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Abstract
A crucial element of any surgical training program is the ability to provide procedure-specific, objective, and reliable 
measures of performance. During robotic surgery, objective clinically relevant performance metrics (CRPMs) can provide 
tailored contextual feedback and correlate with clinical outcomes. This review aims to define CRPMs, assess their validity in 
robotic surgical training and compare CRPMs to existing measures of robotic performance. A systematic search of Medline 
and Embase databases was conducted in May 2022 following the PRISMA guidelines. The search terms included Clinically 
Relevant Performance Metrics (CRPMs) OR Clinically Relevant Outcome Measures (CROMs) AND robotic surgery. The 
study settings, speciality, operative context, study design, metric details, and validation status were extracted and analysed. 
The initial search yielded 116 citations, of which 6 were included. Citation searching identified 3 additional studies, result-
ing in 9 studies included in this review. Metrics were defined as CRPMs, CROMs, proficiency-based performance metrics 
and reference-procedure metrics which were developed using a modified Delphi methodology. All metrics underwent both 
contents and construct validation. Two studies found a strong correlation with GEARS but none correlated their metrics with 
patient outcome data. CRPMs are a validated and objective approach for assessing trainee proficiency. Evaluating CRPMs 
with other robotic-assessment tools will facilitate a multimodal metric evaluation approach to robotic surgery training. 
Further studies should assess the correlation with clinical outcomes. This review highlights there is significant scope for 
the development and validation of CRPMs to establish proficiency-based progression curricula that can be translated from 
a simulation setting into clinical practice.

Keywords Clinically relevant performance metrics · Clinically relevant outcome measures · Proficiency-based training · 
Robotic surgical education

Introduction

The need for high-quality robotic surgical training is 
becoming more relevant with the increasing uptake of 
robotic surgery across multiple specialities. A crucial 
element of any surgical training program is the ability to 
provide procedure-specific, objective, and reliable meas-
ures of performance [1]. Metric-based assessment in sur-
gical training has been shown to improve trainee perfor-
mance [1]. Proficiency-based training is a concept where 
trainees are given objective goals or benchmarks they 
are required to achieve at each level of surgical training, 
before progressing to the next [2]. It focuses on improv-
ing performance and maintaining the proficiency of that 
performance rather than relying on caseload as a repre-
sentation of surgical skill [2]. It has been shown that this 
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approach produces overall higher proficiency scores and 
reduced intra-operative complications in comparison to 
conventional operating-room training [3]. Hence, profi-
ciency-based progression (PBP) training utilises simula-
tion to allow trainees to achieve proficiency in a “risk-free 
environment” before operating on a patient and improve 
clinical outcomes [2]. However, to evaluate whether 
benchmarks have been achieved and provide feedback to 
trainees, surgical trainers require metrics to objectively 
assess performance [2]. Therefore, to meet the require-
ments of PBP training in robotic surgery, there is a need 
for validated metrics to provide tailored feedback and 
guide trainee progression.

Currently, automated performance metrics (APMs) are 
objective, reproducible measures derived from kinemetric 
data that assess surgical skill [4]. However, they are not 
readily available in live operating settings and thus lack 
translation from simulation to clinical contexts. Addition-
ally, APMs rely on the availability of annotated datasets 
used to evaluate performance and the transferability of 
these datasets across various operating techniques, toolsets 
and procedures remain poor [5]. Similarly, several tools 
have been created and utilised to measure surgical profi-
ciency during robotic surgery such as the Global Evalu-
ative Assessment of Robotic Skills (GEARS). GEARS, 
though previously validated, provides overall proficiency 
feedback about robotic surgical skills by grading six 
domains without adapting them to be procedure spe-
cific [6–8]. It also remains reliant on assessor subjectiv-
ity and human rating which introduces the risk of bias 
[4]. Another tool, the Robotic Anastomosis Competency 
Evaluation (RACE), is a validated, objective scoring sys-
tem to assess surgical performance during ureterovesi-
cal anastomosis (UVA) and provide structured feedback 
[9]. Whilst UVA is a critical step in surgical procedures, 
such as robot-assisted radical prostatectomy (RARP), it 
represents one task and not an entire procedure [9, 10]. 
Collectively, there is a need for clinically relevant objec-
tive metrics which can quantify a surgeon’s performance, 
provide feedback and ultimately improve both surgical and 
patient outcomes.

The idea of objective, clinically relevant metrics emerges 
with Clinically Relevant Performance Metrics (CRPMs) or 
Clinically Relevant Outcome Measures (CROMs) which 
have been explored to a limited degree in literature. CRPMs 
are applicable to a clinical context and can potentially cor-
relate with patient outcomes. Specifically, they can inform 
trainee progression in the proctored operating phase of 
robotic training beyond simulation. In this review, we aimed 
to define CRPMs and assess their validity in robotic surgery 
training. As a secondary outcome, we aimed to compare the 

utility between CRPMs and existing measures of robotic 
performance, such as GEARS.

Methods

This review was registered in May 2022 (PROSPERO ID: 
CRD42022332901). A systematic search of Medline and 
Embase databases was conducted in May 2022 following the 
PRISMA guidlienes. The search terms used were Clinically 
Relevant Performance Metrics (CRPMs) OR Clinically Rel-
evant Outcome Measures (CROMs) AND robotic surgery. 
Additional articles were obtained via citation searching of 
included publications. After the exclusion of duplicate articles, 
two independent reviewers (MY, GT) initially screened articles 
based on title and abstract. Selection was completed by screen-
ing full-text articles based on eligibility criteria. Conflicts were 
resolved by a senior third independent reviewer (KL).

Inclusion and exclusion criteria

The studies that were included addressed clinically relevant 
metrics including CRPMs, CROMs and clinically relevant 
metrics assessing intra-operative robotic performance. Stud-
ies assessing solely automated performance metrics (APMs), 
cognitive performance metrics (CPMs), patient-reported 
metrics or generalised measures of performance such as 
RACE, and GEARS were excluded. All settings of soft-tis-
sue robot-assisted surgeries were included with dry labora-
tory, wet laboratory, animal models, and in-vivo operating. 
Articles addressing open surgery, laparoscopic surgery or not 
utilising a soft-tissue robot were excluded. Included studies 
investigated participants from multiple categories: surgeons 
(novice, experts), trainees (i.e. residents, interns), and medi-
cal students. Commentaries, conference abstracts, and reviews 
were excluded.

Data extraction

For the included articles, data were extracted including, 
authors, study objective, context (speciality and operation), 
study design (participants and robotic setting), metric details, 
measurement of metrics, metric validation status, and compar-
ison outcome data to existing methods of assessment (RACE 
and GEARS).

Risk of assessment bias

A modified Newcastle–Ottawa scale was performed to assess 
the quality of included studies in this review (Appendix 
Table 3).
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Results

The initial database search yielded 116 articles with 75 
unique articles remaining after the removal of duplicates. A 
further eight articles were retrieved through citation search-
ing. After initial and full-text screening against eligibility 
criteria, nine studies were included in this review. Reasons 
for exclusion were the sole use of APMs, CPMs, subjec-
tive measures of performance, and utilising non-soft tissue 
robotics (see Fig. 1).

Individual study characteristics are summarised in 
Table 1. Included studies covered the specialities of urology 
(n = 5), coloproctology (n = 2), gastroenterology (n = 1) and 
the basic skills of robotic suturing and knot-tying (n = 1). 
Publication dates spanned the years 2017 to 2022. Together, 
their description of metrics included CRPMs, CROMs, PBP 
metrics, and reference-procedure metrics. Countries of pub-
lication included Germany [11, 12], England [13–17], and 
the USA [6, 18].

Definition of clinically relevant performance metrics

Throughout the articles, there was a lack of a clear consen-
sus or homogenous definition for clinically relevant perfor-
mance metrics in robotic surgery. As a result, this explicit 

terminology was utilised in only three of the included 
papers. Witthaus et al., introduced CRPMs as “concepts to 
design a conceptual framework for incorporating measures 
pertinent to a surgical task within a high-fidelity procedural 
simulation construct” [17]. Ghazi et al., defined CROMs as 
measures that “extend beyond basic robotic skills training 
into procedure-specific training” and provide tailored feed-
back to allow surgeons to progress based on individualised 
capabilities [15]. Ma et al., stated that CRPMs were those 
utilized to provide procedure-tailored feedback for surgical 
training and therefore “expedite the acquisition of robotic 
suturing skills” for each individual surgeon [18]. Other ter-
minology utilised in the included publications were “pro-
cedure specific assessment tools” that provided an objec-
tive assessment of robotic intraoperative performance and 
enabled tailored training feedback to achieve competency 
[6, 12]. A further 4 articles used the term proficiency-based 
progression (PBP) metrics [11, 13, 14, 16].

Development of clinically relevant performance 
metrics

Individual details and the specific metrics assessed by each 
study are represented in Table 1. Witthaus et al., and Ghazi 
et al., took a similar approach in defining their metrics. They 
used hydrogel models in conjunction with the Da Vinci 

Fig. 1  PRISMA diagram of the systematic search strategy
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Surgical System to develop anatomically and mechanically 
validated simulation models [15, 17]. This enabled the 
incorporation of tailored clinically relevant performance 
metrics in training for nerve-sparing robot-assisted radi-
cal prostatectomy (NS-RARP) and Robot-assisted partial 
nephrectomy (RAPN). The metrics included: applied force 
to the neurovascular bundle during dissection, post-simula-
tion margin status, UVA integrity, task-specific operating 
tasks, estimated blood loss [17] as well as console time, 
warm ischemia time (WIT), and positive surgical margins 
(PSMs) [15], respectively.

Methodology for developing clinically relevant metrics 
for UVA utilised pre-existing validated metrics including 
APMs and RACE score [18]. The remaining 6 articles used 
a modified Delphi process, to identify and describe specific 
metrics for a reference procedure. These reference proce-
dures included RARP [6, 14], robot-assisted low anterior 
resection (RA-LAR) [13, 16], robotic suturing and knot 
tying anastomosis [12], and intestinal anastomosis [11]. To 
create the reference metrics, a modified Delphi methodology 
using a panel of experts, outlined a combination of domains, 
procedure phases, steps, errors and critical errors. The met-
rics were edited, and a level of consensus was established 
before the final metrics were voted upon and finalised [14]. 
This is the only example in the literature of a structured 
approach to the development of clinically relevant perfor-
mance metrics.

Validation of clinically relevant performance metrics

Content validation

Content validity is defined as “the degree to which elements 
of an assessment instrument are relevant to a representative 
of the targeted construct for a particular assessment pur-
pose” [19]. For clinically relevant metrics, this refers to how 
accurately they reflect performance in the clinical context 
they were intended to measure. CRPMs for NS-RARP were 
content validated by performing nerve sensor calibration, 
surgical margin verification and using the standard 180 ml 
UVA leak test [17]. An iterative development process was 
used to assess feedback and the feasibility of the CROMs 
in relation to the RAPN [15]. APMs related to UVA steps 
were collated from data from the Da Vinci robotic system, 
and combined with technical skill scores from RACE, which 
was previously validated [18]. Considering the articles that 
utilised a Delphi panel to create their reference metrics, con-
tent validation was achieved by voting upon each metric, 
and ensuring high-level consensus was achieved before the 
metrics were accepted and included as part of the finalised 
reference metrics [6, 11–14, 16]. Content validation meas-
ures for each study is represented in Table 2.Ta
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Construct validation (response process evidence)

Construct validation refers to the ability of CRPMs to dif-
ferentiate between surgical skill, such as novices, intermedi-
ates and experts. All studies demonstrated that their metrics 
were able to distinguish between skill levels, though not all 
reached statistical significance (see Table 2).

Witthaus et al. showed that experts outperformed novices 
on all NS-RARP CRPMs including reduced nerve forces 
applied and total energy, superior margin results (p = 0.011), 
UVA integrity and all task-specific operating times except 
seminal vesicle dissection. Although not statistically signifi-
cant, experts had a reduced EBL [17]. Similarly, Ghazi and 
colleagues demonstrated construct validity of their RAPN 
CROMs whereby experts significantly outperformed nov-
ices in all metrics, except for positive surgical margins [15]. 
Ma et al. found the feedback group, which received tailored 
feedback based on the CRPMs from UVA training tasks, 
outperformed the control group across all metrics except 
the needle entry score [18]. In addition to this, the effect 
size was measured to detect which metrics were more sensi-
tive in detecting differences between the control and feed-
back group. For the UVA task, needle positioning, tissue 
approximation, and master clutch usage were found to have 
a higher effect size [18]. PACE was also found to have con-
struct validity for RARP with the expert group outperform-
ing the novices across all seven domains [6]. Puliatti et al. 
demonstrated construct validity for the reference approach 
to suturing and knot tying in anastomotic models, where 
novices had an increased mean task completion time, mean 
number of errors, and anastomotic leakage in comparison 
to experts [12]. Novices were also 12.5 times more likely to 
fail to progress throughout the task [12].

All the above studies used a caseload of procedures to 
differentiate between novice, intermediate and expert sur-
geons. Mottrie et al. and Gómez et al., however, found that 
within their expert surgeon groups, there existed two dis-
tinct populations: experienced surgeons with few errors and 
experienced surgeons with high errors [13, 14]. Those with 
the most errors demonstrated considerable performance vari-
ability, some performing worse than the weakest performing 
novice [13, 14]. To account for this variability, both studies 
considered two distinct populations. They found that expe-
rienced surgeons with the fewest errors performed signifi-
cantly better across the metrics than those with high errors 
and novices, confirming construct validity [13, 14]. The 
neurovascular bundle dissection phase of the RARP and the 
rectal dissection in RA-LAR discriminated best between 
the total experienced surgeons and novices [13, 14]. Lastly, 
Schmidt et al. found that both the weighted and unweighted 

forms of the A-OSATS metric were unable to distinguish 
between surgical skill level according to caseload alone but 
achieved construct validity when participants were assigned 
to each skill level according to the OSATS global rating 
score (GRS) [11].

Criterion validity

Criterion validity refers to the relationship of CRPMs with 
other variables such as the validated semi-objective scoring 
systems, GEARS and RACE. Three studies examined the 
criterion validity of their metrics (Table 2). Witthaus et al. 
found that reduced force to neurovascular bundle during dis-
section correlated to higher force sensitivity (p = 0.019)) and 
total GEARS score (p = 0.000) [17]. UVA leak rate was also 
found to correlate with the total RACE score (p = 0.000) 
[17]. Ghazi and colleagues also found similar correlations 
between their CROMs and total GEARS score including 
console time, WIT, EBL and PSMs [15]. Gómez et al. found 
that GEARS had poor inter-rater reliability (IRR) for video 
scoring and weaker discrimination between surgical skill 
groups [13]. They concluded that PBP binary metrics dem-
onstrated superior IRR than GEARS and robust discrimina-
tion amongst skill level, especially for total errors [13].

Clinical context

Schmidt et al. constructed weighted A-OSATS scores which 
highlighted steps pertinent for patient outcomes but did 
not explore its predictive capabilities in comparison to the 
unweighted score [11]. Collectively, no study investigated 
the correlation between clinically relevant performance met-
rics and patient outcomes, though was highlighted as a point 
for future research.

Discussion

Whilst the use of robotic surgery is increasing in clinical 
practice, training in robotic surgery and robotic skill assess-
ments continue to require fundamental standardisation [20, 
21]. For efficiency purposes, standardised robotic skill 
assessments should be readily available, operation-specific, 
objective and reproducible [20]. Having standardised and 
validated metrics is crucial for the development of safe 
proficiency-based robotic surgery training curricula [5]. 
In 2015, the first validated robotic training curriculum was 
developed which outlined training steps beginning with a 
baseline evaluation, simulation training, and observation of 
live operations [22]. This curriculum has not been tailored 



343Journal of Robotic Surgery (2023) 17:335–350 

1 3

to specific operative procedures, and limitations include the 
inability to be objectively assessed, benchmarked and the 
lack of metrics for quality assurance [5]. Currently, metrics 
have been developed, such as automated performance met-
rics or semi-objective tools such as GEARS, that do provide 
overall robotic technical proficiency feedback, albeit lack 
transition to a clinical context. To investigate this current 
deficiency in standardised performance metrics, this review 
presents the findings of clinically relevant performance 
metrics with promising validity and the ability to provide 
tailored feedback.

It has become apparent that CRPMs lack a clear defini-
tion. Throughout this review, an emerging pattern of ter-
minology associated with CRPMs or CROMs has emerged 
including objective assessment, proficiency-based progres-
sion, context-specific performance, competency training 
and tailored intra-operative feedback. Hence, we suggest 
that CRPMs can be defined as “context-specific metrics that 
objectively assess proficiency in robotic surgery training and 
provide tailored surgical feedback”.

Standardisation of robotic surgery training with objec-
tive performance metrics will allow easier detection of 
sub-optimised technique. This could translate to earlier 
post-operative complication detection and improved patient 
outcomes [5, 23, 24]. Given the heterogeneous develop-
ment of CRPMs, it is important to identify which method 
is the most efficient and objective whilst still maintaining 
validity. Metrics that were identified in the review can be 
classified and divided into two groups: those that were pro-
cedure-specific or those that are generalisable to any opera-
tive procedure. Metrics identified as generalisable included 
applied force, post-simulation margin status, estimated blood 
loss, APMs, total console time/task completion time, warm 
ischemia time, and needle/suture breakage which constituted 
the CRPMs described by three studies [15, 17, 18]. It is 
not yet clear how performance differs with general versus 
specific procedure-based metric feedback. Given the aim of 
proficiency-based training it would be ideal to incorporate 
these clinically relevant metrics into a standard procedural 
description that can objectively assess both general and 
procedure-specific skills.

Proficiency based performance (PBP) metrics are defined 
as “objective and validated performance metrics to track 
progression of the trainee and operative skill on a specific 
task or procedure” and “allows learners to progress in their 
training based on their proficiency, rather than the number of 
cases performed or duration of practice” [13, 14, 16]. Four 
of the studies presented in this review used “PBP metrics” 
with enabled the development of reference metrics covering 
all domains of a surgical procedure and were found to have 

content and construct validity [11, 13, 14, 16]. An important 
element of PBP is sustained deliberate practice (SDP) which 
is the process of continuous training and repetition of robotic 
surgical skills that are both defined and assessed by PBP 
metrics [5, 25]. SDP has been shown to reduce error rates 
by 50% during robotic surgery training [25]. However, SDP 
requires the skills to be outlined by CRPMs that are agreed 
upon by the trainer and trainee in order for skill learning to 
be efficient [26]. From the studies presented, it appears the 
optimal way to ensure consensus and content validation of 
metrics is by using a modified Delphi methodology for pro-
cedure deconstruction, development of a standardised pro-
cedural description and identification of specific procedural 
phases, steps, and critical errors. Once reference PBP met-
rics have been produced via Delphi methodology, the devel-
opment of simulation models that reflect the metrics can be 
created. As a result, SDP can be established through the con-
tinuum of proficiency-based training [5]. This is highlighted 
by Puliatti and Schmidt et al., using animal simulation mod-
els reflecting their suturing and knot tying reference metrics 
and A-OSATS metrics, respectively [11, 12].

Robotic surgery simulation using 3D models enables 
higher reproducibility of relevant anatomy and physiology of 
specific operative procedures in comparison to other models 
[5]. These 3D models enable the incorporation of CRPMs, 
a chance for improved SDP and proficiency-based training, 
as well as a smoother transition from simulation to a live-
operating context [5]. Novel 3D simulation models are cost-
effective as they do not need wet-lab facilities and are also 
more accessible for training in comparison to attending live 
surgeries. These 3D models can support SDP across various 
settings and enable real-time feedback that can be tailored 
to trainee performance [5]. Both Witthaus et al. and Ghazi 
et al. used 3D PVA hydrogel models to reflect NS-RARP 
and RAPN procedures, respectively. However, the CRPMs 
they incorporated were more generalised and could benefit 
by introducing PBP reference metrics deconstructing the 
crucial steps, and errors of each operation using a Delphi 
methodology [15, 17]. Promoting robotic surgery simulation 
training and preventing trainees that are early on their learn-
ing curve being exposed to patient surgeries, can result in a 
“reduction of surgical errors leading to an overall decrease 
in prolonged surgeries, and serious patient injury or death”, 
as defined by the ECRI institute [27]. Collectively, from the 
current data presented, using the Delphi methodology to 
develop CRPMs to aid in proficiency-based progression and 
incorporating CRPMs into novel full-immersion simulation 
using 3D printed models, represents the most standardised 
process of assessing proficiency in robotic surgery train-
ing. The CRPMs can then be translated for use in clinical 
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contexts, standardising surgical assessment from simulation 
to live operations. In turn, this provides a structured meth-
odology for developing future robotic surgery training cur-
ricula, tailored for different operative contexts.

The secondary aim of this review was to compare the 
utility of CRPMs to existing measures of performance, such 
as the semi-objective GEARS tool. It has been found that 
despite its ready use in robotic surgery training, low IRR for 
GEARS assessment has begun to appear in literature [13, 
28]. In this review, it was highlighted that GEARS had poor 
inter-rater reliability for video scoring and weaker discrimi-
nation between surgical skill groups in comparison to PBP 
binary metrics which demonstrated good IRR and robust 
discrimination amongst skill level. This supports the view 
that PBP metrics may represent a more efficient, and objec-
tive tool than GEARS in assessing surgical skill throughout 
robotic surgical training. Supporting these findings, Satava 
and colleagues found that binary PBP metrics were superior 
in assessing “quality of assessment” in comparison to using 
a Likert scale such as GEARS for robotic surgery training 
of basic skills [29]. However, due to the lack of a “gold 
standard” robotic surgery training method, it is necessary to 
evaluate novel CRPMS in relation to existing measures of 
performance that are being developed currently, not exclu-
sively GEARS. A cross-method validity may be a viable 
option to infer the relative utility of novel robotic surgery 
metrics [30]. For example, a study by Hung and colleagues 
found a strong correlation between APMs and GEARS dur-
ing RARP though stressed that a lack of statistical correla-
tion between the two did not suggest superiority of either 
metric [31]. They suggested that refined clinical metrics 
correlated to clinical outcomes could help delineate supe-
riority [31].

Limitations

This review aimed to evaluate the current use of CRPMs 
for robotic surgery training. A possible limitation is the 
utilisation of a single mode of metric evaluation narrows 
the available scope of feedback for trainees. Other forms of 
performance metrics exist including cognitive performance 
metrics, eye-tracking metrics and even APMs, that were not 
explored in this review. Ideally, all these metrics can be eval-
uated on their use in conjunction with one another, to deter-
mine if a synergistic effect exists in optimising trainee per-
formance and translation to a clinical context. Future studies 
can explore a multimodal metric evaluation in simulation as 

well as in-vivo training in robotic surgery and its association 
with progression trainee performance.

Despite exploring CRPMs in this review, they have not 
been translated to a clinical context as they were indented. 
Patient outcome data has, however, been explored by Hung 
and colleagues in relation to APM’s and their correlation with 
early urinary continence after RARP [32]. They found that 
whilst clinical factors confounded patient outcome data, spe-
cific surgeon kinematic metrics including velocity and wrist 
articulation served as independent predicators of urinary con-
tinence after RARP. However, this research came after the 
extensive development and validation of APM’s for RARP 
[33]. Likewise, studies in this review are in the early stages of 
optimising their CRPMs and hope to explore the relation of 
their metrics to patient outcomes in a future study. In general, 
it has been found that skill level, rather than caseload, is a 
better predictor of both intra-operative performance and clini-
cal outcome [13, 34, 35]. Therefore, future studies exploring 
construct-validated CRPMs and their association with clinical 
outcomes is promising.

Finally, the studies in this review were limited by small 
sample sizes and reduced power. The modified NOS scale for 
non-randomised studies identified two good-quality studies 
[15, 18], with the remaining seven being of poor quality. Most 
studies in this review were prospective cohort studies except 
for one unblinded randomised control trial by Ma et al. [18]. 
Future studies incorporating the validated CRPMS presented 
here will benefit from larger sample sizes to detect power and 
randomised controlled trials to build high-quality validity evi-
dence for this approach.

Conclusion

This study highlights the described clinically relevant per-
formance metrics in the setting of robotic surgery. There is 
significant scope for the development and validation of clini-
cally relevant metrics in this context. Clinically relevant per-
formance metrics can assist in the development of proficiency-
based progression curricula that can be carried across from a 
simulation setting into clinical practice.

Appendix Table 3: Risk of assessment bias 
using the modified NOS scale

See Table 3.
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