉. Due to the heterogeneity of node degrees in scale-

free networks, nodes are again divided into more subgroups.

Spreading dynamics models of epidemics in scale-free net-

works are defined as [46]
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dsk(t)
dt
= −λksk(t)Θ(ik(t)) + γik(t);

dik(t)
dt
= −γik(t) + λksk(t)Θ(ik(t)),

(6)

where sk(t) and ik(t) are the respective densities of suscepti-

ble and infectious nodes with degree k at time t. Θ(ik(t)) is the

probability that any given link connects to an infected node.

The epidemic threshold of the SIS model in scale-free net-

works is λc = 〈k〉/〈k2〉. Moreover, a positive epidemic thresh-

old does not exist in scale-free networks due to the uncorre-

lated node degrees.

In addition, researchers also studied vaccination strategies

in complex networks [57,58], as well as the bifurcation and

oscillation phenomena of epidemic dynamics in complex net-

works [59,60]. Recently, many researchers who focus on the

impact that network topologies have on epidemic dynamics

have transferred their attention to epidemic spread in hier-

archy and modular networks with community structure [61–

65].

3.2 Epidemic spreading in weighted networks

Many real world systems are described as weighted net-

works, in which the weights of edges represent the strength

of interactions. Examples include airport networks in which

edge weights represent the number of flights or available

seats [66,67]; scientist collaboration networks in which edge

weights represent the number of coauthored papers [66,68];

cell-phone communication networks in which edge weights

are the number of calls or the total duration of calls [69];

gene co-expression networks in which edge weights repre-

sent a measure of co-expression [70]; protein-protein interac-

tion networks [71–73]; criminal networks [74]; and economic

networks or trade networks [75–77].

However, most previous complex network models of epi-

demics only focus on epidemic dynamics in unweighted net-

works, and lose sight of a detailed description of interaction

patterns. Recently, epidemic spread in weighted networks has

received much attention. Yan et al. [78] studied epidemic

spread in weighted evolving scale-free networks also known

as Barrat, Barthélemy, and Vespignani (BBV) networks [79].

BBV networks are constructed according to strength prefer-

ential attachment. At each time step, a new vertex n is added
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with m edges that are randomly attached to a previously ex-

isting vertex i according to the probability distribution

pn→i =
si

∑

j
s j
, (7)

where si is the strength of vertex i. The weight of each new

edge is fixed to a value w0. The weights between vertex i and

its neighbors are rearranged according to the simple rule

wi j → wi j + δ
wi j

si
. (8)

This rule considers that the establishment of a new edge of

weight w0 with the vertex i induces a total increase of traffic

δ that is proportionally distributed among the edges depart-

ing from the vertex according to their weights. Node degrees,

node strength, and edge weights of BBV networks are sub-

ject to power law distributions with heavy trails, illustrated in

Fig. 3.

Fig. 3 The distributions of edge weights, node degrees, and node strengths
in BBV networks (N = 103, m = 5, w0 = 0.5). (a) Weight distributions

(p(w) ∼ w−α, α = 2+1/δ); (b) degree distributions
(

p(k) ∼ k−γ , γ = 4δ + 3
2δ + 1

)

;

(c) strength distributions
(

p(s) ∼ s−γ, γ = 4δ + 3
2δ + 1

)

Yan et al. [78] assume a closed population consisted of N

individuals. Each individual has two health states: suscepti-

ble and infected. They define the infection transmission on a

SI link by the spreading rate

λi j =

(
wi j

wM

)α

, (9)

where wi j is the weight of the edge between susceptible node

i and its infected neighbor j. wM is the largest value of wi j in

the network. α (α > 0) is a positive constant. The probabil-

ity that susceptible node i will be infected at the present time

step t is then

λi(t) = 1 −
∏

j∈Ni(t)

(1 − λi j), (10)

where Ni(t) is the set of all infected neighbors of node i at

time t. Moreover, Yan et al. [78] also define the spreading

velocity Vinf(t) and the average strength S inf(t) of newly in-

fected nodes as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vinf (t) =
I(t) − I(t − 1)

N
;

S inf (t) =

∑

s
(s(Is(t) − Is(t − 1)))

I(t) − I(t − 1)
,

(11)

where I(t) is the number of infected nodes at time t. Is(t) is

the number of infected nodes with strength s.

We randomly selected one initially infected node in Yan’s

models and conducted numerical simulations. This is shown

in Figs. 4(c) and (d) that both the spreading velocity and the

average strength of newly infected nodes exhibit a power-law

time behavior. Meanwhile, the increase of parameter α and

δ leads to a slower infection spreading in Figs. 4(a) and (b).

Yan et al. [78] concluded that the larger dispersion of weights

in networks results in slower spreading. They also infer that

an epidemic spreads faster in unweighted scale-free networks

than in weighted scale-free networks with the same condi-

tions.

Chu et al. [80] studied epidemic spread in weighted scale-

free networks with community structure. They used node de-

gree to express edge weights just as

wi j = w0(kik j)θ, (12)

where wi j is the weight of the edge between node i and node

j. ki and k j are the degrees of these two nodes. w0 and θ

are two scaling parameters. Chu et al. introduced different

values of parameter θ to internal edges and external edges

in weighted networks with community structure. Similarly,

they also distinguishingly described the transmission rate on

internal edges and external edges, which is a function of node
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Fig. 4 The time evolution of epidemic dynamics in BBV network (N = 104, m = 3, w0 = 1). (a) Density of infected nodes (δ = 3). (b)
Density of infected nodes (α = 2). (c) Spreading velocity (δ = 3). (d) Average strength of newly infected nodes (δ = 3).

degrees, node strengths, and weights, described as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λin
i j = λk

in
i

wi j

sin
i

;

λout
i j = λk

out
i

wi j

sout
i

,
(13)

where λin
i j and λout

i j are transmission rates on internal edges

and external edges, respectively. kin
i and kout

i are internal de-

gree and external degree of nodes. sin
i and sout

i are internal

strength and external strength. Chu et al. investigated the time

evolution of the density of infected nodes, spreading velocity,

and the average degree of newly infected nodes. They find

that the weights of external edges play a more important role

in slackening the epidemic spread. Moreover, the strong com-

munity structure is no longer helpful for reducing the danger

brought by the epidemic in weighted cases. In addition, Chu

et al. [81] also studied epidemic spread with nonlinear infec-

tivity in weighted scare-free networks.

Vaccination strategies in weighted networks are also stud-

ied. Eames et al. [82] used weighted networks to explore the

influence of heterogeneous contact strengths on the effective-

ness of control measures. They made use of data from a diary

survey of social contact behaviors to parameterize a contact

network. Then they studied targeting vaccination strategies

in the contact network. Deijfen et al. [47,48] proposed a con-

figuration model to construct weighted networks, where node

degree is dependent on edge weights. They demonstrated that

an acquaintance vaccination strategy where vertices and their

neighbors with large edge weights are vaccinated, outper-

forms a random vaccination strategy for a given vaccination

coverage.

Other work related to epidemic spread in weighted net-

works is described as follows. Fournié et al. [83] described

the live bird markets in northern Vietnam as a weighted and

directed network to analyze the spread of H5N1 influenza.

Duan et al. [84] studied super spreading events caused by se-

vere acute respiratory syndrome (SARS) in weighted scale-

free networks. To build differential equation models of epi-

demic spread in weighted networks, Yang et al. [85] proposed

an edge-based mean-field solution for general weight distri-

butions and investigated the non-equilibrium steady states of

epidemic dynamics on weighted networks. Li et al. [86] stud-

ied epidemic spread in multi-relational networks. They used

different values to weight various relationships among in-

dividuals. In many cases, researchers focused on epidemic

threshold, epidemic final size, and epidemic prevalence in

weighted networks [48,81,85,87–90]. Some others discussed

the impact of weight distributions and different types of edge

weights on epidemic spread, such as the correlation between

edge weights and node degrees [91–94], and strong ties and

weak ties in weighted networks [89,91].
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3.3 Epidemic spreading in adaptive networks

Recently, human behavioral change in response to epidemic

outbreaks raises many concerns. The self-protection behav-

iors of susceptible individuals may break their connections

with infected partners. This might significantly alter the struc-

ture of contact networks and influence epidemic dynamics.

However, most previous studies did not consider human be-

havioral change and relied on fixed and static networks. In

contrast to static networks, some researchers investigated epi-

demic dynamics in adaptive networks that are characterized

by the existence of a feedback loop between the dynamics on

networks and the dynamics of networks [95–112].

Gross et al. [95] studied an SIS model in adaptive networks

that can change structures by rewiring connections to reflect

human behavioral change. They find that different proportion

relations between an infection rate and a rewiring rate can

cause various phenomena to emerge including an endemic

state, a healthy state, bistability, and oscillatory states. They

consider a network with a constant number of nodes N and

links K. The nodes can be in two health states: suscepti-

ble and infected. A simple rewiring rule is adopted for con-

nections. In each time step, for every SI link connecting an

infected node with a susceptible node, the susceptible node

breaks the link with a probability ω and forms a new link to

another randomly selected susceptible node. Then Gross et al

represent differential equation models as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di
dt
= plS I − γi;

dlII

dt
= plS I

(
lS I

s
+ 1

)

− 2γlII ;

dlS S

dt
= (γ + ω)lS I − 2plS IlS S

s
,

(14)

where p is the fixed infection rate of susceptible nodes for

every SI link. γ is the fixed recovery rate of infected nodes.

i is the density of infected nodes in the network. lS I , lII , and

lS S are the densities of SI links, II links , and SS links that

belong to every node, respectively.

When
di
dt
= 0,

dlII

dt
= 0, and

dlS S

dt
= 0, the state of epi-

demic systems reach equilibrium. Meanwhile, we get equa-

tions described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lS I =
γi
p

;

lII =
γi2 + pi(1 − i)

2p(1 − i)
;

lS S =
(γ + ω)(1 − i)

2p
.

(15)

In case of i = 0 we get the disease-free equilibrium

(i = lS I = lII = 0); in the case where i � 0 we get the

equation

(ω − p)i2 + (p〈K〉 + p − 2ω)i + r + ω − p〈K〉 = 0, (16)

where 〈K〉 (〈K〉 = 2K/N) is the average node degree in the

network. To resolve the equation above, we discuss the condi-

tions of existence of resolutions and depict the functional re-

lationships between the infection rate p and the density of in-

fected nodes under different rewiring ratesω in Fig. 5. We ob-

serve bifurcation phenomena that are consistent with Gross’s

results.

Fig. 5 Bifurcation diagram of the functional relationships between infec-
tion rate and the fraction of infected under different rewiring rates. (N = 105,
K = 106, and γ = 0.002)

Moreover, Gross et al. [95] also analyzed the functional re-

lationships between the infection rate and the rewiring rate to

get the regions of bistability, where either an endemic state or

a disease-free steady state coexist.

Gross and Blasius provided a review of adaptive co-

evolutionary networks [96]. Gross and Sayama represented

the theory, models and applications of adaptive network mod-

els of epidemics [97]. The most recent work in epidemic

spread in adaptive networks are discussed below.

Shaw and Schwartz considered an SIRS model in adap-

tive networks and obtain similar results to Gross’s study [98].

They also investigated vaccination strategies in adaptive net-

works [99,100]. Lu et al. [101] elaborated on Gross’s SIS

model in adaptive networks and performed theoretical analy-
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sis to find the phenomena of saddle-node bifurcation, trans-

critical bifurcation, and Hopf bifurcation.

Most researchers focus on theoretical analysis to reveal the

steady state of epidemic spread and dynamic features in adap-

tive networks. However, Marceau et al. [102] and Yang et al.

[103] are concerned with the time evolution of diseases and

underlying network topologies. Marceau et al. aggregated

population into compartments according to not only people’s

health states, but also the health states of their neighbors.

Researchers usually studied epidemic spread in adaptive
random networks. However, some others investigated epi-
demic spread in adaptive networks with different topologies
[104–107]. Song et al. [104] studied epidemic spread in vari-
ous adaptive networks, including adaptive random networks,
adaptive nearest neighbor networks, adaptive small world

networks, and adaptive scare free networks. They used cellu-
lar automata to study various rewiring strategies and the co-
evolution of both epidemics and topologies. Yang et al. [103]
investigated the dynamic evolution of community structure
induced by the rewiring mechanism of adaptive networks,
and studied control strategies of epidemic spread in adaptive
networks with community structure. Jolad et al studied epi-
demic spread in preferred degree adaptive networks [105].
Wang et al investigated epidemic spread in multi-type net-

works consisting of a variety of nodes with adaptive rewiring
[106].

Researchers introduced epidemic information as a feed-

back to control the adaptation of networks [107–110]. Seg-

broeck et al [108] deemed the state of neighbors as local

information that caused the reshaping of contact networks.

They studied SI, SIS, and SIR models in adaptive networks.

Gross and Kevrekidis introduced the awareness of population

to epidemics, and found the oscillations of both epidemics

and topology of networks [109]. Zhang et al considered that

individuals should reduce their contacts and activities with

outside world in epidemic outbreaks, but not reconnect to

others [110]. So in their adaptive network models, the topol-

ogy of networks evolved not by rewiring links, but by break-

ing and recovering links. Zanette and Risau-Gusman also

used a different rewiring rule in adaptive networks [111,112].

In their models, connections between susceptible individuals

and infected individuals can be broken by either individuals,

and then reconnected to a randomly chosen member of pop-

ulation.

3.4 Advantages and limitations of complex network models

of epidemics

Complex network models of epidemics can integrate with

mean-field theory to build differential equation models that

are known as spreading dynamics models in complex net-

works. We can use differential equation models to perform

theoretical analysis of epidemic dynamics in complex net-

works. Compared to mathematical models of epidemics,

complex network models have the advantage of representing

heterogeneous population structure and interaction patterns

among individuals, such as heterogeneous node degree and

heterogeneous edge weight. Complex networks can be used

to build individual-based models of epidemics. Then we can

conduct numerical simulations to investigate the time evolu-

tion of epidemic spread. Compared to mathematical models

of epidemics, complex network models can provide a more

detailed representation of epidemic spread.

However, due to the complex spreading process of epi-

demics in human societies, complex network models are still

inadequate to represent the heterogeneity of human behav-

ior and interaction, and to capture more factors associated

with the spread of epidemics, such as the daily activities, mo-

bility, ages, and occupations of individuals. To amplify the

ability of complex network models of epidemics, researchers

have added more detailed features into networks. For exam-

ple, human contact patterns are known to be highly dynamic

and change at many time scales. In order to study epidemic

spread in complex networks with more details of time, re-

searchers extend the static network topology with temporal

dimension. Recently, epidemic spread in temporal networks

has become an increasingly hot research topic [113–115].

4 Agent-based models of epidemics

In recent years, with the increasing understanding of macro-

scopic regularities of epidemic diffusion, desire to explore the

complex evolutionary process of epidemic spread has grown.

Epidemic models are required to represent detailed realities

more accurately. Agent-based modeling is a promising com-

putational approach that can provide a more detailed depic-

tion of realities. This approach exhibits the advantage of re-

alizing heterogeneity in individual attributes and behaviors,

as well as incorporating the stochastic nature of epidemic

spread. As a bottom-up approach, agent-based modeling em-

phasizes the representation of micro behavior and interaction

of individuals, and resorts to the emergence of macro phe-

nomena of epidemic spread. However, the higher granularity

and resolution of agent-based models comes with the cost of

data availability and computational complexity. Fortunately,

increasing computational power, data availability, and devel-
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opment of intelligent computational algorithms result in the

increasing popularity of agent-based models in understanding

the spread of epidemics [116–123].

4.1 Large scale agent-based simulation systems of epi-

demics

Recently, many large scale agent-based simulation systems
have been developed to investigate epidemic diffusion in
communities or cities, such as MASON [116], GeoGraph
[124], EpiSims [125], BioWar [126], and FluTE [127]. MA-
SON is a set of Java-based agent-based simulation libraries.

It supports the development of large scale agent-based sim-
ulation systems of epidemics. GeoGraph computational lab-
oratory tools are designed to support controlled experiments
for agent-based organizational and geographic simulations.
Dibble et al. [124] developed a suite of tools in Geograph
that can be used to explore the spatially explicit behavior

of any SEIR epidemic model among heterogeneous spatially

mobile agents. EpiSims is an epidemic simulation system

that is developed based on an urban transportation simula-

tion system (TranSims). In EpiSims, graph theory was ap-

plied to traffic networks that modeling human mobility pat-

terns so as to analyze the pattern of infectious disease trans-

mission. BioWar is an agent-based system of simulating epi-

demic outbreaks and biological attacks in cities. This system

integrates a set of computational models of social networks,

communication media, disease transmission, urban spatial-

ity, population, weather, and district boundaries. FluTE is an

individual-based model capable of simulating the spread of

influenza across major metropolitan areas or the continental

United States. FluTE builds population model and commu-

nity structure according to census data. In each community,

population is organized as a cluster of households in terms of

family size distribution.

These large scale agent-based systems usually rely on

the availability of demographic data and environment data.

Meanwhile, GIS techniques are also used in these systems

to visualize epidemic outbreaks in geographical landscapes.

Large scale agents and high resolutions require a high com-

putational power. Thus, intelligent algorithms and computing

frameworks are developed to provide high computing perfor-

mance for large-scale agent-based simulation systems of epi-

demics. For example, two parallel programming algorithms,

EpiSimdemics [128] and EpiFast [129], were designed to ad-

vance the performance of EpiSims. Parker and Epstein de-

veloped a distributed platform for global-scale agent-based

models of disease transmission [130].

We are also developing a large-scale agent-based simula-

tion system to study infectious disease transmission in Bei-

jing city, this is illustrated in Fig. 6.

Fig. 6 A large scale agent-based simulation of influenza epidemic trans-
mission in Beijing city

We design the system on the basis of the ACP (Artifi-
cial societies, Computational experiments, and Parallel ex-
ecution) approach [131–133]. We build an artificial society
simulating Beijing city that integrates with census data (a
population of 19 million individuals, 8 million households, 3
thousand schools, and 6 thousand hospitals) [134], traffic net-
works, and district boundaries. Using our systems, we con-

duct computational experiments to analyze the spread pat-
terns of epidemics in Beijing city and evaluate the policies of
disease control. To provide a high computing performance,
we employ a mixed CPU and GPU computational archi-
tecture and use parallel algorithms to develop a computing
engine [135,136]. In future work, we will connect the ar-

tificial society of Beijing city to a real data stream, which

comes from disease detecting and warning systems, hospi-

tal records, and the Internet, etc. Unified simulation object

models will be used as an interface to interchange data be-

tween real systems and artificial systems. Meanwhile, data

mining and data driven approaches can be used to realize the

co-evolution of both systems. The real data from real soci-

eties are applied to calibrate the parameters and models of ar-

tificial societies. The behaviors of artificial societies are used

to support decision making on disease control.

4.2 Agent contact patterns

Human contact patterns act as a force to drive the spread of

epidemics. The precise representation of human contact pat-

terns is crucial for agent-based models to cause reasonable

macro phenomena of epidemic diffusion to emerge. To un-

derstand human contact patterns, researchers [137–152] col-
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lected real data of human behaviors through social question-

naires, diaries, and wearable sensors, and then quantified hu-

man contact patterns. For example, Edmunds et al. [137] con-

ducted a survey of a group of individuals to quantify contact

patterns. The survey indicates that the number of contacts per

individual per day can be approximated by a normal distri-

bution whose mean and standard deviation are 16.8 and 8.5,

respectively.

In agent-based models of epidemics, social networks are

widely used to formulate agent contact patterns [84,120]. In

many cases, researchers assume that the agent contact pattern

is a full contact network, where each agent contact with all of

its neighbors in each time step. However, others think human

contact behaviors are heterogeneous, stochastic, and repet-

itive. They define contact probabilities between individuals

to represent agent contact patterns. In EpiSims, transporta-

tion networks are employed to describe agent contact graphs

[125]. In BioWar, social networks are applied to represent

casual and chance contacts between a pair of agents who are

randomly selected [126]. Moon et al. [153] used social net-

works to formulate interactions between terrorists. They de-

fined interaction probabilities among terrorists according to

different factors, including relative similarity (RS ), relative

expertise (RE), social distance (SD), and spatial proximity

(SP) of terrorists, described as

PInteraction
i j = ω1RS i j + ω2REi j + ω3SDi j + ω4SPi j, (17)

where ω1, ω2, ω3, and ω4 are the weights of different factors.

Moreover, weighted networks have been increasingly used

to represent heterogeneous contact patterns between agents.

Agent contact probabilities are usually defined as a function

of edge weights [84,101,131]:

pi j =
wi j

∑

k∈N′i (t)

wik

, (18)

where pi j is the probability that agent i contacts agent j, wi j

is the weight of the edge between agent i and agent j, and

N′i (t) is the set of neighbors that agent i contact with at time

t. Due to spatial constraints, temporal constraints, and non-

pharmaceutical interventions, N′i (t) is a dynamic and chang-

ing set over time.

To represent detailed contact patterns between agents, the

spatial-temporal features of human contact behaviors are

taken into account, such as temporal networks [113–115]

and location-specific contact patterns [154]. In addition, this

demonstrates that human activities are non-Poisson in na-

ture [155]. The time heterogeneity of human activity dynam-

ics is described by a power law waiting time distribution

(p(τ) = τ−α). This power law distribution is also employed

to simulate the interactions of individuals in social systems

[156,157]. In our previous work, we defined infection proba-

bility due to a single contact between a susceptible agent and

an infected neighbor as a function of contact duration that

is described as a power law distribution with the exponent

α = 1.5.

4.3 Agent mobility patterns

The pattern of human mobility is a determining factor of epi-

demic diffusion [158–162]. The random walk model [163] is

often used to represent human mobility patterns. This model

is a mathematical formulation of a path that consists of a suc-

cession of random steps. For example, an individual moves

within a finite space, where the individual can move to each

position with the same probability. Levy flight [164] is a ran-

dom walk model that defines human movement distances as

a set of independent identical distributed random variables:

X1, X2, . . . , XN . The probability density function of the sum

of these random variables is in the same form as that of these

random variables. Recently, many studies have indicated that

human mobility distance is well approximated to a truncated

power law distribution [165,166]. The Levy flight model with

a power law distribution of mobility distances is a promis-

ing approach to exactly represent human mobility patterns.

In large scale agent-based systems of simulating epidemic

spread, agent mobility behaviors are usually abstracted as

random walks. In BioWar, movement of agents between dif-

ferent locations are described as discrete flight events. Agents

are randomly moved to appropriate locations at the beginning

of each time tick.

Gravity models [167–169] are also used to describe and

forecast human mobility patterns in agent-based models of

epidemics

Ci j = θ
Pτ1

i Pτ2
j

Dρi j

, (19)

where Ci j is the population interaction coefficient between lo-

cation i and location j. Pi and P j are the population size of

location i and location j. Di j is the distance between location

i and location j. ρ, τ1, and τ2 are estimated parameters. More-

over, spatial networks are used to represent human mobility

patterns, such as traffic networks [170] and airline networks

[171].

We think that a weighted two mode network that inte-

grates spatial networks and contact networks is a promising

approach to represent the spatial-temporal contact patterns

of agents. Nodes in weighted two mode networks are sepa-
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rated into two types: agent nodes and location nodes. Edges

in weighted two mode networks connect agent nodes with lo-

cation nodes, and also connect agent nodes with agent nodes.

The weights of edges between agent nodes and location nodes

are used to define the probability of agent mobility in loca-

tions. The weights of edges between agent nodes are used

to define contact probabilities between agents who are in the

same location. We can design the activities of agents as dis-

crete events in a schedule, and use activity-based models to

drive agent mobility behaviors and contact behaviors.

4.4 Advantages and limitations of agent-based models of

epidemics

In agent-based models of epidemics, we can use complex net-
works to represent agent mobility patterns and contact pat-
terns, and apply mathematical methods to formulate agent
behaviors, such as stochastic process and probability mod-
els. Agent-based models of epidemics can not only em-
ploy the advantages of mathematical models and complex

network models, but also exhibit the advantages of represent-
ing more detailed realities and more factors associated with
epidemic spread, such as the affect and sociality of individu-
als [172,173].

However, agent-based models require high computational

power and data availability. Though growing computing

power and data availability result in the increasing popular-

ity of agent-based models of epidemics, data related to hu-

man behavior and psychology is sometimes difficult to col-

lect. Moreover, agent-based models and their algorithms may

be too complex to be formalized.

5 Future research directions in epidemic
modeling

5.1 Spatial-temporal spreading patterns of epidemics

With the development of human societies, economics, and

transportation, people are more closely related to each other.

Individual movements and interactions also become more

frequent and convenient. This advance makes pandemic or

global outbreaks of epidemics more likely to take place.

Spatial-temporal spreading patterns of epidemics and the as-

sessment of corresponding intervention policies becomes an

important research direction.

To discover the spatial-temporal spreading patterns of epi-

demics, researchers usually resort to empirical data analysis

[165,166]. Epidemic modeling is also a helpful tool for un-

derstanding the spatial-temporal spreading patterns of epi-

demics and evaluating disease control policies. The meta-

population model is a widely used measure used to investi-

gate the spatial-temporal transmission of infectious diseases

that combines compartmental models with spatial networks

[174–177]. Like compartmental models, meta-population

models assume mixed subpopulations that are defined in

terms of geographical regions such as cities, districts, vil-

lages, and schools. Within each subpopulation, differential

equations are used to describe epidemic dynamics. Further-

more, meta-population models also incorporate spatial net-

works to describe movements and interactions among sub-

populations. Meta-population models are better than com-

partmental models to describe epidemic diffusion over spa-

tially extended regions. However, the assumption of homo-

geneous and well-mixed subpopulations still limits the capa-

bility of meta-population models to represent the diffusion of

epidemics in detail.

In addition, large scale agent-based simulation systems

and large scale spatial networks are used to investigate the

spatial-temporal spreading patterns of epidemics [39,124–

127]. Service-based geographical information systems are

also used for monitoring and management of spatial epidemic

outbreaks [178,179].

5.2 Heterogeneity of epidemic spread

Mathematical models assume homogeneous and well-mixed

population, and simplify epidemic spread process. Only a few

variables parameterized with average quantities or mean val-

ues are used to formulate epidemic diffusion across a popu-

lation. These assumptions and simplifications endow math-

ematical models with the advantage of performing theoret-

ical analysis of macroscopic regularities of epidemic diffu-

sion. However, with the increasing understanding of macro-

scopic regularities, people concentrate on the complex pro-

cess of epidemic spread. They pay attention to micro model-

ing and simulation at individual level. Social heterogeneities,

individual variants, and stochastic nature are crucial for mi-

cro epidemic models [180–182]. Heterogeneity of epidemic

spread process becomes a key research direction, such as the

heterogeneous time scales of epidemic progresses, the het-

erogeneous infectivity of infectious individuals, the hetero-

geneous immunity of susceptible individuals, heterogeneous

social networks, and the heterogeneous contact patterns of

individuals.

Super spreading events raised by the SARS epidemic in

2003 raise many concerns on the heterogeneous infectivity

of infectious individuals [33,38,84,183–186]. To represent
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the heterogeneous infectivity of SARS epidemic spreaders,

Mkhatshwa et al. [33] divided infectious individuals into su-

per spreaders and regular spreaders, and set a higher infection

rate to super spreaders in compartmental models. To predict

super spreading events, Li et al. [38] used probability mod-

els to describe heterogeneous time scales of SARS epidemic

progress in compartmental models. We also proposed hetero-

geneous and stochastic agent-based models to explore super

spreading events and analyze the characteristics of infectious

diseases’ super spreaders [84]. We used random variables

subject to certain distributions coming from epidemiological

statistics and human dynamics to represent the heterogeneity

of the epidemic spread process.

Many researchers have studied epidemic spread in hetero-

geneous networks [187–189]. Network structures realize the

heterogeneity in connectivity of individuals. Weighted net-

works go forward to describe the heterogeneity in interaction

strength between individuals.

Though agent-based models have the advantage of repre-

senting the heterogeneity in individual attributes and behav-

iors, the heterogeneity of the epidemic spreading process is

not well described due to data unavailability, especially data

related to human behavior and psychology.

5.3 Interplay between human dynamics and epidemic dy-

namics

Interplay between human dynamics and epidemic dynamics

is twofold. Firstly, pathogens invade human bodies as hosts

and carriers. Human behaviors act as a force to drive the

spread of epidemics. Secondly, epidemic outbreaks and in-

fection risk may result in human behavioral change, such as

wearing a facemask, avoiding crowds, improving personal

hygiene, and taking antiviral drugs. Human protective behav-

iors react to the spread of epidemics so as to mitigate epi-

demic outbreaks. So, the feedback loop between human dy-

namics and epidemic dynamics makes them have an impact

on each other.

However, most previous epidemic models only consider

the impact of human dynamics on epidemic spread. For in-

stance, there is no feedback loop between the onset of symp-

toms and agent behavioral change in EpiSims [125]. Re-

cently, human behavioral change have been deemed an im-

portant factor in epidemic modeling [190,191]. Researchers

have extended existing epidemic models to represent human

behavioral change. They usually reduce infection probability

or infection rate through mathematical models to reflect the

impact of human behavioral change on epidemic dynamics.

Researchers have also employed adaptive networks to study

the interplay between human behavioral change and epidemic

dynamics [95–112]. In agent-based models of epidemics, re-

searchers study human behavioral change from three major

perspectives discussed as follows.

• Economic epidemiology: researchers usually use util-

ity functions to represent individual behavior deci-

sion in epidemic outbreaks [37]. The Bellman equa-

tion [37,192–194] is a widely used utility function of

representing individual behavior decision. The Bell-

man equation considers the changes of individual health

states due to the risky behavior, and defines the benefit

of escaping from infection and the benefit of being in-

fected. In addition, researchers also use game theory to

study human behavioral change in epidemic outbreaks

[195–198].

• Psychological epidemiology: researchers study hu-
man behavioral changes in epidemic outbreaks at
the perspective of psychology. They proposed many
psychological models, such as Health Belief Model
[199]� Theory of Reasoned Action [200]� Social

Cognitive Model [201]�Protection Motivation Theory

[202]. The Health Belief Model (HBM) is widely used

to describe individual psychology and behavior deci-

sion in epidemic outbreaks [119,203]. HBM assumes

that an agent health behavior is determined by agent be-

liefs and perceptions, including perceived severity, per-

ceived susceptibility, perceived benefits, and perceived

barriers. HBM only represents a framework of indi-

vidual behavior decision due to individual psychology.

To quantify agent beliefs and perceptions, logistic re-

gression is integrated with HBM to build mathematical

models of individual behavior and decisions [204–206].

Moreover, to estimate probability ratios in a logistic re-

gression model, Durham et al. [205] conducted a behav-

ior survey in Allegheny County, Pennsylvania, USA, to

collect real data during the 2009-2010 H1N1 influenza

pandemic.

• Epidemiological information: epidemic news is

deemed as a feedback signal to control agent be-

havioral change. Epidemic information diffusion can

change epidemic dynamics, such as oscillations and pe-

riodic outbreaks of epidemics [207–212]. Researchers

have also studied a dual diffusion process of epidemic

news and epidemics, human behavioral change and epi-

demics, or awareness and epidemics [2,213,214]. At the

perspective of control mechanisms of multi-agent sys-
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tems [215], we divide epidemic information into two

categories: centralized epidemic information and lo-

cal epidemic information. Centralized epidemic infor-

mation is news published by the government, center of

disease control and prevention (CDC) and social me-

dia [216] that reports epidemic prevalence, epidemic

incidence, and infection risk, etc. Local epidemic in-

formation is messages that transmit across agents’ per-

sonal networks, such as illness related words and advice

among friends.

6 Conclusions

In this paper, we conduct a comprehensive review of epi-

demic models so as to provide an insight into the literature

of epidemic modeling and simulation. We introduce major

epidemic models in three directions, including mathemati-

cal models, complex network models, and agent-based mod-

els. We discuss the principles, applications, advantages, and

limitations of these models. To address what type of models

should be used in research, we perform comparison between

mathematical models, complex network models, and agent-

based models in Fig. 7.

Fig. 7 Comparison of mathematical models, complex network models, and
agent-based modes of epidemics

Mathematical models have the advantage of performing

theoretical analysis of macroscopic regularities of epidemic

diffusion. Moreover, mathematical models of epidemics are

easier to understand and require low computing power. How-

ever, mathematical models of epidemics are limited in de-

scribing realities in detail. Agent-based models have the ad-

vantage of capturing heterogeneity in individual attributes

and behaviors, as well as the process of epidemic spread.

However, agent-based models of epidemics require data

availability, complex algorithms, and high computing power.

Complex network models of epidemics are located some-

where between mathematical models and agent-based mod-

els. Complex networks can not only be parsed using mean-

field theory to build differential equations, but also be used to

describe human contact patterns and build individual-based

models. More comparison between mathematical models,

complex network models, and agent-based models of epi-

demics can be found in [2,217,218].
Moreover, we propose some future research directions in

epidemic modeling, including the spatial-temporal spreading

patterns of epidemics, the heterogeneity of epidemic spread

process, and the interplay between human dynamics and epi-

demic dynamics. Though researchers are already focused in

these directions and have performed some studies, further

work is needed in these directions in future. We expect these

directions can guide future research in epidemic modeling.

We hope the reader finds the key references provided in this

paper helpful for future research and that our review has pro-

vided a better holistic comprehension of the topic.
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