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Abstract

A crucial element of any surgical training program is the ability to provide procedure-specific, objective, and reliable
measures of performance. During robotic surgery, objective clinically relevant performance metrics (CRPMs) can provide
tailored contextual feedback and correlate with clinical outcomes. This review aims to define CRPMs, assess their validity in
robotic surgical training and compare CRPMs to existing measures of robotic performance. A systematic search of Medline
and Embase databases was conducted in May 2022 following the PRISMA guidelines. The search terms included Clinically
Relevant Performance Metrics (CRPMs) OR Clinically Relevant Outcome Measures (CROMs) AND robotic surgery. The
study settings, speciality, operative context, study design, metric details, and validation status were extracted and analysed.
The initial search yielded 116 citations, of which 6 were included. Citation searching identified 3 additional studies, result-
ing in 9 studies included in this review. Metrics were defined as CRPMs, CROMs, proficiency-based performance metrics
and reference-procedure metrics which were developed using a modified Delphi methodology. All metrics underwent both
contents and construct validation. Two studies found a strong correlation with GEARS but none correlated their metrics with
patient outcome data. CRPMs are a validated and objective approach for assessing trainee proficiency. Evaluating CRPMs
with other robotic-assessment tools will facilitate a multimodal metric evaluation approach to robotic surgery training.
Further studies should assess the correlation with clinical outcomes. This review highlights there is significant scope for
the development and validation of CRPMs to establish proficiency-based progression curricula that can be translated from
a simulation setting into clinical practice.

Keywords Clinically relevant performance metrics - Clinically relevant outcome measures - Proficiency-based training -
Robotic surgical education

Introduction

The need for high-quality robotic surgical training is

becoming more relevant with the increasing uptake of
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provide procedure-specific, objective, and reliable meas-
ures of performance [1]. Metric-based assessment in sur-
gical training has been shown to improve trainee perfor-
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approach produces overall higher proficiency scores and
reduced intra-operative complications in comparison to
conventional operating-room training [3]. Hence, profi-
ciency-based progression (PBP) training utilises simula-
tion to allow trainees to achieve proficiency in a “risk-free
environment” before operating on a patient and improve
clinical outcomes [2]. However, to evaluate whether
benchmarks have been achieved and provide feedback to
trainees, surgical trainers require metrics to objectively
assess performance [2]. Therefore, to meet the require-
ments of PBP training in robotic surgery, there is a need
for validated metrics to provide tailored feedback and
guide trainee progression.

Currently, automated performance metrics (APMs) are
objective, reproducible measures derived from kinemetric
data that assess surgical skill [4]. However, they are not
readily available in live operating settings and thus lack
translation from simulation to clinical contexts. Addition-
ally, APMs rely on the availability of annotated datasets
used to evaluate performance and the transferability of
these datasets across various operating techniques, toolsets
and procedures remain poor [5]. Similarly, several tools
have been created and utilised to measure surgical profi-
ciency during robotic surgery such as the Global Evalu-
ative Assessment of Robotic Skills (GEARS). GEARS,
though previously validated, provides overall proficiency
feedback about robotic surgical skills by grading six
domains without adapting them to be procedure spe-
cific [6-8]. It also remains reliant on assessor subjectiv-
ity and human rating which introduces the risk of bias
[4]. Another tool, the Robotic Anastomosis Competency
Evaluation (RACE), is a validated, objective scoring sys-
tem to assess surgical performance during ureterovesi-
cal anastomosis (UVA) and provide structured feedback
[9]. Whilst UVA is a critical step in surgical procedures,
such as robot-assisted radical prostatectomy (RARP), it
represents one task and not an entire procedure [9, 10].
Collectively, there is a need for clinically relevant objec-
tive metrics which can quantify a surgeon’s performance,
provide feedback and ultimately improve both surgical and
patient outcomes.

The idea of objective, clinically relevant metrics emerges
with Clinically Relevant Performance Metrics (CRPMs) or
Clinically Relevant Outcome Measures (CROMs) which
have been explored to a limited degree in literature. CRPMs
are applicable to a clinical context and can potentially cor-
relate with patient outcomes. Specifically, they can inform
trainee progression in the proctored operating phase of
robotic training beyond simulation. In this review, we aimed
to define CRPMs and assess their validity in robotic surgery
training. As a secondary outcome, we aimed to compare the
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utility between CRPMs and existing measures of robotic
performance, such as GEARS.

Methods

This review was registered in May 2022 (PROSPERO ID:
CRD42022332901). A systematic search of Medline and
Embase databases was conducted in May 2022 following the
PRISMA guidlienes. The search terms used were Clinically
Relevant Performance Metrics (CRPMs) OR Clinically Rel-
evant Outcome Measures (CROMs) AND robotic surgery.
Additional articles were obtained via citation searching of
included publications. After the exclusion of duplicate articles,
two independent reviewers (MY, GT) initially screened articles
based on title and abstract. Selection was completed by screen-
ing full-text articles based on eligibility criteria. Conflicts were
resolved by a senior third independent reviewer (KL).

Inclusion and exclusion criteria

The studies that were included addressed clinically relevant
metrics including CRPMs, CROMs and clinically relevant
metrics assessing intra-operative robotic performance. Stud-
ies assessing solely automated performance metrics (APMs),
cognitive performance metrics (CPMs), patient-reported
metrics or generalised measures of performance such as
RACE, and GEARS were excluded. All settings of soft-tis-
sue robot-assisted surgeries were included with dry labora-
tory, wet laboratory, animal models, and in-vivo operating.
Articles addressing open surgery, laparoscopic surgery or not
utilising a soft-tissue robot were excluded. Included studies
investigated participants from multiple categories: surgeons
(novice, experts), trainees (i.e. residents, interns), and medi-
cal students. Commentaries, conference abstracts, and reviews
were excluded.

Data extraction

For the included articles, data were extracted including,
authors, study objective, context (speciality and operation),
study design (participants and robotic setting), metric details,
measurement of metrics, metric validation status, and compar-
ison outcome data to existing methods of assessment (RACE
and GEARS).

Risk of assessment bias
A modified Newcastle-Ottawa scale was performed to assess

the quality of included studies in this review (Appendix
Table 3).
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Results

The initial database search yielded 116 articles with 75
unique articles remaining after the removal of duplicates. A
further eight articles were retrieved through citation search-
ing. After initial and full-text screening against eligibility
criteria, nine studies were included in this review. Reasons
for exclusion were the sole use of APMs, CPMs, subjec-
tive measures of performance, and utilising non-soft tissue
robotics (see Fig. 1).

Individual study characteristics are summarised in
Table 1. Included studies covered the specialities of urology
(n=5), coloproctology (n=2), gastroenterology (n=1) and
the basic skills of robotic suturing and knot-tying (n=1).
Publication dates spanned the years 2017 to 2022. Together,
their description of metrics included CRPMs, CROMs, PBP
metrics, and reference-procedure metrics. Countries of pub-
lication included Germany [11, 12], England [13-17], and
the USA [6, 18].

Definition of clinically relevant performance metrics

Throughout the articles, there was a lack of a clear consen-
sus or homogenous definition for clinically relevant perfor-
mance metrics in robotic surgery. As a result, this explicit

terminology was utilised in only three of the included
papers. Witthaus et al., introduced CRPMs as “concepts to
design a conceptual framework for incorporating measures
pertinent to a surgical task within a high-fidelity procedural
simulation construct” [17]. Ghazi et al., defined CROMs as
measures that “extend beyond basic robotic skills training
into procedure-specific training” and provide tailored feed-
back to allow surgeons to progress based on individualised
capabilities [15]. Ma et al., stated that CRPMs were those
utilized to provide procedure-tailored feedback for surgical
training and therefore “expedite the acquisition of robotic
suturing skills” for each individual surgeon [18]. Other ter-
minology utilised in the included publications were “pro-
cedure specific assessment tools” that provided an objec-
tive assessment of robotic intraoperative performance and
enabled tailored training feedback to achieve competency
[6, 12]. A further 4 articles used the term proficiency-based
progression (PBP) metrics [11, 13, 14, 16].

Development of clinically relevant performance
metrics

Individual details and the specific metrics assessed by each
study are represented in Table 1. Witthaus et al., and Ghazi
et al., took a similar approach in defining their metrics. They
used hydrogel models in conjunction with the Da Vinci
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Fig. 1 PRISMA diagram of the systematic search strategy
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Table 1 (continued)

&

Metrics assessed
Anastomoses—objec-

No of participants

Study 1

Wet lab—porcine

Setting

To develop a reliable

Aims

Enterotomy intestinal

Operation

Gastroenterology

Specialty

Authors journal and year
Schmidt et al. Surg Endo

Springer

tive structured assess-

Modified Delphi panel

OSATS score for linear-
stapled, hand-sewn

anastomoses

(2022) [11]

ment of technical skills
(A-OSATS), weighted

n=19

Study 2

closure of enterotomy
intestinal anastomoses

(A-OSATS)

and unweighted, PBP

metrics
4 key steps (intestinal

8 Experts (OSATS

GRS >28;> 10 case-

load)
24 Intermediates

placement, creation of

enterotomies, stapling,
and closure of enter-

(OSATS GRS 19-27;

caseload 1-10)
8 Novices (< 18; case-

otomy); 15 sub steps

identified

load 0)

Surgical System to develop anatomically and mechanically
validated simulation models [15, 17]. This enabled the
incorporation of tailored clinically relevant performance
metrics in training for nerve-sparing robot-assisted radi-
cal prostatectomy (NS-RARP) and Robot-assisted partial
nephrectomy (RAPN). The metrics included: applied force
to the neurovascular bundle during dissection, post-simula-
tion margin status, UVA integrity, task-specific operating
tasks, estimated blood loss [17] as well as console time,
warm ischemia time (WIT), and positive surgical margins
(PSMs) [15], respectively.

Methodology for developing clinically relevant metrics
for UVA utilised pre-existing validated metrics including
APMs and RACE score [18]. The remaining 6 articles used
a modified Delphi process, to identify and describe specific
metrics for a reference procedure. These reference proce-
dures included RARP [6, 14], robot-assisted low anterior
resection (RA-LAR) [13, 16], robotic suturing and knot
tying anastomosis [12], and intestinal anastomosis [11]. To
create the reference metrics, a modified Delphi methodology
using a panel of experts, outlined a combination of domains,
procedure phases, steps, errors and critical errors. The met-
rics were edited, and a level of consensus was established
before the final metrics were voted upon and finalised [14].
This is the only example in the literature of a structured
approach to the development of clinically relevant perfor-
mance metrics.

Validation of clinically relevant performance metrics
Content validation

Content validity is defined as “the degree to which elements
of an assessment instrument are relevant to a representative
of the targeted construct for a particular assessment pur-
pose” [19]. For clinically relevant metrics, this refers to how
accurately they reflect performance in the clinical context
they were intended to measure. CRPMs for NS-RARP were
content validated by performing nerve sensor calibration,
surgical margin verification and using the standard 180 ml
UVA leak test [17]. An iterative development process was
used to assess feedback and the feasibility of the CROMs
in relation to the RAPN [15]. APMs related to UVA steps
were collated from data from the Da Vinci robotic system,
and combined with technical skill scores from RACE, which
was previously validated [18]. Considering the articles that
utilised a Delphi panel to create their reference metrics, con-
tent validation was achieved by voting upon each metric,
and ensuring high-level consensus was achieved before the
metrics were accepted and included as part of the finalised
reference metrics [6, 11-14, 16]. Content validation meas-
ures for each study is represented in Table 2.
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Construct validation (response process evidence)

Construct validation refers to the ability of CRPMs to dif-
ferentiate between surgical skill, such as novices, intermedi-
ates and experts. All studies demonstrated that their metrics
were able to distinguish between skill levels, though not all
reached statistical significance (see Table 2).

Witthaus et al. showed that experts outperformed novices
on all NS-RARP CRPMs including reduced nerve forces
applied and total energy, superior margin results (p =0.011),
UVA integrity and all task-specific operating times except
seminal vesicle dissection. Although not statistically signifi-
cant, experts had a reduced EBL [17]. Similarly, Ghazi and
colleagues demonstrated construct validity of their RAPN
CROMs whereby experts significantly outperformed nov-
ices in all metrics, except for positive surgical margins [15].
Ma et al. found the feedback group, which received tailored
feedback based on the CRPMs from UVA training tasks,
outperformed the control group across all metrics except
the needle entry score [18]. In addition to this, the effect
size was measured to detect which metrics were more sensi-
tive in detecting differences between the control and feed-
back group. For the UVA task, needle positioning, tissue
approximation, and master clutch usage were found to have
a higher effect size [18]. PACE was also found to have con-
struct validity for RARP with the expert group outperform-
ing the novices across all seven domains [6]. Puliatti et al.
demonstrated construct validity for the reference approach
to suturing and knot tying in anastomotic models, where
novices had an increased mean task completion time, mean
number of errors, and anastomotic leakage in comparison
to experts [12]. Novices were also 12.5 times more likely to
fail to progress throughout the task [12].

All the above studies used a caseload of procedures to
differentiate between novice, intermediate and expert sur-
geons. Mottrie et al. and Gémez et al., however, found that
within their expert surgeon groups, there existed two dis-
tinct populations: experienced surgeons with few errors and
experienced surgeons with high errors [13, 14]. Those with
the most errors demonstrated considerable performance vari-
ability, some performing worse than the weakest performing
novice [13, 14]. To account for this variability, both studies
considered two distinct populations. They found that expe-
rienced surgeons with the fewest errors performed signifi-
cantly better across the metrics than those with high errors
and novices, confirming construct validity [13, 14]. The
neurovascular bundle dissection phase of the RARP and the
rectal dissection in RA-LAR discriminated best between
the total experienced surgeons and novices [13, 14]. Lastly,
Schmidt et al. found that both the weighted and unweighted
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forms of the A-OSATS metric were unable to distinguish
between surgical skill level according to caseload alone but
achieved construct validity when participants were assigned
to each skill level according to the OSATS global rating
score (GRS) [11].

Criterion validity

Criterion validity refers to the relationship of CRPMs with
other variables such as the validated semi-objective scoring
systems, GEARS and RACE. Three studies examined the
criterion validity of their metrics (Table 2). Witthaus et al.
found that reduced force to neurovascular bundle during dis-
section correlated to higher force sensitivity (p=0.019)) and
total GEARS score (p=0.000) [17]. UVA leak rate was also
found to correlate with the total RACE score (p =0.000)
[17]. Ghazi and colleagues also found similar correlations
between their CROMs and total GEARS score including
console time, WIT, EBL and PSMs [15]. Gémez et al. found
that GEARS had poor inter-rater reliability (IRR) for video
scoring and weaker discrimination between surgical skill
groups [13]. They concluded that PBP binary metrics dem-
onstrated superior IRR than GEARS and robust discrimina-
tion amongst skill level, especially for total errors [13].

Clinical context

Schmidt et al. constructed weighted A-OSATS scores which
highlighted steps pertinent for patient outcomes but did
not explore its predictive capabilities in comparison to the
unweighted score [11]. Collectively, no study investigated
the correlation between clinically relevant performance met-
rics and patient outcomes, though was highlighted as a point
for future research.

Discussion

Whilst the use of robotic surgery is increasing in clinical
practice, training in robotic surgery and robotic skill assess-
ments continue to require fundamental standardisation [20,
21]. For efficiency purposes, standardised robotic skill
assessments should be readily available, operation-specific,
objective and reproducible [20]. Having standardised and
validated metrics is crucial for the development of safe
proficiency-based robotic surgery training curricula [5].
In 2015, the first validated robotic training curriculum was
developed which outlined training steps beginning with a
baseline evaluation, simulation training, and observation of
live operations [22]. This curriculum has not been tailored
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to specific operative procedures, and limitations include the
inability to be objectively assessed, benchmarked and the
lack of metrics for quality assurance [5]. Currently, metrics
have been developed, such as automated performance met-
rics or semi-objective tools such as GEARS, that do provide
overall robotic technical proficiency feedback, albeit lack
transition to a clinical context. To investigate this current
deficiency in standardised performance metrics, this review
presents the findings of clinically relevant performance
metrics with promising validity and the ability to provide
tailored feedback.

It has become apparent that CRPMs lack a clear defini-
tion. Throughout this review, an emerging pattern of ter-
minology associated with CRPMs or CROMs has emerged
including objective assessment, proficiency-based progres-
sion, context-specific performance, competency training
and tailored intra-operative feedback. Hence, we suggest
that CRPMs can be defined as “context-specific metrics that
objectively assess proficiency in robotic surgery training and
provide tailored surgical feedback”.

Standardisation of robotic surgery training with objec-
tive performance metrics will allow easier detection of
sub-optimised technique. This could translate to earlier
post-operative complication detection and improved patient
outcomes [5, 23, 24]. Given the heterogeneous develop-
ment of CRPMs, it is important to identify which method
is the most efficient and objective whilst still maintaining
validity. Metrics that were identified in the review can be
classified and divided into two groups: those that were pro-
cedure-specific or those that are generalisable to any opera-
tive procedure. Metrics identified as generalisable included
applied force, post-simulation margin status, estimated blood
loss, APMs, total console time/task completion time, warm
ischemia time, and needle/suture breakage which constituted
the CRPMs described by three studies [15, 17, 18]. It is
not yet clear how performance differs with general versus
specific procedure-based metric feedback. Given the aim of
proficiency-based training it would be ideal to incorporate
these clinically relevant metrics into a standard procedural
description that can objectively assess both general and
procedure-specific skills.

Proficiency based performance (PBP) metrics are defined
as “objective and validated performance metrics to track
progression of the trainee and operative skill on a specific
task or procedure” and “allows learners to progress in their
training based on their proficiency, rather than the number of
cases performed or duration of practice” [13, 14, 16]. Four
of the studies presented in this review used “PBP metrics”
with enabled the development of reference metrics covering
all domains of a surgical procedure and were found to have

content and construct validity [11, 13, 14, 16]. An important
element of PBP is sustained deliberate practice (SDP) which
is the process of continuous training and repetition of robotic
surgical skills that are both defined and assessed by PBP
metrics [5, 25]. SDP has been shown to reduce error rates
by 50% during robotic surgery training [25]. However, SDP
requires the skills to be outlined by CRPMs that are agreed
upon by the trainer and trainee in order for skill learning to
be efficient [26]. From the studies presented, it appears the
optimal way to ensure consensus and content validation of
metrics is by using a modified Delphi methodology for pro-
cedure deconstruction, development of a standardised pro-
cedural description and identification of specific procedural
phases, steps, and critical errors. Once reference PBP met-
rics have been produced via Delphi methodology, the devel-
opment of simulation models that reflect the metrics can be
created. As a result, SDP can be established through the con-
tinuum of proficiency-based training [5]. This is highlighted
by Puliatti and Schmidt et al., using animal simulation mod-
els reflecting their suturing and knot tying reference metrics
and A-OSATS metrics, respectively [11, 12].

Robotic surgery simulation using 3D models enables
higher reproducibility of relevant anatomy and physiology of
specific operative procedures in comparison to other models
[5]. These 3D models enable the incorporation of CRPMs,
a chance for improved SDP and proficiency-based training,
as well as a smoother transition from simulation to a live-
operating context [5]. Novel 3D simulation models are cost-
effective as they do not need wet-lab facilities and are also
more accessible for training in comparison to attending live
surgeries. These 3D models can support SDP across various
settings and enable real-time feedback that can be tailored
to trainee performance [5]. Both Witthaus et al. and Ghazi
et al. used 3D PVA hydrogel models to reflect NS-RARP
and RAPN procedures, respectively. However, the CRPMs
they incorporated were more generalised and could benefit
by introducing PBP reference metrics deconstructing the
crucial steps, and errors of each operation using a Delphi
methodology [15, 17]. Promoting robotic surgery simulation
training and preventing trainees that are early on their learn-
ing curve being exposed to patient surgeries, can result in a
“reduction of surgical errors leading to an overall decrease
in prolonged surgeries, and serious patient injury or death”,
as defined by the ECRI institute [27]. Collectively, from the
current data presented, using the Delphi methodology to
develop CRPMs to aid in proficiency-based progression and
incorporating CRPMs into novel full-immersion simulation
using 3D printed models, represents the most standardised
process of assessing proficiency in robotic surgery train-
ing. The CRPMs can then be translated for use in clinical
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contexts, standardising surgical assessment from simulation
to live operations. In turn, this provides a structured meth-
odology for developing future robotic surgery training cur-
ricula, tailored for different operative contexts.

The secondary aim of this review was to compare the
utility of CRPMs to existing measures of performance, such
as the semi-objective GEARS tool. It has been found that
despite its ready use in robotic surgery training, low IRR for
GEARS assessment has begun to appear in literature [13,
28]. In this review, it was highlighted that GEARS had poor
inter-rater reliability for video scoring and weaker discrimi-
nation between surgical skill groups in comparison to PBP
binary metrics which demonstrated good IRR and robust
discrimination amongst skill level. This supports the view
that PBP metrics may represent a more efficient, and objec-
tive tool than GEARS in assessing surgical skill throughout
robotic surgical training. Supporting these findings, Satava
and colleagues found that binary PBP metrics were superior
in assessing “quality of assessment” in comparison to using
a Likert scale such as GEARS for robotic surgery training
of basic skills [29]. However, due to the lack of a “gold
standard” robotic surgery training method, it is necessary to
evaluate novel CRPMS in relation to existing measures of
performance that are being developed currently, not exclu-
sively GEARS. A cross-method validity may be a viable
option to infer the relative utility of novel robotic surgery
metrics [30]. For example, a study by Hung and colleagues
found a strong correlation between APMs and GEARS dur-
ing RARP though stressed that a lack of statistical correla-
tion between the two did not suggest superiority of either
metric [31]. They suggested that refined clinical metrics
correlated to clinical outcomes could help delineate supe-
riority [31].

Limitations

This review aimed to evaluate the current use of CRPMs
for robotic surgery training. A possible limitation is the
utilisation of a single mode of metric evaluation narrows
the available scope of feedback for trainees. Other forms of
performance metrics exist including cognitive performance
metrics, eye-tracking metrics and even APMs, that were not
explored in this review. Ideally, all these metrics can be eval-
uated on their use in conjunction with one another, to deter-
mine if a synergistic effect exists in optimising trainee per-
formance and translation to a clinical context. Future studies
can explore a multimodal metric evaluation in simulation as

@ Springer

well as in-vivo training in robotic surgery and its association
with progression trainee performance.

Despite exploring CRPMs in this review, they have not
been translated to a clinical context as they were indented.
Patient outcome data has, however, been explored by Hung
and colleagues in relation to APM’s and their correlation with
early urinary continence after RARP [32]. They found that
whilst clinical factors confounded patient outcome data, spe-
cific surgeon kinematic metrics including velocity and wrist
articulation served as independent predicators of urinary con-
tinence after RARP. However, this research came after the
extensive development and validation of APM’s for RARP
[33]. Likewise, studies in this review are in the early stages of
optimising their CRPMs and hope to explore the relation of
their metrics to patient outcomes in a future study. In general,
it has been found that skill level, rather than caseload, is a
better predictor of both intra-operative performance and clini-
cal outcome [13, 34, 35]. Therefore, future studies exploring
construct-validated CRPMs and their association with clinical
outcomes is promising.

Finally, the studies in this review were limited by small
sample sizes and reduced power. The modified NOS scale for
non-randomised studies identified two good-quality studies
[15, 18], with the remaining seven being of poor quality. Most
studies in this review were prospective cohort studies except
for one unblinded randomised control trial by Ma et al. [18].
Future studies incorporating the validated CRPMS presented
here will benefit from larger sample sizes to detect power and
randomised controlled trials to build high-quality validity evi-
dence for this approach.

Conclusion

This study highlights the described clinically relevant per-
formance metrics in the setting of robotic surgery. There is
significant scope for the development and validation of clini-
cally relevant metrics in this context. Clinically relevant per-
formance metrics can assist in the development of proficiency-
based progression curricula that can be carried across from a
simulation setting into clinical practice.

Appendix Table 3: Risk of assessment bias
using the modified NOS scale

See Table 3.
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