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Abstract
This paper documents the short-run macroeconomic impacts of influenza pandemics 
across 16 countries spanning 1871–2016 using the Jordà–Schularick–Taylor Mac-
rohistory Database and the Human Mortality Database. We find pandemic-induced 
mortality contributed meaningfully to business cycle fluctuations in the post 1870 
era. We identify negative causal impacts on the cyclical component of GDP using 
pandemics to instrument for working-age mortality. The analysis of short-run eco-
nomic outcomes extends literature dominated  by long-run economic growth out-
comes and case studies of several specific health shocks such as the Black Death, 
Spanish Flu or COVID-19. Our findings illustrate that less catastrophic pandemics 
still have important economic implications.

Keywords  Pandemics · Business cycles · Mortality · GDP fluctuations · Health 
shocks

JEL Classification  I18 · E32 · N10 · N30

1  Introduction

Economic fallout following major health shocks is well documented in historical 
case studies. The Black Death was paired with a considerable economic disruption 
and change (Jedwab et al. 2022; Alfani 2013) and the Spanish Flu caused economic 
disaster in many developed countries (Barro et  al. 2020; Barro and Ursúa 2008). 
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Pandemics are some of the most insidious health shocks as they often arrive unex-
pectedly with wide-reaching effects. Their economic impacts are a broad field of 
inquiry since pandemics can arise from many different viruses and can propagate 
through several economic channels including investment, employment and con-
sumption, though the prime mover is the prospect of mortality. 

The causal link between health and long-term economic outcomes has been estab-
lished in the literature (Sharma 2018) and its dynamics well known (Swift 2011). 
Less understood are the short-run economic impacts of shocks to population health. 
Strauss and Thomas (1998) review a related literature on health and individual pro-
ductivity and yet, the extent to which these, or other, health shocks combine to cause 
recessions is not well documented. This is, perhaps, surprising given the attention 
paid to business cycle mitigation by governments and central banks worldwide.

This paper offers insights from numerous influenza shocks occurring for the past 
150 years which appear to coincide with economic slowdowns in developed econo-
mies. Examples include the Asian Flu (1957–58) and the Swine Flu that accompa-
nied the slow recovery from the 2008 financial crisis. Specific to the USA, several 
economic downturns or slowdowns appear to coincide with influenza pandemics 
that strike every 28 years on average (Mackellar 2007: 430).1 Major troughs in the 
USA business cycle occur in March of 1919, April 1958 and June 2009. As well, 
Italy experienced approximately 20 business cycles between 1861 and 2000 and saw 
major troughs in 1920 and 1958 (Delli Gatti et al. 2005: 83) and additionally was 
quite hard hit in the aftermath of the 2008–09 Great Recession by the 2009–2011 
Sovereign Debt Crisis.2

To provide evidence with a causal interpretation, we constrain our study to a sin-
gle channel by which these pandemics are plausibly exogenous in our context in 
terms of their contribution to business cycles: mortality.3 The causal mechanism 
we examine is appropriate for an analysis of short-run pandemic effects which can 
be expected to propagate through reductions in labour supply (Bloom et al. 2022). 
Because the scientific community recognizes influenza as a continued threat for 
future pandemics (Palese 2004), learning from past influenza pandemics remains 
an important empirical endeavour. Our analysis of less-studied influenza shocks is 
also motivated by literature showing that different health shocks (i.e. different causal 
pathways) can have different impacts; For example, Sharma (2018) finds a strong 
causal effect of population health on GDP through human capital, while Acemoglu 
and Johnson (2007) find no meaningful effect from epidemiological improvements.

1  Appendix Table 6 lists USA recessions that also occur frequently, on average every 5 years since the 
mid-nineteenth century.
2  Modern integrated economies may be more susceptible to small disruptions. Consumer spending was 
less developed in the nineteenth century with an explosion of durable consumption occurring in the 
1920s (Greasley et. al. 2001).
3  We do not identify impacts that propagate through investment, for example. Short-run stock market 
effects of the Spanish Flu were relatively inconsequential in the USA and UK (Beach et al. 2022; Velde 
2020). Bloom et al. (2022) suggest that physical and human capital impacts occur in the long run and are 
best captured through multisector growth models like Kuhn and Prettner (2016).
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Our contribution to the literature4 is twofold. First, we establish the causal impact 
of pandemics as one type of exogenous health event on the business cycle. This 
analysis of short-run economic fallout adds to the broader literature linking health to 
economic performance, including Weil (2007). Aside from case studies of pandem-
ics, existing causal analyses focus on the long-run and obscure the short-run impacts 
we measure here. For example, Sharma (2018) uses 10-year averaged data while 
Acemoglu and Johnson (2007) study 40- and 60-year spans. Second, our analysis 
extends the historical record of pandemic case studies by documenting the impor-
tance of several less-studied health shocks. In focusing on influenza pandemics, our 
analysis complements evidence on the macroeconomic impacts from the Spanish 
Flu (Barro et al. 2020; Karlsson et al. 2014). Whereas large-scale health shocks (e.g. 
the Black Death 1347–1352) had obvious economic consequences, we show that 
mortality from numerous smaller, but nonetheless serious, pandemics caused GDP 
to decrease from trend by about 0.3% for each additional death per 1000 persons of 
working age, on average.

Identifying the economic impacts of historical pandemic events is challenging 
because data surrounding these shocks are available with limited frequency: annual, 
rather than quarterly or monthly. Pandemics are also likely to have heterogeneous 
effects across countries and by pandemic event (Alfani 2013). For example, Clay 
et al. (2018) find regional pollution differences to be a factor in Spanish Flu mor-
tality. Our data combine the Jordà–Schularick–Taylor (JST) Macrohistory Data-
base (Jordà et al. 2017) with the Human Mortality Database (2020), hereafter the 
HMD, to form an unbalanced panel across 16 countries spanning 1870–2016. One 
advantage of these historical panel data is to capture effects across several countries 
and several events. This exercise will identify a causal parameter that represents a 
weighted local average treatment effect (LATE) across pandemics. Because Abadie 
(2003) and others highlight the difficulty interpreting weighted LATE parameters, 
we supplement our main findings with details on which events weigh most heavily 
in our causal framework, that is, when and where influenza pandemics induce mor-
tality the most.

Our estimates address endogeneity between economic performance and mortal-
ity—an important consideration since national wealth may also affect public health. 
We first demonstrate considerable drops in real log GDP per capital coincident with 
influenza pandemics that are evident in the raw data and then provide two-stage least 
squares (2SLS) estimates of pandemic-induced mortality shocks on the cyclical 
component of log GDP. The pandemic-induced mortality effects we measure using 
our instrumental variable approach are larger than the GDP–mortality relationship 
suggested by OLS regressions that may suffer from endogeneity. Our specifications 
include a wide range of controls under which case we are confident that pandemic 
timing is a plausibly exogenous instrument. However, we also present Conley et al. 
(2012) bounds for our estimates under departures from the exclusion restriction. 
Where data permit, we also provide ancillary evidence in favour of the causal chan-
nel we identify. Pandemic-induced mortality effects on the cyclical component of 

4  See the recent symposium on epidemic diseases in economic history in the Journal of Economic Liter-
ature and the collection of articles on pandemics and health shocks in the Journal of Economic History.
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GDP can be expected to propagate through reductions in labour supply. Estimates 
suggest that influenza pandemics may cause meaningful decreases in the employ-
ment-to-population ratio. In addition, our results are robust to several important con-
siderations, alternative measures of the cyclical component of GDP, alternative mor-
tality measures and a variety of covariates.

2 � Literature review

A substantial literature details the contribution of health status and pandemics to his-
torical economic events. Our focus on historical short-run effects situates the current 
analysis in a relatively sparser literature. Alfani and Murphy (2017), Alfani and Per-
coco (2019) and Jedwab et al. (2022) note that major pre-industrial events including 
the Black Death caused asymmetric economic shocks across Europe because of differ-
ences in population density and economic development. Important immediate effects 
are also evident from the COVID-19 pandemic (Baker et  al. 2020). Our empirical 
approach is most like Barro et al. (2020), where Spanish Flu mortality is shown to have 
decreased short-run real GDP per capita by 3%. In a review of empirical approaches, 
Bloom et al. (2022) argue that these growth-type regressions may be a suitable strat-
egy when panel data are available. Barro and Ursúa (2008) use similar data to study 
economic crises. Their results suggest that the Spanish Flu was the fourth-worst con-
traction in recent history after the two World Wars and the Great Depression.

The Spanish Flu receives particular attention in the literature. Karlsson et  al. 
(2014), for example, find little discernible effect on earnings but increased poor-
house rates and a reduced return to capital across Swedish regions. Garrett (2008, 
2009) finds that mortality decreased the supply of manufacturing workers and 
increased the marginal product of labour, the marginal product of capital and real 
wages in the USA. Brainerd and Siegler (2003) argue that USA states with higher 
influenza mortality during the Spanish Flu era subsequently experienced higher per 
capita income growth rates. Beach et al. (2022) revisit the Spanish Flu’s impact to 
provide lessons for COVID-19, noting deeper recessions in countries with higher 
1918 influenza mortality. Aassve et al. (2021) using respondent attitudes to a gen-
eral social survey also find that experiencing the Spanish Flu likely had permanent 
impacts on the level of social trust that was passed on to the descendants of Flu sur-
vivors which can also impact economic development.

Our focus on short-run or business cycle effects differs from the larger litera-
ture on long-run impacts of health shocks (e.g. Acemoglu and Johnson 2007; Barro 
2013; Bloom et  al. 2004). Pamuk (2007) argues that the great divergence in eco-
nomic growth among western economies may be rooted in the effects of the Black 
Death. Arora (2001) finds that long-term health measures including stature and life 
expectancy appear to have permanently altered the growth paths for major industri-
alized countries over the course of 125 years. Jordà et al. (2020a, b) link pandemics 
and the natural rate of interest since the fourteenth century, finding that interest rates 
fall by about 1.5 per cent—lasting 20 years because pandemics reduce labour rela-
tive to capital.
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Pandemic effects on the macroeconomy manifest through several channels. Fol-
lowing the insights from Bloom et al. (2022), our approach will examine one such 
channel that is associated with short-run impacts: mortality. Grimm (2010) notes 
that mortality shocks induce expenses and income loss but also reduce the number 
of household consumption units. Given that influenza pandemics effects differ across 
age cohorts, this latter point would particularly apply to the Spanish Flu which had 
high mortality among prime working-age adults. The 2009 pandemic had short-run 
hospitalization costs exceeding 20 million GBP in the UK (Lau et  al. 2019) and 
decreased labour supply considerably in Chile (Duarte et al. 2017).

Our analysis also relates to the wider literature relating health to economic 
growth that is often summarized by the Preston curve (Preston 1975) which noted 
a long-term relationship between life expectancy and per capita income over time 
with recent research noting more than proportional increases in life expectancy at 
higher per capita income levels (de la Escosura 2023). Fogel (1994) noted the posi-
tive long-run relationship between nutrition improvements, human health capital 
and economic growth. Indeed, this literature is not settled with regard to causality. 
For example, Ye and Zhang (2018) examine 15 OECD countries and 5 developing 
countries from 1971 to 2015 and find a range of results from no causality to a uni-
directional relationship in either direction to bi-directional causality using Granger 
tests. Bloom et al. (2019) also consider bi-directional causality between health status 
and per capita GDP as well as the presence of confounding factors noted by Deaton 
(2013) including education, technological progress and institutional quality. Further 
nuances include whether specific diseases are communicable (e.g. influenza pan-
demics) or non-communicable (e.g. cardiovascular, diabetes) and whether longer-
term effects on health will arise through life expectancy or infant mortality (Bloom 
et al. 2019; Suhrcke and Urban 2010).

Finally, our findings contribute to understanding the historical influence of pan-
demic health shocks in the broader literature on the causes of business cycles. This 
literature is primarily structural models that parameterize the economy. The current 
analysis can be seen as preliminary causal evidence to assist with the inclusion of 
health shocks, specifically recurring influenza pandemics. Known factors affecting 
the business cycle are many, including interest rates, financial crises and oil prices, 
all of which may propagate differently through consumption, investment and other 
components of GDP. Some reviews of this literature are available in Stock and Wat-
son (1999), for the USA and Sensier et al. (2004) for Europe.

3 � Pandemic events

Influenza pandemics worldwide since 1870 are presented in Table 1. These pandemics 
are, by definition, global events, and we model them as such in the subsequent analysis. 
The influenza pandemic during 1873 to 1875 was preceded by equine influenza in the 
USA and Canada (Judson 1873). The loss of working animals in the nineteenth century 
in addition to any animal to human transmission was a serious economic effect, and it 
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should be noted the contraction of the 1870s was particularly severe in some countries.5 
The 1889 –1892 Russian Flu pandemic had an estimated global death toll of 1 million 
people, and its spread was facilitated by the rapid population growth and urbanization 
of the nineteenth century. However, recent evidence asks the question whether this 
event may have been a coronavirus rather than influenza (Brüssow and Brüssow 2021).6 
The 1918–1920 Spanish Flu is the most devastating pandemic event of recent history 
infecting nearly one-third of the world’s population and killing an estimated 50 to 100 
million people (Mamelund 2008, p 601). These pandemics spread globally given trans-
portation improvements over the course of the nineteenth and early twentieth century. 
Thus, while the severity of these pandemics certainly differed by country, the timing of 
pandemic onset in annual data does not. In the post-World War II period, the spread of 
air travel made the rapid spread of pandemics an even greater concern and pandemic 
declaration by the WHO can be considered particularly definitive during this period. 
The 1957–1958 Asian Flu and the 1968–1970 Hong Kong Flu were major events with 
global death tolls estimated at 2 million and 1 million, respectively.

4 � Data

4.1 � Economic panel data

Our analysis employs release 5 of the JST Database, which spans 16 developed 
countries during 1870–2016. Countries are: Australia, Belgium, Canada, Den-
mark, Finland, France, Italy, Japan, Netherlands, Norway, Portugal, Spain, Swe-
den, Switzerland, the UK and the USA.7 These data form an unbalanced panel 

Table 1   List of major influenza 
events 1870–2016. Sources: 
Judson (1873); Mamelund 
(2008); Centre for Disease 
Control and Prevention (2020)

We exclude the 1977–1978 H1N1 flu event, because there is uncer-
tainty as to whether this event was indeed a pandemic (Mamelund 
2008). The CDC in the USA does note the outbreak and a vaccina-
tion programme was implemented that prevented a pandemic

Date Event

1873–1875 Equine Influenza and Possible Pan-
demic

1889–1892 Flu Pandemic (Russian Flu)
1899–1900 Possible Pandemic
1918–1920 Spanish Flu
1946 Possible Pandemic
1957–1958 Asian Flu (H2N2 virus)
1968–1970 Hong Kong Flu (H3N2 virus)
2009–2010 Swine Flu (H1N1 virus)

6  For additional references on pandemics through time and space see Kilbourne (2006), Patterson (1986) 
and Taubenberger and Morens (2010).
7  JST data also include Germany; however, German mortality data were unavailable for most years.

5  Until the 1930s, the period of the 1870s was seen as the start of a Great Depression. See Beales (1934) 
and Musson (1959).
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since some covariates are not available for some countries in earlier years or 
during war years. Appendix Table 7 summarizes these limitations. Fortunately, 
our outcomes are constructed from real gross domestic product (GDP) per cap-
ita, which is continuously available for all countries from 1870 through 2016.

Our analysis examines the cyclical component of log GDP per capita, denoted 
l̃GDP . We take the natural log of the JST variable “real GDP per capita index” 
(2005 = 100) and detrend the resulting variable three different ways: using the 
HP (Hodrick and Prescott 1997) filter,8 the BK bandpass filter (Baxter and King 
1999),9 and linear detrending (LDT) that allows for a break mid-series in 1946. 
This break allows for the considerable change observed in the average GDP 
series around the time of the first influenza vaccine. Our preferred estimates use 
the HP filter, since our results are then more comparable to the broader business 
cycle literature. However, the HP filter has been criticized as potentially being 
arbitrary (Hamilton 2018).10 Presenting HP results alongside others, particularly 
the BK band pass filter, demonstrates the robustness of our findings to the par-
ticulars of any one detrending procedure and builds confidence in our findings.

The l̃GDP measure is advantageous for capturing the business cycle in our data. 
Changes in log GDP approximate percentage change, which aids in cross-country 
comparisons since larger economies experience larger nominal GDP fluctuations. 
Furthermore, the HP and BK filters isolate precisely those high-frequency move-
ments in the time series that we wish to examine, separately by country.11 Both of 
these filters isolate the cyclical component from a potentially nonlinear trend and 
thus may remove more persistent periods of growth that a linear detrending proce-
dure would not. Measured deviations in these series, then, might be expected to be 
smaller than measured deviations in the LDT series.

To illustrate the net effect of influenza pandemic onset on economies in our raw data, 
we reorganize the data into pandemic spells. We then plot average log GDP across years 
to pandemic onset. Because advancements in medical technology and living standards 
may have allowed pandemics to propagate differently over time, we break the data into 
two large spans. A natural break point is 1946, in the light of the importance of the 
1940s “international epidemiological transition” for population growth (Omran 1971), 
economic growth (Acemoglu and Johnson 2007) and because of the onset of flu vac-
cines.12 A precipitous drop in log GDP at pandemic onset is evident in Fig. 1. These 

8  Following Ravn and Uhlig (2002), our annual data smoothing parameter is 6.25. Appendix Fig. 8 pre-
sents the cross-country averaged time series of l̃GDP.
9  We follow Stock and Watson (1999) to set the parameters of our band pass to use 3 leads and lags for 
smoothing and to filter out cycles smaller than 2 years or larger than 8 years. Values for the first and last 
3 years in each series are thus, unavailable. No influenza pandemic events overlap these missing years.
10  Still others defend the HP filter (Drehmann and Yetman 2018). Our approach is robust to different 
detrending measures. Hamilton (2018) proposes an alternative that is preferable particularly in forecast-
ing applications with quarterly data.
11  Averaged HP and BK detrended series are presented in Appendix Figs. 8 and 9. Im et al. (2003) unit 
root tests, available upon request, confirm that both these series and our mortality series are stationary.
12  Spell data are centred at zero for pandemic onset. We use spell data because the observations leading 
up to and away from some pandemic events overlap.
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Fig. 1   Average log GDP and pandemic onset, before and after 1946. Data source: Jordà et  al. (2017). 
Author calculations on spell level data centred with zero at pandemic onset averaged by year-to-pan-
demic. Local linear regression (bandwidth of 1) overlaid
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13  Male labour supply is the most consistent variable over the entire 1870–2016 period, whereas formal 
female labour supply grows after 1950. Female and male mortality rates are highly correlated.

data are highly suggestive of pandemic-induced downturns. The dynamics of log GDP 
differ somewhat in the lead-up to the pandemic, primarily because of war effects in the 
pre-1946 era that we will account for fully in regression models to follow.

Examining pandemic effects through mortality permits an imperfect measure 
of the intensity of a pandemic. Pandemics may differ following improvements in 
public health and medical technologies that vary across countries and have reduced 
infectious disease mortality during the years 1870–2016 (Cutler et  al. (2006) dis-
cuss mortality determinants). Annual death rates by sex and age are available from 
the Human Mortality Database (HMD) for most of the time series: Sweden, France, 
Belgium, Denmark, the Netherlands and Norway start from 1870. Italy, Switzerland 
and Spain start from 1872, 1876 and 1908, respectively.

We construct two mortality measures pertinent to the question at hand. The first 
is an annual death rate among working-age males ( DM ), generated for each of the 16 
countries ( j ) using counts of age-specific ( a ) deaths among males ( MD ) and male 
population ( MPOP):

DM captures mortality among men ages 16 − 65 providing a measure that should 
capture effects on the population most directly responsible for labour supply during 
the period of analysis.13 Figure  2 illustrates that, in the spell-arranged data, pan-
demic onset coincides with a considerable jump in DM . The increase is particularly 
evident pre-1946, when medical interventions were more limited. However, even 
after 1946 the increase in death rates is much larger than any other year-over-year 
increase observed in the data.

The focus on male mortality is more defendable earlier in the time series. Because 
female labour force participation has risen dramatically starting in the mid twentieth 
century, we also generate a working-age population mortality rate DP (for both sexes 
combined) following an equivalent formula. A considerable jump in this variable 
at pandemic onset is also seen in Fig. 3. It will turn out that our results are largely 
immune to sex differences in mortality rates. 

5 � Model and identification

Conditional on disruptions to consumption and investment, pandemics can be 
expected to influence the economy through mortality. Indeed, mortality is identified 
as a key short-run mechanism in a recent review of empirical approaches (Bloom 
et  al. 2022). This mechanism manifests in lower GDP largely through decreased 
labour supply, for which there is evidence where data exist (see correlation plots for 

(1)DM
jt
=

�∑65

a=16
MDjt(a)

�
�∑65

a=16
MPOPjt(a)

�
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Fig. 2   Mortality among working-age males and pandemic onset. Data sources: Jordà et al. (2017) and the 
Human Mortality Database (2020). Author calculations on spell level data centred with zero at pandemic 
onset averaged by year-to-pandemic. Local linear regression (bandwidth of 1) overlaid
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Fig. 3   Mortality among working-age population (both sexes) and pandemic onset. Data sources: Jordà 
et al. (2017) and the Human Mortality Database (2020). Author calculations on spell level data centred 
with zero at pandemic onset averaged by year-to-pandemic. Local linear regression (bandwidth of 1) 
overlaid
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Sweden, the USA and the UK in Appendix Figure 7).14 We cannot rule out the exist-
ence of other mechanisms behind this causal channel, however, including the pos-
sibility of behavioural changes in workplaces and the like, that might follow from 
mortality or accompanying morbidity.15

Equations (2) and (3) detail our empirical model, to be estimated by 2SLS. Mor-
tality measures ( D ) are instrumented by binary pandemic timing indicators ( Flu). 
The parameter we wish to identify is � , the pandemic-induced effect of mortality 
on various measures of the cyclical component of log GDP per capita, l̃GDP . Wald 
(1940) notes that � effectively compares the correlation of l̃GDP and mortality in 
pandemic periods to non-pandemic periods. Our estimates will embody the magni-
tude of the pandemic by measuring the differential mortality rates induced by pan-
demics across countries.

All specifications include country-specific fixed effects ( �j),16 which may help 
account for unmeasured contextual factors important to pandemics (Alfani 2022). 
Time-varying covariates include the vector X1 comprising dummies for the two 
world wars, the real short-term interest rate and exchange rate adjusted wheat and 
oil prices.17 We also include a dummy variable to allow for a break in the GDP 
series in 1946, which is circa the introduction of vaccines.18 We further include the 
vector X2 in some specifications, which includes shares of GDP components from 

(2)Djt = �j + �Flut + X
�

1jt
� + X

�

2jt
� + �jt

(3)l̃GDPjt = �j + �Djt + X
�

1jt
� + X

�

2jt
� + ujt

14  Employment to population ratios calculated from: Sweden tables “C mean population” and “O total 
aggregate” from Edvinsson (2004); UK tables “A.50 Total Employment in Heads with S.Ireland break 
retained in 1920” and “A.18 Population in the UK and Ireland, Kingdom of Great Britain” (to 1920) and 
the “bottom-up measure for Great Britain and Norther Ireland” from 1921 onward from Thomas and 
Dimsdale (2017); USA tables Ba470 “Civilian Labor Force Total” and Aa7 “Resident Population” from 
Carter et al. (2006).
15  Acemoglu and Johnson (2007) note that mortality and life expectancy may broadly capture population 
health.
16  Specifications without fixed effects suggest broadly similar results. We also estimated models sepa-
rately by rough continental grouping, finding strongest impacts for Scandinavia, although instruments 
were weak for some groupings. These are available upon request.
17  Annual wheat prices constructed from monthly USA and foreign wheat prices (in dollars per met-
ric ton obtained from the Wheat Data Yearbook Tables, USA Department of Agriculture Economic 
Research Service (https://​www.​ers.​usda.​gov). Similarly constructed oil prices are sourced from the USA 
Energy Information Administration (https://​www.​eia.​gov/​dnav/​pet/​hist/​LeafH​andler.​ashx?n=​PET&s=​
F0000​00__​3&f=A).
18  Specifically, the influenza virus was isolated in the USA in 1933. The first vaccine was developed 
in 1938, approved for US military use in 1945 and civilian use in 1946 (National Vaccine Information 
Centre 2020; College of Physicians of Philadelphia 2020). In response to substantial morbidity and mor-
tality during the subsequent 1957–1958 pandemic, the USA Surgeon General recommended annual influ-
enza vaccination for people with chronic debilitating disease, people aged 65 years or older and pregnant 
women (Centre for Disease Control and Prevention 2020).

https://www.ers.usda.gov
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=F000000__3&f=A
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=F000000__3&f=A
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the national accounting identity and the debt-to-GDP ratio.19 We cluster standard 
errors by country because the disturbance term in Eq. (2) may be subject to serial 
correlation. Because the number of clusters in our data (16) may be too low for reli-
able inference, we also compute clustered p-values using the wild restricted efficient 
(WRE) bootstrap method (Davidson and MacKinnon 2010).20

Our identification strategy requires that Flu induce a natural experiment in mor-
tality rates. Pandemics are certainly exogenous events. This is particularly true in 
annual data where the speed at which pandemics propagate or the order in which 
they spread across countries does not vary; these world events affect all countries 
in the data in the same years. One limitation of any pandemic study where all coun-
tries are “treated” together is that accounting for time effects becomes challenging. 
We largely sidestep this concern by estimating l̃GDP , which is already stripped of 
any trend. It will also turn out that our results are robust to international or country-
specific time trends.

Instrumental variables in macroeconomic analyses often fail to fulfil exclusion 
restrictions (Bazzi and Clemens 2013). In our case, X2 controls may be particularly 
important to ensuring the exclusion restriction holds. It is difficult to imagine other 
ways, aside from health (i.e. mortality), that pandemic timing in annual data could 
affect the cyclical component of GDP when holding constant consumption, invest-
ment, exports and government spending. Nevertheless, we illustrate the impact of 
possible departures from the exclusion restriction on confidence intervals for �.

The influenza-induced shocks we measure with � comprise a weighted local 
average treatment effect (LATE) because pandemic impacts are not homogeneous 
events. Angrist and Imbens (1995) show that monotonicity is required to identify a 
weighted LATE. Figure 4 illustrates that pandemic timing has a monotonic effect on 
our mortality measures, DM and DP , by confirming that the cumulative density func-
tion (CDF) of the endogenous variable during pandemics is always to the right of 
the CDF for non-pandemics.21

The weighed LATE we identify can be challenging to interpret because the 
weights vary by country and by event. Because the weights are proportional to the 
distance between the CDFs, we illustrate which countries and time periods can be 
expected to receive higher weight in by plotting the difference in CDFs (shaded) 
against kernel density estimates for different countries and decades in Figs. 5 and 6. 
All countries have considerable coverage over the shaded range, suggesting all con-
tribute considerably to � . Weights are largest over the range (− 1.5, 1.5), and over 
this range countries that contribute more than their share of observations include 
Finland, France, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzer-
land and the UK.22 Thus, we identify a LATE more heavily reflective of Europe. The 
decadal analysis, in Fig.  6, suggests that the LATE we identify is reflective more 
heavily of the 1880–1910s and the 1940–1990s than other decades. The former is 

20  Mackinnon (2019) suggests no fewer than 50 clusters. We implement the Roodman et al. (2019) WRE 
bootstrap code employing the weighting distribution suggested by Webb (2014).
21  CDFs of mortality measures have first-stage covariates partialed out, precisely as our estimates will.
22  Plots are for DM with covariates partialed out. This range comprises 63% of the values.

19  Consumption is also a channel for short-run influenza impacts (See Bloom et al. 2022).
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Fig. 4   Empirical CDFs of endogenous variables conditional on covariates. Data sources: Jordà et  al. 
(2017) and the Human Mortality Database (2020). Plots illustrate the monotonicity principle of Angrist 
and Imbens (1995) for both endogenous measures of mortality. ECDF’s generated from using control 
variables from the first stage (Eq. 2)

particularly sensible, as the Spanish Flu (1918) is the most substantive pandemic 
event in our data.
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Fig. 5   Analysis of influenza pandemic timing as an instrumental variable, by country. Data sources: 
Jordà et  al. (2017) and the Human Mortality Database (2020). Shaded grey area is the difference in 
empirical CDFs of the residual working-age male death rate from Fig.  4a (non-pandemic–pandemic), 
scaled on the right vertical axis. Overlaid is the density of residual working-age male death rate by coun-
try, scaled on the left vertical axis

6 � Results

Our findings establish a robust causal impact of pandemic-induced mortality on 
the business cycle. Mortality shocks identified by our pandemic timing instrument 
decrease l̃GDP across different measures of the cycle and different mortality rates. 
Estimates of pandemic-induced mortality among working-age males are summa-
rized in Panel A of Table 2.23 In columns 1–3, the business cycle is captured using 
HP-filtered l̃GDP . Column 1 is the baseline specification with only fixed effects as 
controls. In columns 2 and 3, we add vectors X1 and X2 successively. Estimates are 
very stable across all three columns; however, we interpret column 3 as it is the most 
conservative in the sense that our exclusion restriction is mostly likely to be satisfied 
in this case. The coefficient of − 0.003 can be interpreted as follows: each additional 
death per 1000 (among working-age males) causes a contemporaneous average 
decrease in GDP per capita of about 0.3 per cent. To put this magnitude in the con-
text, from 1917 to 1918 the average mortality rate in our data rose by about 8 deaths 
per 1000, suggesting that influenza-induced mortality alone would have contracted 

23  We include only coefficients of interest. For full results, see Appendix (Tables  8, 9 for OLS; 
Tables 10, 11, 12, 13, 14 for 2SLS.
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GDP from trend by an average of about 2.4%, which is about half the observed con-
traction from trend in our data for this period.24

Columns 4–6 repeat with an alternative outcome measure: the BK-filtered l̃GDP . 
The results are highly similar despite the differences in how these two filters capture 
the business cycle. All specifications are statistically significant based on cluster-
robust inference. The WRE bootstrap provides 2SLS inference that is more con-
servative with few clusters. Resulting p-values suggest statistical significance for all 
specifications aside from column 1 and allow us to be specific about the probability 
of a type 1 error in our preferred specifications: statistical significance is attained at 
the 6.7 and 7.2 per cent levels in columns 3 and 6, respectively.

First-stage results in Panel B of Table 2 suggest that our instruments are strong. 
As expected, pandemic timing has a strong positive impact on DM , conditional on 
whichever covariates are included. We assess instrument weakness following Mon-
tiel Olea and Pflueger (2013) by comparing the effective F-statistic for exclusion of 
Flu to critical values at the 5% level, where these critical values indicate a fraction 
of the “worst-case” bias that remains after instrumenting. Our instrument is suffi-
ciently strong that we are able to reject a worst-case bias of 10% or more in the most 

24  HP-detrended log GDP decreases by 0.053 over this period in our estimation sample.

Fig. 6   Analysis of influenza pandemic timing as an instrumental variable, by decade. Data sources: Jordà 
et al. (2017) and the Human Mortality Database (2020). Shaded grey area is the difference in empirical 
CDFs of the residual working-age male death rate from Fig. 4a (non-pandemic–pandemic), scaled on the 
right vertical axis. Overlaid is the density of residual working-age male death rate by decade, scaled on 
the left vertical axis
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conservative specifications (columns 3 and 6) and to reject a bias of 5% or more 
elsewhere. Thus, we are confident that our instrument is sufficiently strong to iden-
tify pandemic-induced impacts on mortality in our data.25

For comparison, OLS estimates in Panel C illustrate the correlation, pandemic 
or not, between mortality among working-age males and the business cycle. Unlike 
2SLS estimates that exploit the exogenous pandemic shocks to identify mortality 
impacts, OLS estimates may suffer from identification concerns mentioned earlier 

25  The Kleibergen and Paap (2006) robust rk statistic also rejects underidentification across all our esti-
mates.

Table 2   Working-age male mortality effects on cyclical log real GDP per capita

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et al. (2017) and the Human Mortality Database (2020). Working-age male mortality 
is constructed for males aged 16–65 as in Eq. 1. HP-filtered log GDP per capita uses smoothing parame-
ter 6.25, Baxter King bandpass filter of the same uses parameters 2,8 and 3. FE are country fixed effects, 
vector X1 includes dummies for the two world wars, the introduction of vaccines in 1946, the real short-
term interest rate and exchange rate adjusted wheat and oil prices, and vector X2 includes the following 
shares of GDP: investment, consumption, exports, government expenditure and the debt-to-GDP ratio. 
Standard errors in parentheses clustered by country are robust to heteroskedasticity and serial correla-
tion. Wild restricted efficient bootstrap p-values in square brackets. F-statistic is the SW cluster-robust 
weak instrument F-statistic for excluding the pandemic instrument. We tested against the “worst-case” 
bias at the 5% level using the test for clustered standard errors following (Montiel Olea and Pflueger 
2013). Rejection of the null hypothesis that our bias exceeds certain thresholds of the worst-case bias is 
indicated by the symbols: ††† < 5%, †† < 10%, † < 20%. Corresponding critical values are 37.42, 23.11 and 
15.06. This table is a summary of OLS and 2SLS regression results. Full results displaying all covariates 
are available in Appendix Tables 7, 8, 9, 10, 11 and 12

HP-filtered log GDP per capita BK-filtered log GDP per capita

(1) (2) (3) (4) (5) (6)

Panel A: 2SLS estimates
DM − 0.0021* − 0.0029* − 0.0029* − 0.0022* − 0.0030** − 0.0026*

(0.0012) (0.0016) (0.0015) (0.0011) (0.0014) (0.0014)
[0.1121] [0.0921] [0.0661] [0.0611] [0.0591] [0.0721]

Panel B: First-stage estimates
Flu 1.5894*** 1.3159*** 1.2878*** 1.5626*** 1.3001*** 1.2561***

(0.2184) (0.1610) (0.2310) (0.2223) (0.1594) (0.2309)
rK 9.399*** 11.05*** 9.622*** 9.148*** 10.88*** 9.385***
F 52.98††† 66.80††† 31.09†† 49.39††† 66.54††† 29.58††

Panel C: OLS estimates
DM − 0.0007* − 0.0017*** − 0.0009 − 0.0009** − 0.0020*** − 0.0010

(0.0004) (0.0004) (0.0009) (0.0004) (0.0004) (0.0010)
FE Yes Yes Yes Yes Yes Yes
X1 No Yes Yes No Yes Yes
X2 No No Yes No No Yes
N 1929 1803 1600 1862 1745 1548
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so we believe our identification strategy to be important. OLS estimates are about 
one-third of the size and are not statistically significant in specifications that hold 
constant the covariates X2 . A weaker relationship when including non-pandemic 
mortality is expected as pandemics likely may have a stronger impact for a host of 
reasons, including their unexpected nature and considerable increases in unmeasur-
able morbidity challenges. Outside of a major health shock, national wealth is less 
correlated with life expectancy in the countries we study. Deaton (2003) shows that 
all are found on the flat portion of the Preston curve.

We now examine the same models through the lens of pandemic-induced mortal-
ity among both sexes. This alternative measure, DP , may be important because our 
time series span periods from the past where the workforce was male dominated and 
periods closer to the present where the workforce is much more evenly distributed 
across the sexes. 2SLS impacts in Panel A of Table 3 are highly similar to those 
based on DM , too alike to draw any conclusions about nuances in mortality across 
the sexes. Instead, it appears that pandemic-induced working-age mortality, broadly 
defined, has a robust negative impact on the business cycle.

Our estimates suggest that mortality is one causal channel through which influ-
enza pandemics contribute meaningfully to the business cycle. On average, these 
events increase mortality rates in our data by 1.73 deaths per 1000. The mortality 
consequences alone, then, suggest that influenza pandemics over the past 150 years 
decreased GDP per capita below its trend by half a percentage point on average. 
While modest compared with the drop in US GDP during the COVID pandemic or 
the Spanish Flu, it is not a trivial effect. Our 2SLS framework does not model the 
dynamics of how these shocks propagate over time once they hit. Such an analysis 
is better explored in a structural model, which would be motivated by the causal 
findings of this paper. Furthermore, while our analysis does include the Spanish Flu, 
several other influenza pandemics might be considered less-severe health shocks and 
the data available cover industrialized countries where, from a global perspective, 
impacts may have been less drastic.

Our interpretation of �̂  depends on the argument that pandemic events are 
exogenous. Although we believe it to be so, particularly with covariates X2, this 
assumption is fundamentally untestable. Conley et  al. (2012) provide a “local to 
zero” method to estimate confidence intervals around � in cases where the exclu-
sion restriction does not hold perfectly (where Flu affects l̃GDP through channels 
other than D , captured by some parameter � ). The distribution for � is assumed to be 
� ∼ N(0, 0.001) , which is conservative in the sense that it allows � to approach the 
full size of our measured effect of �.26 For our preferred specification, column (3) of 
Tables 2 and 3, 90% local to zero confidence intervals are presented alongside clus-
ter-robust confidence intervals that assume the exclusion restriction holds ( � = 0 ) 
in Table 4.27 The bounds for � do not change significantly, which suggests that our 
estimates are reliable even in the unlikely case that � ≠ 0. This is to be expected 

26  The standard deviation of � is one-third the size of �̂
27  We present 90% confidence intervals because estimates are statistically significant at the 10% level. A 
similar comparison of 95% confidence intervals is available upon request.
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Table 3   Working-age population mortality effects on cyclical log real GDP per capita

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et  al. (2017) and the Human Mortality Database (2020). Working-age population 
mortality is constructed for both sexes age 16–65. HP-filtered log GDP per capita uses smoothing param-
eter 6.25, Baxter King bandpass filter of the same uses parameters 2,8 and 3. FEare country fixed effects, 
vector X1 includes dummies for the two world wars, the introduction of vaccines in 1946, the real short-
term interest rate and exchange rate adjusted wheat and oil prices, and vector X2 includes the following 
shares of GDP: investment, consumption, exports, government expenditure and the debt-to-GDP ratio. 
Standard errors in parentheses clustered by country are robust to heteroskedasticity and serial correla-
tion. Wild restricted efficient bootstrap p-values in square brackets. F-statistic is the SW cluster-robust 
weak instrument F-statistic for excluding the pandemic instrument. We tested against the “worst-case” 
bias at the 5% level using the test for clustered standard errors following (Montiel Olea and Pflueger 
2013). Rejection of the null hypothesis that our bias exceeds certain thresholds of the worst-case bias is 
indicated by the symbols: ††† < 5%, †† < 10%, † < 20%. Corresponding critical values are 37.42, 23.11 and 
15.06. This table is a summary of OLS and 2SLS regression results. Full results displaying all covariates 
are available in Appendix Tables 7, 8, 9, 10, 11 and 12

HP-filtered log GDP per capita BK-filtered log GDP per capita

(1) (2) (3) (4) (5) (6)

Panel A: 2SLS estimates
DP − 0.0022 − 0.0032* − 0.0034* − 0.0023* − 0.0033* − 0.0031*

(0.0014) (0.0019) (0.0020) (0.0013) (0.0017) (0.0018)
[0.1331] [0.1151] [0.0921] [0.0781] [0.0751] [0.0861]

Panel B: First-stage estimates
Flu 1.4718*** 1.1844*** 1.0847*** 1.4576*** 1.1788*** 1.0630***

(0.2100) (0.0935) (0.1416) (0.2169) (0.0954) (0.1445)
rK 9.109*** 12.23*** 10.92*** 8.850*** 12.00*** 10.63***
F 49.14††† 160.4††† 58.71††† 45.17††† 152.7††† 54.09†††

Panel C: OLS estimates
DP − 0.0006* − 0.0018*** − 0.0005 − 0.0008* − 0.0022*** − 0.0006

(0.0003) (0.0006) (0.0011) (0.0004) (0.0006) (0.0011)
FE Yes Yes Yes Yes Yes Yes
X1 No Yes Yes No Yes Yes
X2 No No Yes No No Yes
N 1929 1803 1600 1862 1745 1548

Table 4   Comparison of 90% 
confidence intervals for � if 
exclusion restriction fails

Data sources: Jordà et al. (2017), Human Mortality Database (2020). 
Original confidence intervals from estimates in column 3 of Tables 2 
and 3 for respective endogenous variables. DM and DP. LTZ are 
local to zero confidence intervals computed using the methods of 
Conly (2012); the exclusion restriction (� = 0) is relaxed allowing 
for � ∼ N(0, 0.001)

D
M

D
P

HP filter HP filter

Original [− .0054,− .0004] [− .0067, − .0002]
LTZ N(0,0.001) [− .0056,− .0002] [− .0067, − .0002]
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as violations of the exclusion restriction are most egregious when instruments are 
weak, which is not our case.

6.1 � Further robustness checks

Our findings are robust to the choice of business cycle measure. Both the HP and 
BK filters isolate particular frequencies in the data and thus generate cyclical meas-
ures that is relative to a nonlinear trend. However, we also illustrate that our results 
hold when using a linear detrending procedure (LDT) whereby l̃GDP is comprised 
of residuals from country-specific regressions of logGDP on the year of observation 
and the 1946 dummy variable. This measure is impacted negatively in all specifi-
cations (columns 5–8 of Tables 9 and 11 in  the Appendix). Coefficients are much 
larger, which is to be expected as deviations from a linear trend over such a long 
period are necessarily larger than deviations from the nonlinear HP or BK trends 
that fluctuate slowly to capture sustained periods of higher growth.

We also consider more carefully the context of our most significant pandemic. 
The year 1918 overlaps both WW1 and the Spanish Flu. This matters because 
wartime contractions during our period of analysis are more than twice as large 
as non-wartime contractions among OECD countries (Barro and Ursúa 2008). 
WW1, in particular, was among the most significant contractions in the period of 
analysis with total deaths of combatants and civilians of about 20 million (Mougel 
2011).28Although the vector X1 includes a WW1 timing control, we may not fully 
disentangle differential mortality impacts of the during this crucial year. To provide 
some evidence that WW1 is not confounding the results, we adjust DM for the year 
1918 using estimates from Barro et  al. (2020), where separate death rates for the 
Spanish Flu and WW1 are available for all countries in our data aside from Fin-
land.29 The results using these adjusted mortality numbers are virtually unchanged 
(see Appendix Table 14).

An alternative way to measure pandemic-induced mortality is to examine excess 
mortality from influenza pandemics. Measurement concerns prevent us from adopt-
ing this as our main approach; any estimate of excess mortality introduces further 
uncertainty. Nevertheless, OLS estimates using excess mortality should be broadly 
similar to our IV results. Following Murray et al. (2006), we use the mean of adja-
cent year values twice the duration of the pandemic to establish a baseline mortality 
rate, separately for each pandemic in each country.30 Excess mortality ( EMjt ) is the 
difference between this baseline and original mortality data. Equation (4) details our 
calculation for a pandemic of duration S beginning in year T  , using the mortality 
rate DM as an example.

28  See also, Willcox (1923) who notes the larger impact of the Spanish Flu.
29  Finland is given the un-adjusted value. Results that omit this missing value were very similar.
30  Alternative estimation methods for excess mortality often employ harmonic regression models (e.g. 
Ansart et  al.2009). However, such methodology is more suited to capturing seasonal flu mortality in 
monthly data. We thank an anonymous referee for suggesting the use of an excess mortality measure.
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Estimates of the effect of excess mortality on the cyclical component of GDP in 
Appendix Table 15 suggest very similar impacts to the IV estimates in Tables 2 and 
3. Point estimates using EMjt exceed IV estimates somewhat but fall well within the 
confidence interval of the IV estimates, and so, we cannot rule out that the IV esti-
mate might exceed these estimates with stronger instruments.

We consider the possibility that any subtle trends in any of our covariates and/or 
mortality rates might lead to spurious findings, even if it is unlikely given that our 
outcome is detrended. 2SLS estimates in Appendix Table 16 present results, for both 
the HP- and BK-filtered outcomes and for both mortality measures DM and DP, that 
include overall time trends (columns 1–4) and country-specific time trends (columns 
5–8). The results are very similar, if not slightly larger. However, as the instruments 
are also slightly weaker, we cannot rule out that this difference is the result of a 
small increase in bias.

The impact measured above represents an average effect across all pandemics. 
However, not all events were equally severe. In particular, the flu events spanning 
1873–75, 1899–1900 and 1946 may not be considered by some to have been full-
fledged pandemics. A LATE that is not identified using the variation across these 
events might be expected to measure a stronger response. We redefine our instrument 
to treat these years as non-pandemic events and present 2SLS estimates in Table 17. 
As expected, point estimates are indeed larger although confidence intervals overlap. 
These results are suggestive that stronger pandemics had stronger effects, although 
it is worth noting that the indicator for more severe pandemics, while still a strong 
predictor of DP is somewhat weaker as an instrument for DM.

Finally, we rule out the possibility that our results are driven entirely by the most 
severe pandemic in the data, the Spanish Flu. Appendix Table  18 reports 2SLS 
results excluding the years 1918–1920. The results are broadly similar, particularly 
in columns 3 and 6 which are conditional on covariates that account for the over-
lapping world war events and their economic impacts, which might be particularly 
problematic as confounders during this period.

6.2 � Employment

Labour supply is expected to be the main mechanism behind the causal link between 
mortality and GDP. In this section, we examine the potential intermediate effect that 
pandemic-induced mortality has on the employment-to-population ratio, E, where 
data permit (USA 1890–1990, UK 1870–2011 and Sweden 1870–2000). While 
Appendix Figure 7 illustrates correlation between E and DM , this is merely sugges-
tive of an intermediating role. Instead, we re-estimate Eqs. (2) and (3), replacing E 
as the outcome variable. Table 5 shows results for DM and DP mortality measures. 
Point estimates suggest a considerable negative impact on the employment ratio in 
these three countries for each additional death per 1000. However, the instrument is 
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not strong enough to consider these estimates anything beyond suggestive. This is 
not surprising since N = 275 with covariates. Further, inference based on three clus-
ters is certainly unreliable and WRE bootstrapped p-values suggest statistical signif-
icance well above the 10% level. Thus, we cannot as confidently place any emphasis 
on causal results for employment.

7 � Discussion and conclusion

Our results suggest that over the course of the period 1870–2016, influenza shocks 
decreased the short-run (cyclical) component of GDP by increasing mortality 
rates among the working-age population. In addition to contributing to a growing 
knowledge of pandemic events, the influenza shocks we examine comprise a quasi-
experimental setting under which we can identify causal effects of mortality on 

Table 5   2SLS estimates: mortality effects on the employment-to-population ratio

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et  al. (2017), Human Mortality Database (2020), Edvinsson (2004), Thomas and 
Dimsdale (2017), Carter et  al. (2006). Working-age population mortality is constructed for both sexes 
age 16–65. Employment to population ratios constructed for Sweden the UK and the USA only. All spec-
ifications include country fixed effects, vector X1 (dummies for the two world wars, the introduction of 
vaccines in 1946, the real short-term interest rate and exchange rate adjusted wheat and oil prices), and 
vector X2 (the following shares of GDP: investment, consumption, exports, government expenditure and 
the debt-to-GDP ratio). Standard errors in parentheses clustered by country are robust to heteroskedastic-
ity and serial correlation. Wild restricted efficient bootstrap p-values in square brackets. F-statistic is the 
effective F-statistic for excluding the pandemic instrument. We tested against the “worst-case” bias at the 
5% level using the test for clustered standard errors following (Montiel Olea and Pflueger 2013). Rejec-
tion of the null hypothesis that our bias exceeds certain thresholds of the worst-case bias is indicated by 
the symbols: ††† < 5%, †† < 10%, † < 20%. Corresponding critical values are 37.42, 23.11 and 15.06. This 
table is a summary of OLS and 2SLS regression results

(1) (2)
E E

Panel A: Second stage
DM − 0.0076**

(0.0033)
[0.1892]

DP − 0.0091**
(0.0042)
[0.1992]

Panel B: First stage
Flu 1.2143** 1.0163

(0.5257) (0.4749)
F 15.388† 12.203
N 275 275
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the business cycle. This causal channel appears to act, in part, through a reduction 
of labour supply, though it may capture other population health effects from these 
pandemic events. These events on average increased mortality rates in our data by 
1.73 deaths per 1000 and suggest that influenza pandemics over the past 150 years 
decreased GDP per capita below its trend by half a percentage point on average.

While meaningful and significant, the effects we identify are modest enough 
that we would not claim mortality as the only channel by which pandemics con-
tribute to the business cycle. Mortality effects from influenza pandemic shocks 
were predominant in the late nineteenth century and early twentieth century, 
which featured more rudimentary medical technology and treatments. Yet, our 
findings suggest that they continue to be worth consideration even after the intro-
duction of vaccines. Even where mortality from influenza is not particularly egre-
gious, behavioural responses in the workforce from attempts to reduce mortal-
ity impact from infection spread or accompanying morbidity (Bloom et al. 2022) 
are also likely to be important in the short run. Given that mortality may only 
be the tip of the proverbial iceberg, it should be noted that comparing morbid-
ity and mortality shocks remains a promising avenue for further research pend-
ing the availability of long-run data on illnesses and pandemics as may certainly 
be the case in the wake of the COVID-19 pandemic and the evidence regarding 
the effects of “Long Covid” (Bach 2022; World Bank 2022). Indeed, going for-
ward the macroeconomic effects of COVID will be an interesting area of further 
research given the novelty of the coronavirus, the extent of lockdowns, the rapid 
development and deployment of vaccines as well the magnitude of fiscal and 
monetary responses relative to previous pandemic periods.

Other important channels are at play which we hold constant in our analysis. 
Consider disruptions to trade, investment and particularly consumption, which 
comprises close to two-thirds of GDP in most developed countries (Attanasio 
1999). For example, interplay between consumption and mortality might fol-
low from reduced mobility due to taking private measures, lockdowns that are 
implemented in response to rising mortality, or from deferred consumerism 
when employment is less stable. A prominent example is the loss of 2.8 bil-
lion USD by the Mexican tourism sector during H1N1 (Rassy and Smith 2013). 
Ultimately, our results also motivate the inclusion of influenza pandemics as an 
overlooked health shock in structural models of health and the business cycle, 
building on such as those proposed by Bloom et  al. (2022), which have been 
motivated by the recent and severe COVID-19 pandemic. The impact of influ-
enza pandemics on business cycle fluctuations, while moderate is nevertheless 
of significance and important to appreciate given that economic history shows 
they have happened before and will inevitably happen again.

Appendix A

See Figs. 7, 8, 9 and Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
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Fig. 7   Correlation of working-age male mortality and employment in three countries. Data sources: 
Jordà et al. (2017), Human Mortality Database (2020), Edvinsson (2004), Thomas and Dimsdale (2017), 
Carter et al. (2006). Correlation between the employment-to-population ratio and the working-age male 
death rate in the USA, the UK and Sweden.

Fig. 8   HP-detrended log GDP series. Data source: Jordà et  al. (2017). Log GDP per capita index, 
2005 = 100 series are detrended Hodrick and Prescott (1997) filter using the smoothing parameter 6.25
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Fig. 9   BK detrended log GDP series. Data source: Jordà et  al. (2017). Log GDP per capita index, 
2005 = 100 series are detrended using the Baxter and King (1999) band pass filter with parameters 2, 8 
and 3

Table 6   Major economic 
contractions, US economy. 
Source: NBER https://​www.​
nber.​org/​cycles.​html

Peak month Trough month Duration 
(months)

October 1873 March 1879 65
March 1882 May 1885 38
March 1887 April 1888 13
July 1890 May 1891 10
January 1893 June 1894 17
December 1895 June 1897 18
June 1899 December 1900 18
September 1902 August 1904 23
May 1907 June 1908 13
January 1910 January 1912 24
January 1913 December 1914 23
August 1918 March 1919 7
January 1920 July 1921 18
May 1923 July 1924 14
October 1926 November 1927 13
August 1929 March 1933 43
May 1937 June 1938 13
February 1945 October 1945 8
November 1948 October 1949 11
July 1953 May 1954 10

https://www.nber.org/cycles.html
https://www.nber.org/cycles.html
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Table 7   Data availability

Data sources: Jordà et al (2017) and Human Mortality Database (2020)

Country Macro variables Mortality rates

Australia 1902–2016 1921–2016
Belgium 1919–2016 1870–1913 1919–2016
Canada 1934–2016 1921–2016
Denmark 1880–1946 1953–1956 1960–2016 1870–2016
Finland 1914–2016 1878–2016
France 1880–1913 1920–1938 1949–2016 1870–2016
Italy 1886–1914 1922–2016 1872–2016
Japan 1885–1838 1957–2016 1946–2016
Netherlands 1870–1914 1921–1939 1948–2016 1870–2016
Norway 1880–1939 1947–2016 1870–2016
Portugal 1953–2016 1940–2016
Spain 1880–1935 1940–2016 1908–2016
Sweden 1870–2016 1870–2016
Switzerland 1885–1913 1948–2016 1876–2016
UK 1870–2016 1922–2016
USA 1870–2016 1933–2016

Peak month Trough month Duration 
(months)

August 1957 April 1958 8
April 1960 February 1961 10
December 1969 November 1970 11
November 1973 March 1975 16
January 1980 July 1980 6
July 1981 November 1982 16
July 1990 March 1991 8
March 2001 November 2001 8
December 2007 June 2009 18

Table 6   (continued)
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Table 11   2SLS first-stage results for working-age male mortality effects on cyclical log real GDP per 
capita

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et  al. (2017) and the Human Mortality Database (2020). First-stage estimates for 
estimates in Table 10. Working-age population mortality is constructed for males age 16–65. HP-filtered 
log GDP per capita uses smoothing parameter 6.25, Baxter King bandpass filter of the same uses param-
eters 2, 8 and 3. FE are country fixed effects. Standard errors in parentheses clustered by country are 
robust to heteroskedasticity and serial correlation

(1) (2) (3) (4) (5) (6)
HP/LDT HP/LDT HP/LDT BK filter BK filter BK filter

Death rate Death rate Death rate Death rate Death rate Death rate

Flu Pandemic 1.5894*** 1.3159*** 1.2878*** 1.5626*** 1.3001*** 1.2561***
(0.2184) (0.1610) (0.2310) (0.2223) (0.1594) (0.2309)

WW1 2.7746** 2.9363** 2.8513** 2.9904**
(1.3437) (1.2819) (1.3531) (1.2705)

WW2 − 0.5771 − 0.8178 − 0.4904 − 0.7361
(0.9120) (1.0545) (0.9176) (1.0626)

Year ≥ 1946 − 5.4543*** − 4.5527*** − 5.2881*** − 4.4016***
(0.3942) (0.9795) (0.3913) (0.9668)

rSTIR − 0.0076** − 0.0080*** − 0.0083 − 0.0098*
(0.0032) (0.0026) (0.0100) (0.0052)

Wheat price adj 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Oil price adj − 0.0000*** − 0.0000*** − 0.0000*** − 0.0000**
(0.0000) (0.0000) (0.0000) (0.0000)

Invest/GDP − 10.4763** − 10.3772**
(5.3393) (5.1867)

Cons/GDP 0.3743 0.7671
(1.6000) (1.6367)

Export/GDP − 2.0439 − 1.7107
(2.3992) (2.4123)

Debt/GDP − 0.8593 − 0.7581
(0.5818) (0.6171)

Expend/GDP 0.9580 1.3675
(4.0150) (4.0425)

Fixed effects Yes Yes Yes Yes Yes Yes
N 1929 1803 1600 1862 1745 1548
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Table 13   2SLS first-stage results for working-age population mortality effects on cyclical log real GDP 
per capita

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et  al. (2017) and the Human Mortality Database (2020). First-stage estimates for 
estimates in Table 12. Working-age population mortality is constructed for males age 16–65. HP-filtered 
log GDP per capita uses smoothing parameter 6.25, Baxter King bandpass filter of the same uses param-
eters 2, 8 and 3. FE are country fixed effects. Standard errors in parentheses clustered by country are 
robust to heteroskedasticity and serial correlation

(1) (2) (3) (4) (5) (6)
HP/LDT HP/LDT HP/LDT BK filter BK filter BK filter

Death rate Death rate Death rate Death rate Death rate Death rate

Flu Pandemic 1.4718*** 1.1844*** 1.0847*** 1.4576*** 1.1788*** 1.0630***
(0.2100) (0.0935) (0.1416) (0.2169) (0.0954) (0.1445)

WW1 1.7769** 2.1837*** 1.8464** 2.2326***
(0.7957) (0.8052) (0.7991) (0.7984)

WW2 − 1.7257*** − 1.5881** − 1.6446*** − 1.5107**
(0.4903) (0.7248) (0.4970) (0.7379)

Year ≥ 1946 − 5.7258*** − 4.4571*** − 5.5835*** − 4.3293***
(0.3614) (0.7740) (0.3588) (0.7685)

rSTIR − 0.0074** − 0.0078*** − 0.0097 − 0.0109**
(0.0029) (0.0020) (0.0094) (0.0048)

Wheat price adj − 0.0000 − 0.0000 − 0.0000 − 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Oil price adj − 0.0000** − 0.0000 − 0.0000** − 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Invest/GDP − 10.4087** − 10.3184**
(4.7371) (4.6060)

Cons/GDP 0.8132 1.1516
(1.3211) (1.3547)

Export/GDP − 1.2705 − 0.9870
(1.6572) (1.6700)

Debt/GDP − 0.7026 − 0.6187
(0.5022) (0.5396)

Expend/GDP − 0.4631 − 0.1330
(2.7290) (2.7083)

Fixed effects Yes Yes Yes Yes Yes Yes
N 1929 1803 1600 1862 1745 1548
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Table 15   OLS estimates: excess mortality effects on cyclical log real GDP per capita

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et  al. (2017) and the Human Mortality Database (2020). Excess mortality is con-
structed for working males aged 16–65 and the working-age population following Eq. 4. HP-filtered log 
GDP per capita uses smoothing parameter 6.25, Baxter King bandpass filter of the same uses parameters 
2, 8 and 3. FE are country fixed effects, vector X1 includes dummies for the two world wars, the introduc-
tion of vaccines in 1946, the real short-term interest rate and exchange rate adjusted wheat and oil prices, 
and vector X2 includes the following shares of GDP: investment, consumption, exports, government 
expenditure and the debt-to-GDP ratio. Standard errors in parentheses clustered by country are robust to 
heteroskedasticity and serial correlation

HP-filtered log GDP per capita BK-filtered log GDP per capita

(1) (2) (3) (4) (5) (6)

Panel A: Excess mortality among working-age males
EM

M − 0.0021 − 0.0041*** − 0.0038*** − 0.0023 − 0.0042*** − 0.0039***
(0.0016) (0.0006) (0.0008) (0.0016) (0.0006) (0.0007)

Panel B: Excess mortality among working-age population
EM

P − 0.0024 − 0.0041*** − 0.0038*** − 0.0028 − 0.0054*** − 0.0048**
(0.0017) (0.0006) (0.0008) (0.0023) (0.0016) (0.0019)

FE Yes Yes Yes Yes Yes Yes
X1 No Yes Yes No Yes Yes
X2 No No Yes No No Yes
N 1929 1803 1600 1862 1745 1548
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Table 17   Robustness of main results to use of stronger pandemics only

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et al. (2017) and the Human Mortality Database (2020). 2SLS Estimates in this table 
are comparable to those in Tables  2 and 3 but treat 1873–75, 1899–1900 and 1946 as non-pandemic 
years. Working-age population mortality is constructed for both sexes age 16–65. HP-filtered log GDP 
per capita uses smoothing parameter 6.25, Baxter King bandpass filter of the same uses parameters 2, 
8and 3. FE are country fixed effects, vector X1 includes dummies for the two world wars, the introduc-
tion of vaccines in 1946, the real short-term interest rate and exchange rate adjusted wheat and oil prices, 
and vector X2 includes the following shares of GDP: investment, consumption, exports, government 
expenditure and the debt-to-GDP ratio. Standard errors in parentheses clustered by country are robust to 
heteroskedasticity and serial correlation. Wild restricted efficient bootstrap p-values in square brackets. 
F-statistic is the SW cluster-robust weak instrument F-statistic for excluding the pandemic instrument. 
We tested against the “worst-case” bias at the 5% level using the test for clustered standard errors fol-
lowing (Montiel Olea and Pflueger 2013). Rejection of the null hypothesis that our bias exceeds certain 
thresholds of the worst-case bias is indicated by the symbols: ††† < 5%, †† < 10%,  † < 20%. Corresponding 
critical values are 37.42, 23.11 and 15.06

HP-filtered log GDP per capita BK-filtered log GDP per capita

(1) (2) (3) (4) (5) (6)

Panel A: 2SLS estimates, working-age male mortality
DM − 0.0061*** − 0.0064*** − 0.0046*** − 0.0062*** − 0.0064*** − 0.0042***

(0.0018) (0.0018) (0.0013) (0.0018) (0.0017) (0.0012)
Panel B: First-stage estimates
Flu 1.0159*** 1.0194*** 1.0642*** 0.9795*** 0.9911*** 1.0272***

(0.2246) (0.1843) (0.2324) (0.2193) (0.1804) (0.2302)
rK 7.459*** 9.475*** 8.883*** 6.916*** 9.330*** 8.669***
F 20.46† 30.58†† 20.97† 17.28† 30.18†† 19.92†

Panel C: 2SLS estimates, working-age population mortality
DP − 0.0074*** − 0.0073*** − 0.0055*** − 0.0076*** − 0.0072*** − 0.0051***

(0.0024) (0.0022) (0.0019) (0.0024) (0.0021) (0.0018)
Panel D: First-stage estimates
Flu 0.8304*** 0.8917*** 0.8785*** 0.8062*** 0.8751*** 0.8521***

(0.1834) (0.1127) (0.1351) (0.1795) (0.1096) (0.1340)
rK 7.346*** 11.24*** 10.81*** 7.192*** 11.13*** 10.63***
F 20.51† 62.65††† 42.29††† 20.18† 63.77††† 40.42†††

FE Yes Yes Yes Yes Yes Yes
X1 No Yes Yes No Yes Yes
X2 No No Yes No No Yes
N 1929 1803 1600 1862 1745 1548
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Table 18   Robustness of main results to the exclusion of the Spanish Flu years

*** p < 0.01, ** p < 0.05, * p < 0.1
Data sources: Jordà et al. (2017) and the Human Mortality Database (2020). 2SLS Estimates in this table 
are comparable to those in Tables 2 and 3 but drop years 1918–1920. Working-age population mortality 
is constructed for both sexes age 16–65. HP-filtered log GDP per capita uses smoothing parameter 6.25, 
Baxter King bandpass filter of the same uses parameters 2,8 and 3. FE are country fixed effects, vector 
X1 includes dummies for the two world wars, the introduction of vaccines in 1946, the real short-term 
interest rate and exchange rate adjusted wheat and oil prices, and vector X2 includes the following shares 
of GDP: investment, consumption, exports, government expenditure and the debt-to-GDP ratio. Standard 
errors in parentheses clustered by country are robust to heteroskedasticity and serial correlation. Wild 
restricted efficient bootstrap p-values in square brackets. F-statistic is the SW cluster-robust weak instru-
ment F-statistic for excluding the pandemic instrument. We tested against the “worst-case” bias at the 
5% level using the test for clustered standard errors following (Montiel Olea and Pflueger 2013). Rejec-
tion of the null hypothesis that our bias exceeds certain thresholds of the worst-case bias is indicated by 
the symbols: ††† < 5%, †† < 10%, † < 20%. Corresponding critical values are 37.42, 23.11 and 15.06. This 
table is a summary of OLS and 2SLS regression results

HP-filtered log GDP per capita BK-filtered log GDP per capita

(1) (2) (3) (4) (5) (6)

Panel A: 2SLS estimates, working-age male mortality
DM − 0.0022 − 0.0021 − 0.0036*** − 0.0019 − 0.0021 − 0.0032***

(0.0029) (0.0014) (0.0012) (0.0027) (0.0013) (0.0010)
Panel B: First-stage estimates
Flu 0.6853*** 1.1054*** 0.9905*** 0.6573** 1.0803*** 0.9555***

(0.2571) (0.1066) (0.1336) (0.2721) (0.1171) (0.1396)
rK 4.309** 11.74*** 10.52*** 3.774* 11.23*** 10.03***
F 7.104 107.6††† 54.95††† 5.835 85.11††† 46.86†††

Panel C: 2SLS estimates, working-age population mortality
DP − 0.0021 − 0.0022 − 0.0041*** − 0.0018 − 0.0022 − 0.0036***

(0.0028) (0.0015) (0.0014) (0.0025) (0.0014) (0.0011)
Panel D: First-stage estimates
Flu 0.7253*** 1.0372*** 0.8709*** 0.7101*** 1.0242*** 0.8465***

(0.2252) (0.0864) (0.1137) (0.2412) (0.0981) (0.1214)
rK 5.180** 12.08*** 10.51*** 4.669** 11.58*** 9.988***
F 10.37 144.1††† 58.65††† 8.669 109††† 48.60†††

FE Yes Yes Yes Yes Yes Yes
X1 No Yes Yes No Yes Yes
X2 No No Yes No No Yes
N 1900 1782 1588 1833 1724 1536
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