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Abstract
Artificial intelligence (AI) is revolutionizing nearly every aspect of modern life. In the medical field, robotic surgery is the 
sector with some of the most innovative and impactful advancements. In this narrative review, we outline recent contributions 
of AI to the field of robotic surgery with a particular focus on intraoperative enhancement. AI modeling is allowing surgeons 
to have advanced intraoperative metrics such as force and tactile measurements, enhanced detection of positive surgical 
margins, and even allowing for the complete automation of certain steps in surgical procedures. AI is also Query revolution-
izing the field of surgical education. AI modeling applied to intraoperative surgical video feeds and instrument kinematics 
data is allowing for the generation of automated skills assessments. AI also shows promise for the generation and delivery of 
highly specialized intraoperative surgical feedback for training surgeons. Although the adoption and integration of AI show 
promise in robotic surgery, it raises important, complex ethical questions. Frameworks for thinking through ethical dilemmas 
raised by AI are outlined in this review. AI enhancements in robotic surgery is some of the most groundbreaking research 
happening today, and the studies outlined in this review represent some of the most exciting innovations in recent years.

Keywords  artificial intelligence ·  robotic surgery · robot-assisted surgery ·  intraoperative enhancement ·  clinical 
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Introduction

Since its inception and widespread adoption, artificial intel-
ligence (AI) has revolutionized nearly every aspect of human 
life. AI is the study and development of algorithms that give 
machines the ability to reason and perform cognitive func-
tions such as problem-solving and decision-making [1]. 
From finance to agriculture, manufacturing to education, 
AI has fundamentally altered our ability to understand and 
respond to complex problems. Perhaps the most impactful 
adoption of AI on human life is in the field of medicine 
where AI is being used to help physicians make more pre-
cise decisions and predict patient outcomes with a higher 

degree of certainty. Within the medical field, surgery has 
experienced one of the largest impacts with the adoption of 
AI as more and more surgeries are performed using robotic 
assistance. Current surgical robots are controlled by a “mas-
ter–slave” dynamic where the robot itself does not have any 
autonomy if it does not have a human operator. However, 
recent advances in AI and machine learning (ML) seek to 
expand the capabilities of surgical robots and augment the 
surgical experience in the operating room. Surgical robots 
rely on data captured through sensors and images to operate, 
and this plethora of data capture is the key driver behind AI 
innovations in robotic surgery [1].

In this review, we focus on the recent advancements 
that AI brings to the world of robotic surgery with a par-
ticular emphasis on intraoperative applications. We also 
outline important ethical considerations for the incorpo-
ration of AI into robotic operations. Broadly, intraopera-
tive enhancements provided by AI can be classified into 
two categories: robotic autonomy and surgical assess-
ment/feedback. Advances in each of these categories are 
focused on creating environments for safe, data-informed 
surgical decision-making and enhancing surgical educa-
tion (Fig. 1). Robotic surgery’s continued integration of 

 *	 Andrew J. Hung 
	 andrew.hung@cshs.org

	 Umar Ghaffar 
	 umar.ghaffar@cshs.org

	 Runzhuo Ma 
	 runzhuo.ma@cshs.org

1	 Keck School of Medicine, University of Southern California, 
Los Angeles, USA

2	 Cedars-Sinai Medical Center, Los Angeles, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11701-024-01867-0&domain=pdf


	 Journal of Robotic Surgery          (2024) 18:102   102   Page 2 of 10

AI will improve patient outcomes and make surgery safer 
in the years to come.

Methods

A literature search for this narrative review was com-
pleted using the PubMed database. Literature was limited 
to 2 years (November 2021–November 2023) to select 
papers representing the most recent advancements in the 
field. The search terms were as follows: (((((Artificial 
Intelligence) OR (Machine Learning)) AND (Robotic)) 
OR (Robot-Assisted)) AND (Surgery)) AND (Autonomy); 
(((((Artificial Intelligence) OR (Machine Learning)) 
AND (Robotic)) OR (Robot-Assisted)) AND (Surgery)) 
AND (Skill Assessment); and (((((Artificial Intelligence) 
OR (Machine Learning)) AND (Robotic)) OR (Robot-
Assisted)) AND (Surgery)) AND (Feedback). For the 
context of this review, “robot” refers to a device that 
is assistive in the operating room and “artificial intel-
ligence/machine learning” refers to the development of 
algorithms that give machines decision-making capac-
ity [2]. The study selection process is outlined in the 
PRISMA flow diagram (Fig. 2). A total of 553 unique 
records were identified. Of these, 463 full-text articles 
were assessed for eligibility and 45 were selected as the 
most recent advancements in the field and are included 
in this narrative review.

AI in intelligent assistance and robotic 
autonomy

The most widely used robotic surgical system today is 
the da Vinci (Intuitive Surgical, Sunnyvale, CA) which 
employs a “master–slave” relationship where a human sur-
geon performs all surgical gestures in a console setting. 
These gestures are then transmitted to the robotic arms 
docked in the patient surgical site. In other words, the da 
Vinci robot cannot act autonomously without the input of 
a human operator. Autonomy, however, is not a binary. 
Instead, autonomy can be thought of as a range from not 
autonomous all the way to completely autonomous, and 
the definitions of the levels of robotic surgical autonomy 
are laid out in Table 1. [3, 4] This section will highlight 
important advances in intraoperative robotic autonomy and 
assistance which are helping surgeons perform surgical 
tasks. This review explores innovations across all surgical 
subspecialties utilizing surgical robots.

Surgical field enhancement

Robotic surgery allows for operation in deep anatomi-
cal spaces (e.g. abdominal and pelvic cavities, synovial 
joints) using small incisions for cameras and instruments. 
Real-time AI image enhancement (autonomy level 1) 
allows for enhanced identification of anatomical struc-
tures and instruments. Intraoperative visual environments 

Fig. 1   Data inputs and outputs for the development of artificial intelligence/machine learning applications for the improvement of robotic sur-
gery
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are constantly changing as dissection or repair tasks pro-
gress which can lead to marked changes in intraoperative 
image quality. To combat these changes, Ali et al. have 
developed an online preprocessing framework capable 
of denoising, deblurring, and color-correcting real-time 
camera imaging to enhance intraoperative visualization 
in knee arthroscopy. Their method outperformed existing 
image enhancement with significantly reduced compu-
tation time to image display [5]. Robotic surgeons also 
often utilize electrocautery devices for dissection and 
ligation tasks, but this process generates smoke which 
remains trapped in the anatomical space of interest which 
can temporarily obscure the visual field until suction 
removal. Wang et al. have proposed a convolutional neu-
ral network (CNN) coupled with a Swim transformer that 
is capable of removing smoke from intraoperative surgi-
cal footage, ultimately producing an enhanced, smoke-
free surgical view [6]. This is crucial when a surgeon 
needs to move quickly with good visualization such as 
during an acute intraoperative hemorrhage.

Native tissue recognition

Beyond enhancing the surgeon’s intraoperative view, AI is 
also being used to provide intraoperative information on 
native tissue. Surgery often involves identifying “surgi-
cal planes” which are anatomical points at which tissues 
meet that are free of critical structures such as arteries, 
large veins, or nerves and are, therefore, safe for dissection. 
Kumazu et al. have developed a deep learning model using 
surgical video from robot-assisted gastrectomy capable of 
automatically segmenting loose connective tissue fibers to 
define a safe dissection plane (Fig. 2). Expert surgeons gave 
the model a mean sensitivity score of 3.52/4.00, indicating 
good model performance for safe plane identification. [7]

Another area of interest where AI promises advance-
ment is surgical oncology, particularly in the realm of intra-
operative positive margin minimization to prevent cancer 
recurrence. In the field of oral and oropharyngeal surgery, 
Marsden et al. presented a variety of AI models that uti-
lize fiber-based fluorescence lifetime imaging to guide 

Fig. 2   PRISMA flow dia-
gram for literature selection. 
PRISMA   preferred reporting 
items for systematic reviews and 
meta-analyses
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intraoperative dissection tasks. Model features allowed 
researchers to generate and overlay a heatmap of probable 
cancer location (ROC-AUC: 0.88) within the oral cavity to 
guide surgeons during cancer excision (Fig. 2) [8]. A sec-
ond innovation in the field of neurosurgery utilizes data 
derived from an ultrasonic aspirator, a device commonly 
used to remove brain tumors. Bockelmann et al. generated 
AI models trained on brain tissue signal feedback from an 
ultrasonic aspirator. Models were able to distinguish signal 
differences between native tissue and brain tumor, achiev-
ing a mean F1 of 0.900 using a neural network approach. 
Intraoperative deployment of these tissue models can help 
surgeons to resect malignancies while preserving as much 
healthy neural tissue as possible [9]. A final example of sur-
gical margin management was presented by Bianchi et al. 
in which they used preoperative multiparametric magnetic 
resonance imaging (mpMRI) to guide intraoperative frozen 
tissue sampling for margin detection during robot-assisted 
radical prostatectomy. An augmented reality 3D (AR3D) 
model was generated and projected onto the surgical field 
in the robotic console which identified the best location to 
take a frozen tissue specimen which, in theory, was free 
of cancer cells. Positive surgical margins were significantly 
lower at the level of the identified index lesion as compared 
to the standard non-AR3D approach (p = 0.01). [10]

Instrument delineation

A surgical field is comprised of two major elements which 
are the native tissue (e.g. anatomical structures, malignan-
cies) and non-native devices (e.g. surgical instruments, clips, 
sutures), and one of the greatest challenges in the imple-
mentation of AI in surgery is distinguishing between the 
two. Accurate delineation is critically important for the 
development of augmented reality ([AR] e.g., surgical field 
images with computer-generated overlay) surgical field 
enhancements. De Backer et al. presented a model consist-
ing of deep learning networks to delineate instruments dur-
ing robot-assisted kidney transplantation which achieved a 
Dice score of 97.10%. This is a marked improvement from 
the current standard in AR-guided robotic surgery with mini-
mal disruption of 3D overlays highlighting key anatomical 
structures [11]. Ping et al. [12] presented a similar innova-
tion for instrument detection for surgical endoscopy using a 
modified CNN and You Only Look Once v3 algorithm with 
sensitivity measurements of 93.02% and 87.05% for surgical 
instrument and tooltip detection, respectively [12].

Tactile feedback

One of the major differences between open and robot-
assisted surgery is tactile sensation. Open approaches 
allow surgeons to palpate anatomical structures or feel Ta
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changes in tissue resistance during dissection and sutur-
ing tasks, something that has not yet been developed for 
robotic surgery. The newest generation of surgical robots 
can display force measurements in the surgical console, 
but surgeons often struggle to understand how this value 
translates to intraoperative tissue force. To combat this, 
Miller et al. developed a study that provided surgeons 
with haptic (vibratory) feedback during an exercise in 
which surgeons were asked to draw a circle on a piece of 
paper with a surgical robot using as little force as pos-
sible. They found that the addition of haptic feedback 
reduced the median maximum exerted force from 6.43 N 
to 3.57 N (p < 0.001). In another paper, Doria et al. sought 
to apply haptic feedback to the palpation of anatomi-
cal structures. They first developed stiffness models to 
characterize the mechanical properties of intrauterine 
leiomyomas; they then adapted the stiffness models to 
deliver haptic feedback through a wearable fabric haptic 
device such that a greater vibration indicated stiffer tis-
sue [13]. Force is also generated intraoperatively when 
retracting tissue, and excessive force can lead to prevent-
able adverse events such as tissue tears or hemorrhage. 
Zhu et al. developed a robot for transoral surgery that 
uses piezoelectric sensors embedded in the instrument 
tips to detect forces on tissue up to 15 N. Sensed forces 
can then be displayed to the surgeon in the console, and 
automated warnings to surgeons can help prevent exceed-
ing safe retraction forces (Fig. 3) [14].

Stepwise automation

Final innovations in this section will focus on using AI to 
offload some of the physical and mental workload intra-
operatively by the automation of certain surgical tasks. 
The first of these is the development of an algorithm for 
autonomous camera positioning on the da Vinci surgical 
robot. Eslamian et al. [15] developed a model that incorpo-
rates intraoperative tool tracking, robotic kinematics data, 
and intraoperative image data which is capable of auton-
omously translating the camera view and determining 
the correct zoom for optimal surgical visualization [15]. 
Suturing on the surgical robot is also seeing steps towards 
automation (automation level 2). Marques Marinho et al. 
presented a method that automates the key looping step 
required to suture an anastomosis during neonatal tra-
cheoesophageal fistula repair. AI models generate intra-
operative constraints (reduced degrees of freedom during 
instrument movement) to guide surgeons through the loop-
ing step of suturing. Surgeons reported decreased physical 
demand and shorter task duration using AI-guided sutur-
ing (both p < 0.05) [16]. Going beyond the automation of 
a single step in suturing, Saeidi et al. presented a study in 
which they developed a robotic system capable of fully 
automated laparoscopic bowel anastomoses. They devel-
oped a CNN coupled with a U-Net algorithm to determine 
the critical start and end positions for bowel anastomo-
sis. The model then autonomously positioned a motor-
ized Endo 360 suturing tool affixed to a surgical robot to 
perform the entire suturing task [17]. This is an example 

Fig. 3   Potential console view showcasing AI-based intraoperative surgical field enhancements
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of autonomy level 4, but only for a very specific sutur-
ing task. However, this is still a marked step forward in 
the field of AI-enhanced robotic surgery with many more 
exciting innovations on the horizon.

AI in robotic surgical assessment 
and feedback

Workflow recognition

Automatic surgical workflow recognition (SWR) is an inte-
gral part of surgical assessment. A surgical procedure can be 
decomposed into activities at different levels of granularity 
including phases, steps, tasks, and actions [18]. Phases rep-
resent the overarching stages of a surgical procedure (e.g., 
access, execution of surgical objectives, and closure). Steps 
break down each phase into specific segments that contribute 
to the overall procedure (e.g., a nerve-sparing step of radical 
prostatectomy). Tasks are sub-components of a step (e.g., 
dissect and clip prostatic pedicles). Action is as specific as 
an individual motion carried out by a surgeon during each 
task (e.g., a single cold cut). There has been growing inter-
est in crafting techniques for discerning specific granularity 
from video data.

Early works for surgical procedure decomposition using 
classical machine-learning pipelines had limited success. 
CNN and recurrent neural networks (RNN) have been piv-
otal in enhancing workflow recognition from surgical videos 
and modeling spatio-temporal features. Huaulmé et al. [19] 
utilized CNN, RNN or both for surgical workflow recogni-
tion using Micro-Surgical Anastomose Workflow (MISAW) 
and found accuracy above 95%, 80%, and 60% for phases, 
steps, and activities, respectively. [19] Ramesh et al. [20] 
proposed a multi-task, multi-stage temporal convolutional 
network for SWR, which demonstrated improved results 
compared to single-task models [20]. More recently, Good-
man et al. [21] developed a multitask neural network model 
for simultaneous, spatiotemporal analysis of hands, tools, 
and actions in open surgical videos. [21]

Tool usage information is another data source for under-
standing surgical workflow which is primarily obtained by 
manual labeling. Sahu et al. [22] developed a RNN to rec-
ognize tools in videos and estimate surgical phases [22]. 
While existing deep learning-based approaches for SWR 
have shown remarkable results, there is heavy reliance on 
large-scale labeled datasets which may be time consuming, 
costly, and subject to the availability of annotators with pro-
found surgical knowledge. To address this, Shi et al. [23] 
validated a long-range temporal dependency-based active 
learning on Cholec80 video dataset and outperformed other 
active learning methods for SWR [23].

Gesture recognition

Surgical gestures or “surgemes” represent the fundamen-
tal units of surgical interaction involving instruments and 
human tissue, such as inserting a needle, pulling a suture, 
or a single cut of tissue. Automatically recognizing gestures 
is an important element of automated activity recognition, 
surgeon skills assessment, surgical training, and autonomous 
robotic surgery systems. These gestures can serve as objec-
tive measures of surgical performance and have been found 
to impact surgical outcomes [24]. However, the development 
of automatic gesture recognition poses several challenges 
due to the intricacy and multi-step nature of gestures.

Gesture recognition methods are classified based on 
input including video, kinematics data, or both. Classi-
cal approaches for automated gesture recognition involve 
unsupervised learning methods such as the Hidden Markov 
model. Combined Markov/semi-Markov random field mod-
els employed both kinematic and video data. However, these 
were met with limitations accompanied by the subjectivity 
of manual feature extraction. Deep neural networks have 
proven to be a powerful tool for fine-grained surgical gesture 
recognition.

DiPietro et al. [25] studied gesture and maneuver rec-
ognition using RNN and found low error rates for both 
maneuver and gesture recognition [25]. The group demon-
strated impressive accuracy for identification (AUC = 0.88) 
and classification (AUC = 0.87) of suturing gestures in 
needle-driving attempts by deep learning computer vision 
in patients undergoing robot-assisted radical prostatectomy 
(RARP) [26].

Leveraging both kinematic and video data is an essential 
part of accurate gesture recognition. Kiyasseh et al. [27] 
reported 65–97% AUC for surgical dissection gesture clas-
sification across institutions and procedures [27].

Intraoperative assessment

While robotic surgery has achieved remarkable results across 
various specialties, it is undeniable that the skill of the oper-
ating surgeon plays a crucial role in surgical success. An 
unbiased and accurate evaluation of surgical performance 
is increasingly necessary in the era of AI. Traditionally, sur-
geon performance has been weighed through prior surgi-
cal experience or manual evaluation by experienced peers. 
While widely used, this technique is limited by subjectivity 
and labor intensity.

In the era of AI, the advent of automated performance 
metrics (APM) has revolutionized the evaluation of surgical 
performance. APMs rely on kinematic and video evaluation 
and serve as objective, actionable and real-time assessment 
tools. Combining APM with ML can produce objective 
assessment metrics of surgeon performance. Preliminary 
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studies have demonstrated that APMs can differentiate 
expert and novice surgeon performance in clinical settings 
[28]. Juarez-Villalobos et al. [29] accurately classified expert 
(operative experience > 100 h) and non-expert (operative 
experience < 10 h) surgeons by time intervals during train-
ing in suturing, knot-tying, and needle-passing, three cru-
cial surgical tasks [29]. Wang et al. [29] investigated neural 
networks for predicting surgical proficiency scores from 
video clips and achieved excellent performance with scores 
matching manual performance [29]. Moglia et al. utilized 
ensemble deep learning neural network models to identify 
at an early stage the acquisition rates of surgical technical 
proficiency of trainees. [29]

Hung et al. [31] previously used robotic surgical APMs 
during RARP and clinicopathological data to accurately pre-
dict continence after RARP, achieving a C-index of 0.6 via 
a DL model (DeepSurv) [31]. The study demonstrated that 
surgeons with more efficient APMs achieved higher con-
tinence rates at 3 and 6 months post-RARP. APMs were 
ranked higher than clinicopathological features in predicting 
continence. Hung et al. [32] have also demonstrated the role 
of ML in APM assessment to predict short-term clinical 
outcomes. [32]

Schuler et al. [33] utilized robotic kinematic data, surgi-
cal gesture data collected from video review, and model-
integrated force sensor data in a standardized, simulation-
based environment to predict surgical experience, capable 
of discriminating between surgeons with low or high RARP 
caseload with very high AUC [33].

Surgical difficulty measurement

Surgical difficulty is a multifaceted concept in robotic-
assisted surgery that encompasses not only the complexity 
of the tasks involved but also the cognitive workload placed 
on surgeons. This cognitive workload is influenced by vari-
ous factors, such as the lack of tactile feedback, the need for 
precise communication with assistants, and the operation 
of multiple instruments within a limited visual field. In the 
context of minimally invasive surgery, despite the benefits 
to patients such as less postoperative pain and faster surgi-
cal wound site healing times, surgeons face significant chal-
lenges due to the physical (e.g., limited surgical field space, 
difficulty in reaching anatomical structures, and demands of 
operating on the surgical robot for extended periods of time) 
and cognitive demands of the procedures. AI models can 
help in assessing surgical difficulty. Lim et al. conducted a 
study where they measured physiological response patterns 
due to changes in workload from primary surgical tasks and 
multitasking requirements. They developed classification 
models based on these multimodal physiological signals 
to distinguish between the primary tasks and multitasking 
demands and found accuracy up to 79% [34].

Realism in simulation

Doctors practicing on simulators before operating on 
patients is a crucial step that can also provide valuable 
data. However, the effectiveness of this practice is cur-
rently limited by the capabilities of the simulators. Many 
of them use basic physics, which hinders their ability to 
model large deformations accurately. As a result, these 
simulators focus on training surgeons in simplified tasks 
for agility rather than replicating the complexities of 
full surgeries. While surgeons can usually generalize the 
skills learned from these tasks to real clinical settings, 
the algorithms that aid them are only as effective as the 
data they receive from these simulators. Therefore, there 
is a significant need for more realistic simulators. Finite 
Element Method (FEM) is currently the benchmark for 
simulating deformation in soft tissue. However, its appli-
cation in patient modeling is restricted due to challenges 
in accurately estimating parameters and its computational 
intensity. Accurate material parameters are crucial for 
precise FEM simulations. Wu et al. investigated how live 
data acquired during any robotic endoscopic surgical pro-
cedure may be used to correct inaccurate FEM simulation 
results using an open-source da Vinci Surgical System to 
probe a soft tissue phantom and replay the interaction in 
simulation. They trained a neural network to correct for 
the difference between the predicted mesh position and the 
measured point cloud and showed improved FEM results 
by 15–30% over various simulation parameters [35].

Feedback optimization

While providing accurate and automated assessment 
during surgery is extremely important, a further step to 
enhance surgical education is the generation and delivery 
of targeted, high-quality intraoperative feedback. Ma et al. 
[36] first presented a dry lab surgical feedback exercise 
which showed that audio and visual feedback tailored to 
a trainee’s specific weaknesses improves robotic suturing 
skills acquisition [36]. Building on that study, Laca et al. 
[37] presented another robotic dissection study that used 
statistical modeling to categorize participants as under or 
overperformers. They were then given real-time audio and 
visual feedback which was shown to improve dissection 
skills in underperformers [37]. Wong et al. [38] have also 
developed a classification system for feedback delivered 
to trainees intraoperatively which lays the groundwork for 
determining what types of feedback are most optimal for 
surgical training [38]. Together, these studies are setting 
the stage for AI modeling that can understand a trainee’s 
weak points and deliver high-quality feedback for each 
trainee’s specific learning stage (Fig. 4).
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Ethical considerations of AI in robotic 
surgery

Data privacy

AI is data hungry. Developing ML models for robotic sur-
gery requires a large amount of surgical videos, instru-
ment kinematics, and surgeon biometrics. This requires 
large-scale data sharing across multiple institutions. Data 
privacy is a major concern, especially if compromised by 
cyber-attack [39]. Using a standardized way to anonymize 
data from data collection to data usage is critical for pri-
vacy protection [40].

Model transparency

ML models often operate in a black box. In high-stakes 
environments such as the operating room, the reliability 
and reproducibility of intelligent-assistant algorithms are 
of top importance. The lack of transparency of ML models 
can erode trust from both surgeons and patients. For this 
reason, explainable AI is burgeoning, and reporting stand-
ards for AI model development are being established [41].

Bias

Algorithms can exhibit intrinsic bias, potentially leading 
to healthcare disparities by perpetuating discrimination 
based on race, gender, or other characteristics. Bias may be 
rooted in datasets used for training AI models and could be 

mitigated by using more diverse and standardized datasets 
[42] or by tuning the algorithm’s training process [43].

Accountability

Currently, it is ambiguous who would bear responsibility if 
a patient experiences a negative outcome due to AI-based 
technology. As AI algorithms are increasingly used in 
medical diagnosis, treatment planning, and robotic surgery, 
accountability is likely to be distributed among various par-
ties. This includes the physician, the software provider, the 
creator of the algorithm, and possibly even the entity sup-
plying the training data for the AI [41].

Financial incentive

On one hand, it is important to maintain appropriate incen-
tives for robotic manufacturers and AI developers to advance 
the field, aiming to improve healthcare. On the other, it 
is essential to prevent the unethical use of AI algorithms 
designed to exploit the medical system for undue profit. For 
instance, avoiding situations where an AI system recom-
mends drugs, tests, or devices that are inconsistent with 
clinical guidelines and solely to generate profit for the par-
ties involved [44].

Acknowledging these concerns, the U.S. is advancing 
AI regulations. President Biden's Executive Order on Safe, 
Secure, and Trustworthy AI, issued in October 2023, is a 
significant step. The order provides guidelines for ethical AI 
development, emphasizing operational security and adher-
ence to legal standards, with a focus on ensuring safety and 

Fig. 4   Workflow demonstrating ingestion of surgical video and kinematics data, the AI-based generation of intraoperative performance metrics 
and automated, tailored feedback delivery
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security in medical contexts. It also tackles potential adverse 
outcomes of AI like errors or biases in surgical procedures.

Conclusion

Robotic surgery has revolutionized the way surgery is per-
formed. As robotic surgical platforms are already highly 
advanced technological environments, they are a perfect 
place for AI models to further enhance surgical capabili-
ties. AI models are being used to automate surgical tasks 
and enhance intraoperative safety. AI is also being used to 
enhance the field of surgical education through automated 
skills assessment tools and intraoperative feedback delivery. 
Robotic surgical AI also presents complex ethical questions 
that are being addressed and debated as further innovations 
are presented. AI implementation in robotic surgery is rap-
idly expanding, and we expect the future to hold more excit-
ing enhancements.
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