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Abstract
We use machine learning to evaluate surgical skill from videos during the tumor resection and renography steps of a robotic 
assisted partial nephrectomy (RAPN). This expands previous work using synthetic tissue to include actual surgeries. We 
investigate cascaded neural networks for predicting surgical proficiency scores (OSATS and GEARS) from RAPN vid-
eos recorded from the DaVinci system. The semantic segmentation task generates a mask and tracks the various surgical 
instruments. The movements from the instruments found via semantic segmentation are processed by a scoring network 
that regresses (predicts) GEARS and OSATS scoring for each subcategory. Overall, the model performs well for many 
subcategories such as force sensitivity and knowledge of instruments of GEARS and OSATS scoring, but can suffer from 
false positives and negatives that would not be expected of human raters. This is mainly attributed to limited training data 
variability and sparsity.
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Introduction

The primary objective of this research was to predict, based 
on video review, surgeon technical performance during the 
tumor resection and renography steps of actual robotic-
assisted partial nephrectomy (RAPN) [1]. Specifically, 
we develop a machine learning architecture consisting of 
a multi-task convolutional neural network (mtCNN) [2, 3] 
that assesses surgeon technical performance using two vali-
dated assessment tools: the Objective Structured Assessment 
of Technical Skills (OSATS) [4] and the Global Evaluative 
Assessment of Robotic Skills (GEARS) [5]. The developed 
model provides scoring for each subcategory of the OSATS 

and GEARS scales. We highlight three specific contributions 
of this work: 

1. We generate a collection of segmented videos scored 
by human raters for RAPN. Human scores were ana-
lyzed for inter-rater matching accuracy of GEARS and 
OSATS.

2. We modify previous work on synthetic tissue to analyze 
actual surgeries [6] and expand on our instrument track-
ing methods to include precise masks of instruments, 
rather than bounding boxes. Masking performance is 
also evaluated.

3. We further expand previous work [6] to include predic-
tion of OSATS scores and GEARS scores together from 
a shared neural network representation. We evaluate this 
performance compared to human scoring.

The neural network architecture employed here used mecha-
nisms for weighting different portions of the video—this is 
an automated process known as attention in neural networks 
and is important when understanding if a segment is in fact 
“real-world” impact full and not an aberrant signal [7]. We 
investigate attention using three different mechanisms to 
identify the most important segments in the procedures for 
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predicting the scores. The three attention mechanisms used 
were selected based upon previous works in speech process-
ing [8].

Related work

We divide related work into subcategories including robotic 
surgery deep learning methods, semantic segmentation, and 
multi-task learning.

Robotic surgery using deep learning: Many previous 
studies have validated the GEARS and OSATS assessment 
tools [4, 5], and a number of studies have attempted auto-
mated methods for predicting these scales. We limit our 
discussion here to the most similar methods to ours—those 
employing deep neural networks for prediction of surgi-
cal expertise. Zhao et al. used 2D convolutional networks 
for tracking surgical instruments for verification [9]. Law 
et al. employ hourglass networks to locate specific parts 
of a robotic instrument, using machine learning to make 
predictions of GEARS scores on two levels (low vs. high) 
[10]. Lee et  al. used instrument tracking with convolu-
tional networks to classify GEARS into three levels. They 
report accuracy ranging from 57 to 83% for classification 
[11]. Gahan et al. focused on using convolutional sequence 
models to assess GEARS scores with up to 78% accuracy 
among five subcategories [12]. Wang et al. improved upon 
these methods [6], classifying the GEARS score, and the 
subcategories of GEARS scores, in its entire dynamic range 
on synthetic tissue for surgeons in training. Wang et al. 
employed convolutional networks, achieving good perfor-
mance with scores matching manual inspection in 86.1% 
of all GEARS subcategories. While this work showed that 
evaluation of GEARS subcategories with artificial neural 
networks is possible for novice and intermediate surgeons, 
it was unclear if expert surgeons could be evaluated with a 
similar automated system. This was due to a limited amount 
of data on expert surgeons in the data set. In this work, we 
work almost exclusively with individuals that are rated as 
expert surgeons. Moreover, we further improve upon previ-
ous works by introducing segmentation methods and further 
develop methods to work with videos of real surgery (as 
opposed to synthetic tissue). We also employ an additional 
task, regressing the OSATS score, for training the machine 
learning network.

Semantic segmentation: is a task that generates an image 
mask based on semantic regions. That is, a pixel for pixel 
mask is generated for each object of interest (see Fig. 1). 
For example, Garcia et al. and Wang et al. combined seman-
tic segmentation with deep learning on different real-world 
image data [13, 14]. Marullo et al. used semantic segmen-
tation of instruments in a laparoscopic surgery to classify 
blood accumulation events with accuracy of 90% [15]. In 

their approach the main aim was to remove all instruments 
from the video scene, rather than identify each portion of 
the instrument with a mask. This motivated us to use these 
segmentation masks in our work, replacing the key-point 
detection algorithm from previous work [6]. In the current 
work, we find that segmentation masks provide additional 
information by providing knowledge of instrument area (not 
just location) which can be fed into the model and increase 
accuracy while decreasing the false positive detection rate 
of similar instruments (e.g., suction device).

Multi-task learning: is a method for exploiting informa-
tion in a single modeling framework with multiple classifica-
tion tasks. It has been shown to increase accuracy and gener-
alization in many applications [16]. Typically, this involves 
training a neural network with two or more labels or loss 
functions that can be optimized simultaneously. For exam-
ple, labeled examples from the GEARS and OSATS scoring 
can be used to simultaneously update the trained parameters 
of a neural network. In this way, the neural network must 
learn features that help to discern rating for both the GEARS 
and OSATS scores. Finally, we also build from previous 
works that use multiple loss functions for multi-task learn-
ing [8]. Cross entropy (CE) is used in previous work as loss 
function for each GEARS score [6]. However, this ignores 
the relative difference between actual and predicted scores. 
For example, CE does not discern that, if the actual score 
is 5, it is better to predict a 4 than a 3. Therefore, we also 
conducted experiments with a loss function that takes into 
account this difference: the weighted-� Loss [17].

Methods

To inform the design of our networks and evaluate their 
performance, we developed a dataset of RAPN segmented 
surgical videos and recruited reviewers to score each seg-
mented video. Surgical assessment has been extensively 
evaluated for RAPN, as indicated by [18]. Fellows and 

Fig. 1  An example segmentation mask used in our collected data set
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attending surgeons provided GEARS and OSATS scores 
based on video review of RAPN surgeries. Reviewers were 
trained in the OSATS and GEARS systems to score surgery 
videos. The analysis of de-identified videos was approved 
by the University institutional review board (IRB). In total, 
five trained surgeons were able to annotate and score the 
segmented videos. In addition, the annotators were asked 
to identify the surgical videos according to the major tasks 
involved: (1) resection, (2) renography, and (3) placement 
of bolsters. In each video, two surgeons (one trainee and 
one attending surgeon) complete each surgical task and were 
graded separately. It is important to note that the videos were 
not divided based on performance but were divided between 
trainee and attending surgeon and the reviewers were not 
aware of expertise level, only that it was a different surgeon. 
In instances when a segmented video contained more than a 
single surgeon, the scores are labeled as “invalid” by review-
ers. This may occur because the duration for that surgeon 
may not be long enough to accurately assess GEARS and 
OSATS. A summary of the dataset is given in Table 1.

Machine learning methods

The processing pipeline of our automated scoring system 
contains several steps related to loading and transforming 
videos of surgery, segmenting instruments, and scoring 
the movements of the instruments via GEARS and OSATS 
regression. An overview of our method is as follows: First, 
a custom video loading data processor is used to decom-
press time segments of videos. Second, the object detector 
is used to identify masks of surgical instruments in each 
video frame. This is also referred to as semantic segmen-
tation because it segments certain parts of the image that 
we have labeled as “semantically” meaningful. Third, the 
coordinates and pixel-area of surgical instruments are cal-
culated and saved to be used as features. Finally, these 
features are combined over time and used as inputs to train 
a sequence scoring model. This model takes a variable 

length set of feature vectors and regresses/classifies to 
three different outputs: GEARS, OSATS, and the surgical 
task. We refer to this as the scoring network [2, 3].

Semantic segmentation: To train the semantic seg-
mentation network, manual labels are needed. A human 
reviewer was hired to create masks for each portion of 
the robotic instrument in a subset of video frames. These 
labels are used to train our semantic segmentation net-
work. When labeling the objects in the frame, we chose 
to label the instruments similarly to our previous work, 
where each movable structure on the robotic instrument 
is labeled separately [6]. Seven different portions of the 
instruments (and background) are segmented in the frame 
as: (1) Left-arm (upper flexion), (2) Left-arm (abduction), 
(3) Left grasping or cutting, (4) Right-arm (upper flexion), 
(5) Right-arm (abduction), (6) Right grasping or cutting, 
(7) Needle (see Fig. 1). Any region that does not belong 
to the object listed above is assigned to be “background.” 
This background tag also includes other instruments that 
are not under the direct control of the surgeon, such as the 
suction arm.

The structure of the semantic segmentation network is 
similar to the U-net architecture employed in [6]. The U-net 
architecture [19] used is a convolutional neural network 
that contains five encoding blocks, five decoding blocks, 
and three bottleneck blocks. The real-world nature of these 
videos adds complexity to the analysis compared to our pre-
vious approaches with training videos on synthetic tissue. 
Therefore, we altered the network from [6] with an image 
global attention layer to reduce the network’s complexity, 
resulting in a parameter reduction in the deep network by 
45% [20]. In several decoding blocks, we also use cross 
image attention [21], allowing the network to weight certain 
portions of the input feature maps differently in the convo-
lutional processing layers.

Scoring network: The input to the scoring network is 
from the output of the semantic segmentation, aggregated 
over time. Each feature vector can contain up to seven mask 
objects with three components: the x and y coordinate of the 
mask’s center and the mask’s area. Thus, each frame has 21 
features (7 for x, 7 for y, and 7 for area). The scoring network 
regresses multiple frames into GEARS and OSATS scores. 
Specifically, the scoring network is tasked with regressing 
the each subcategory of the GEARS and OSATS scoring, 
as well as classifying the main task segments of the sur-
gery (e.g., cut, bolster). The scoring network uses a com-
mon representation in early layers, but then branches its 
representations into specifics outputs for each task—thus, 
it is a multi-task network. Because each task is performed 
from this common representation and the network employs 
convolutions across time, the scoring network referred to as 
multi-task convolutional neural network (mtCNN) [3].

Table 1  Summary of collected data

Videos 150
Unique surgeries 50
Annotators/raters 5
Surgeries with multiple raters 10 (20%)
Surgeons per task, cut Two surgeons: 29, One surgeon: 21
Surgeons per task, recon Two surgeons: 32, One surgeon: 18
Surgeons per task, bolster Two surgeons: 40, One surgeon: 10
Video duration, cut Mean: 12.5 mins (5.1−25.0 mins)
Video duration, recon Mean: 17.4 mins (7.7−33.7 mins)
Video duration, bolster Mean: 10.2 mins (4.4−18.5 mins)
Total size, compressed 343 GB
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As shown in Fig. 2, the mtCNN processes the sequence 
of instrument features across all the video frames. Similar to 
[6], two pathways are traversed in the model, a time convo-
lution path and an attention-based pathway that weights the 
convolutional outputs. After convolutions are applied and 
weighted according to attention, they are collapsed using 
the average of each weighted convolutional filter. This aver-
age allows the output to be a consistent length regardless of 
how long the sequence lasted. We investigate three different 
methods for the secondary attention pathway. Specifically, 
we investigate three methods of attention, similar to [8]: 
(1) Weight Gated, (2) Self-Attention, and (3) Direct Self-
Attention Pooling [22, 23]. Each method is shown in Fig. 2 
in a separate titled block. Intuitively, each attention method 
differs in how it tries to generate the weights before taking 
an average. Weight Gated processing uses multiple 1D con-
volutions followed by a softmax layer to force the network 
to focus on particular time segments before averaging. Self-
Attention is used to calculate a set of weight vectors, similar 
to the use of transformers [7]. Direct self-attention pooling 
uses convolutional self-attention instead of temporal pool-
ing. We investigate which method of attention weighting 
has the best performance in the context of robotic surgery 
assessment.

The outputs of the mtCNN are three sets of classifica-
tions/regressions: six GEARS subcategories, seven OSATS 
subcategories, and the type of overall task the surgeon per-
forms (i.e., cut). The result must be compared to human 
scoring through a loss function to optimize each model. We 
investigate two loss functions: Cross-Entropy Loss (CE) and 
Weighted-� Loss (WK) [17]. We adapt the weighted � for 
use as a loss function. We first use logarithms to decouple 
the numerator and denominator, simplifying the computa-
tion of the gradient [17]. Thus, the problem is reformulated 
to minimize:

where � avoids calculating log(0) and O, w, and E are the 
matrices of observed scores, penalty weights, and expected 
scores. Oi,j corresponds to the number of surgeries that 
receive a score i from one rater and score j from another 
rater. Matrix E is calculated via the outer product between 
the score vectors of the two raters, normalized to have the 

(1)
lWK = log(1 − � + �), where � = 1 −

∑

i,j wi,jOi,j
∑

i,j wi,jEi,j

and wi,j =
(i − j)k

(N − 1)k
,

Fig. 2  Overview of the mtCNN scoring network
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same sum as Matrix O. In calculating the weight entries, wi,j : 
N is the number of possible ratings (in this study N = 5 ), 
k indicates the strength of the penalty (we use k = 1 ). 
� = 1 indicates perfect agreement and � = 0 indicates no 
agreement.

Results

Semantic segmentation

We employ 872 labeled image frames for training, com-
prising more than 4,000 labeled pixel masks for the vari-
ous instruments. We also use several negative examples 
(images without any surgical instruments) to help reduce 
false positives.

The training and evaluation progress of the network is 
shown in Fig. 3 (left). The y-axis shows the intersection 
over the union (IoU) of the manually labeled masks and the 
predicted masks for each batch. IoU is a standard method 
for assessing the goodness of fit for a segmentation network. 
It measures the degree of overlap between actual and pre-
dicted masks. The x-axis of the figure shows the number of 
training batches that the network uses for optimization—
about 150,000 batches are used, comprising 2,800 epochs 
(an epoch is one pass through all training data). For evalu-
ation, about 500 labeled masks (not in the training set) are 
plotted in orange in Fig. 3 (left). During training, the data 
are randomly scaled, rotated, and shifted using a projection 
transform, which helps to mitigate overfitting [24]. Evalua-
tion data are not augmented. The training data IoU converge 
to about 0.8 and the evaluation data converge to an IoU of 
0.65, which is similar in performance to other semantic seg-
mentation algorithms [25].

We then tested the semantic segmentation model on a 
video that was not in the training set. We visually observed 
that the model had relatively good detection, but improve-
ments were necessary to reduce false positives. Therefore, 
a series of “enhancement” frames were selected from the 
video that had many false positives. Labeling was provided 

for these scenarios to enhance performance. A direct report-
ing of the IoU from this evaluation video is not possible 
because manual labeling of each frame of the video is 
extremely time consuming. We observed that this noticeably 
reduced false alarms in visual inspections as shown in the 
examples in Fig. 3 (right). We also observe that the masking 
of surgical instrument parts is quite robust. In some cases, 
it is difficult even for the human reviewer to identify the dif-
ferent portions of the instruments because of various angles, 
extreme positions, and obstruction by tissue/blood. The most 
common errors we observe are boundary errors where the 
mask is slightly too large or small at the instrument edges. 
The result could be further improved by extracting even 
more frames from the video—however, we have found a 
perfect tracking result is not required to obtain good perfor-
mance in GEARS and OSATS prediction and some “noise” 
from the semantic segmentation network can be tolerated 
and accounted for by the scoring network.

Architecture and loss function investigation

Most GEARS and OSATS subcategory scores are either 
rated three–five demonstrating an imbalance in the data 
collected. The vast majority of the data is related to expert 
surgeons. 98% of the scores are designated “expert;” there 
are no novice scores; and only 2% of the surgery scores fall 
into the “intermediate” designation. Another possible con-
found in the data is that the GEARS and OSATS scores are 
rated for long time segments (about 10 min of maneuvers) 
[4, 5]. Thus, though the overall score is high, arbitrary time 
segments within the surgery may be poorer. This may cause 
some automation problems, such as difficulty in training the 
model to recognize “poor” intervals.

We evaluated the mtCNN with several competing archi-
tecture structures and training loss functions, as previously 
described. A single training and testing split is used in this 
analysis, where 80% of surgeries are used for training and 
20% for evaluation. We summarize the different overall 
GEARS and OSATS scores in Table 2. We report the best 
performing models for training the networks by monitoring 

Fig. 3  Left: training and validation curves of the semantic segmentation network. Right: a few examples of the segmentation results
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performance on the evaluation data and checkpointing when 
the model surpasses previous performances. Because a sin-
gle split of the dataset could potentially bias our conclu-
sions, we only use this split to select the loss function and 
architecture. We do not solely rely on this split to bound 
performance. However, later analyses that use repeated splits 
will reveal that the data in Table 2 is representative of overall 
performance.

Table 2 shows the exact matching accuracy for each 
attention mechanism and each loss function investigated. 
The inter-rater exact matching accuracy is also shown on 
a subset of videos from which two raters scored the same 
surgery (in the top row). Matching accuracy is calculated 
by the number of subcategories in GEARS and OSATS that 
match exactly between two raters (or between model and 
raters) on a scale of 1–5 for each subcategory. Many of the 
architectures exhibit similar, but slightly reduced, matching 
agreement with the human raters. Therefore, there is still 
room to improve the models. However, a clear best perform-
ing model emerges: the self-attention architecture with cross 
entropy loss (SA-CE).

GEARS and OSATS bootstrap analysis

While the SA-CE model tends to perform the best on a sin-
gle split of the data, we also wish to characterize this perfor-
mance of the model using different training and testing sam-
ples, which can be achieved using a bootstrapping sampling 
method [26]. We trained the SA-CE model repeatedly (over 
1000 times) with randomly sampled training data from the 
dataset. Any data not chosen for training samples is used for 
evaluation of that training run. For each round, we train the 
data with augmentation (as described) but evaluate without 
augmentation. The 0.632 bootstrap results are reported in the 
bottom row of Table 2. In bootstrapping, evaluation criteria 
are calculated per round to help bound how the model will 
perform with a varying set of training and testing examples. 
Therefore, the average of bootstrapping performance is a 
good indicator of expected performance on unseen data and 

the range indicates the highest and lowest possible perfor-
mances. The mean results are similar to the performance 
results from our previous analysis with a single split of the 
data, which indicates these previous results are a good proxy 
of overall performance. The overall performance is calcu-
lated by 0.632 rule [26]. The performance captured with 
this rule can be considered as the theoretical “actual perfor-
mance” when the training dataset performance is similar to 
the evaluation performance. The 0.632 rule does not guar-
antee this behavior—but we do observe this in our dataset. 
Thus, we have high confidence the result is not biased. We 
also note that the peak performances of a number of models 
using the bootstrap analysis are encouraging, with match-
ing accuracy surpassing human agreement. The maximum 
performance of any model from the bootstrap was 0.85 for 
both GEARS and OSATS, which is an optimistic measure 
of performance. On average, we expect a match of 0.60 or 
0.63, compared to human rater matching of 0.71 or 0.75.

We also report the bootstrap matching accuracy for each 
subcategory of GEARS and OSATS in Fig. 4 (left). The box 
plot shows the distribution of accuracy on each subcategory 
for both the training sets and evaluation sets. We see a simi-
lar trend with the training and evaluation scores similarly 
distributed, which provides additional confidence in the 
bootstrap methodology. Thus, this agreement also extends 
to each subcategory, not just the overall scores.

For GEARS, we note that the best performing subcat-
egory is “force sensitivity,” while the lowest performing 
subcategory is “efficiency.” All subcategories are better 
than chance, but none are exceptionally high scoring. For 
OSATS, the best performers are “knowledge of instruments” 
and “assistance,” while the lowest performer is “time and 
motion.” In OSATS, the best performers have substantially 
high accuracy, but both of these subcategories have limited 
variability in the dataset, with most surgeons scoring highly. 
As such, the results for these scales might be optimistic.

While the distributions in the Fig. 4 (left) show similar-
ity of outputs, they hide raw differences in the scores. As 
such, it is not clear if the model over or under estimates the 

Table 2  Accuracy of different 
models using loss functions: 
cross entropy (CE) or weighted 
� loss and different attention 
mechanisms: Weight Gated 
(WG), Self-Attention (SA), and 
Direct self-attention Pooling 
(DP). Bootstrap results are also 
given for the mean ± standard 
deviation

Bold in the table indicates the best performing model in each category

Loss Attention GEARS OSATS Task

Model � CE WG DP SA Acc. Acc. Acc.

Rater–Rater – – – – – 0.71 0.75 N/A
WG-� ✓ – ✓ – – 0.35 0.32 0.80
DP-� ✓ – – ✓ – 0.46 0.61 0.66
SA-� ✓ – – – ✓ 0.45 0.55 0.91
WG-CE – ✓ ✓ – – 0.57 0.59 0.81
DP-CE – ✓ – ✓ – 0.52 0.60 0.68
SA-CE – ✓ – – ✓ 0.60 0.63 0.93
SA-CE Bootstrapping Aggregation 0.59 ± 0.13 0.62 ± 0.12 0.75 ± 0.22
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GEARS and OSATS ratings. To elucidate this, we report the 
residual difference between predicted GEARS and OSATS 
subcategories in Fig. 4 (right). Ideally, each plot would be 
centered on 0.0 with small interquartile ranges. Because 
the median values are mostly positive, we observe that the 
models tend to predict higher scores (i.e., higher than actual 
skill). We note that this bias is only slight and it is encourag-
ing to see that the median is near zero for all subcategories. 
This supports a conclusion that the models are not overly 
producing false negatives or false positives. However, there 
also appear to be a number of outlier points where some 
bootstrap models predict a lower skill than actual, as given 
by the black dots shown in Fig. 4 (right). These outliers 
show that sometimes the bootstrap models have residuals 
as large as 3.0 (for some scales). This kind of disagreement 
was not observed among human raters. On average, the inter-
quartile range is less than 0.5 residual difference, indicating 
that most subcategories are exact or within one point of the 
human rater. This conclusion is somewhat limited by the 
observed variability in our ground truth data.

Conclusion

We developed a deep learning algorithm for scor-
ing GEARS and OSATS from a dataset robotic partial 
nephrectomy procedure videos. We found that our network 
trained with self-attention and cross entropy loss (SA-CE) 
to perform substantially better than other architectures. 
Based on our results, we conclude that our methods for 
automated scoring are substantially better than chance, 
with some predictions similar in agreement between 
two surgeon raters. However, some of the automated 
scores are less reliable than those provided by a skilled 
surgeon reviewer, requiring further data collection and 

investigation. Furthermore, because the results are evalu-
ated upon real surgeries, there is limited variability in 
the scores—most surgeons are experts, scoring highly on 
all subcategories of OSATS and GEARS. While we con-
ducted our experiments using Intuitive platforms, the only 
data employed from the platform was the video feed. No 
other internal calibration or 3D motion data was used from 
the platform. Therefore, the mtCNN model should general-
ize to any robotic platform that allows access to video of 
the surgery being performed. Furthermore, the mtCNN 
model, once trained, can process video faster than real 
time. Practically, this also means that a single server could 
process video from multiple surgical platforms simulta-
neously. Thus, a single server model could be employed 
without sacrificing processing time.
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