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Abstract
Electrospun multicomposite nanofibers synthesized from extracts of Moringa oleifera (M. oleifera) seed biomass blended 
with metal oxide nanoparticles (MONPs) and polyacrylonitrile (PAN) were investigated as potential adsorbents. The materi-
als were characterized using SEM, XRD, FTIR, BET and TGA. The specific surface area of MONPs ranged between 29.75 
and 60.92  m2/g and their incorporation in the PAN/M. oleifera composite blend resulted in increased surface coarseness and 
larger nanofiber diameters (268 ± 21–317 ± 27 nm). The application of PAN/M. oleifera/MONPs for Pb(II) removal from 
aqueous solution via batch adsorption experiments was investigated based on the parameters: solution pH, contact time and 
initial Pb(II) ion concentration. Experimental results better fitted the Langmuir isotherm model and pseudo-second-order 
kinetics. Adsorption capacities ranged between 172.4 and 227.3 mg/g. These results demonstrate that low-cost indigenous 
materials have significance and applicability in water remediation applications.
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Introduction

In most parts of the world, a large number of people rely on 
ground or surface water for sustenance. However, mining, 
industrial and agricultural activities have led to contamina-
tion of these water sources. Organic matter and heavy metals 
are the most significant pollutants (Ghomi et al. 2020; Ibra-
him et al. 2021; Pereao et al. 2017; Sakib et al. 2021). Heavy 
metal ions are the most widely known toxic pollutants, as 
they are ubiquitous and non-degradable in the environment. 
They can be mobile, absorbed by living organisms and toxic 
even at low concentrations (Babel and Kurniawan 2004; 
Liu et al. 2022; Martín et al. 2018; Morillo et al. 2017). 
Human exposure to elevated concentrations of toxic met-
als (e.g., Pb, Cd, Hg, As, Cr) from the environment may 
cause severe health issues, including neurological damage, 

liver, or kidney dysfunction and cancer (Khalid et al. 2021; 
Khlifi and Hamza-Chaffai 2010; Moonga et al. 2022). This 
makes access to clean potable water one of the largest chal-
lenges facing many countries and, in particular, third world 
countries.

Remediation approaches developed and utilized thus far 
attempt to remove metals from water by precipitation (Fu 
and Wang 2011), electroplating (Yong et al. 2021), coagu-
lation (Zheng et al. 2021), membrane separation (Tempel-
man et al. 2019), ion exchange (Da̧browski et al. 2004) and 
adsorption (Galiano et al. 2018). Adsorption is widely stud-
ied as it translates to technologies that are simple, economi-
cal and effective (Crini et al. 2018). However, most of the 
conventional adsorbents (clay, activated carbon, wood saw-
dust) used have limitations such as low adsorption capaci-
ties, lack of functional tunability and reusability (Sarode 
et al. 2019). These challenges have given rise to the search 
for new sorbent materials.

The use of nanofibers has stimulated increased research 
interest in water remediation via adsorption technology. 
Moreover, electrospinning has been recognized as the most 
promising technique for fabricating nanofibers, as it pro-
vides flexibility to regulate morphology, size, surface area 
and porosity (Deitzel et al. 2002; Pereao et al. 2017). New 
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trends in developing nanofibers from natural polymers such 
as cellulose, alginates, chitosan, hyaluronic acid, keratin and 
silk fibroin have attracted attention because of their renew-
ability, biodegradability, nontoxicity, biocompatibility and 
availability (Cui et al. 2020; Deng et al. 2021; Jain et al. 
2020; Khademian et al. 2020; Raza et al. 2021; Wen et al. 
2017). The presence of functional groups (e.g., hydroxyl, 
carboxyl and amine) in the chemical structure enables these 
biopolymers to have a strong coordinative affinity in forming 
chelate complexes with several heavy metal ions (Khadem-
ian et al. 2020; Kyzas et al. 2009). Despite these attractive 
attributes, the use of pure biopolymers in the fabrication of 
nanofibers by electrospinning is still a challenge because 
they tend to form gels in aqueous media because of hydro-
gen bonding (Wongkanya et al. 2017). Additionally, they 
are naturally prone to degradation, resulting in nanofiber 
structure alteration or damage during application (Wen et al. 
2017). Adding biopolymers to the synthetic polymer matrix 
may alleviate such shortcomings. Several synthetic poly-
mers, e.g., poly(lactide-co-glycolide) (PLGA) (Duan et al. 
2006), polyvinyl pyrrolidone (PVP) (Ignatova et al. 2007), 
poly(ethylene terephthalate) (PET) (Jung et al. 2007) and 
poly(lactic acid) (PLA) (Xu et al. 2009), have been elec-
trospun with biopolymers. The obtained nanofibers showed 
that the synthetic polymers enhanced the electrospinnabil-
ity of the biopolymers and resulted in improved mechanical 
strength and biocompatibility.

Advances in enhancing the adsorption capacity of 
nanofiber adsorbents have led to the immobilization of 
metal oxide nanoparticles (MONPs) such as manganese 
oxide, iron oxide, zinc oxide and titanium oxide into the 
polymer blend (Deliyanni et al. 2003; Kumar et al. 2013; 
Li et al. 2018). These MONPs have been reported to impart 
increased mechanical strength, chemical resistivity, and 
adsorption capacity of the nanofibers due to their physical 
and chemical properties (Razzaz et al. 2016). Furthermore, 
doping MONPs is known to enhance nanoparticles (NPs) 
affinity toward particular analytes such as heavy metals 
because of change in the surface reactivity (Chakrabarti 
et al. 2005; Ghiloufi et al. 2016; Montoya et al. 2017; Warner 
et al. 2012). This has the effect of tailoring the selectivity of 
MONPs toward heavy metal ions of interest. However, the 
properties of the nanocomposite sorbents depend, to a large 
extent, on how well the NPs are dispersed within the biopol-
ymer matrix, their interaction and bonding structure (An 
et al. 2009; Liu et al. 2015; Sarkar et al. 2012). Therefore, 
an optimal balance between material strength and adsorption 
efficiency should be maintained to prevent inaccessibility of 
active adsorption sites.

Keshtkar et  al. (2016) investigated the adsorption of 
Cd(II), Pb(II) and Ni(II) ions from aqueous solution using 
an electrospun polyvinylpyrrolidone/silica/3-aminopropyl-
triethoxysilane (PVP/SiO2/APTES) composite nanofiber 

adsorbent. The maximum adsorption capacities for Cd(II), 
Pb(II) and Ni(II) ions were found to be 157.4, 158.3 and 
63.0 mg/g, respectively. These values were related to the 
large surface area together with the inter- and intrafibrous 
pores of the composite nanofiber adsorbent resulting in 
increased adsorption capacity. Bahmani et al. (2019) used a 
composite nanofiber consisting of polyacrylonitrile (PAN) 
and  Fe2O3 NPs for As(V) ion removal from aqueous solu-
tion. The maximum adsorption capacity achieved with 0.5 
wt%  Fe2O3 NPs was 71.9 mg/g compared to 82.2 mg/g 
recorded for 1.0 wt%  Fe2O3 NPs. The enhanced adsorp-
tion capacity observed for the 1.0 wt%  Fe2O3 NPs compos-
ite material was due to the availability of more chelating 
groups from the  Fe2O3 NPs, to bind As(V) ions. Parlayıcı 
et al. (2016) synthesized an electrospun PAN/TiO2 nanofiber 
at 1.0 and 3.0 wt% amounts of  TiO2 NPs. The nanofibers 
achieved adsorption capacities for Cr(VI) ions of 245.3 
and 280.4 mg/g for 1.0 and 3.0 wt% PAN/TiO2 nanofib-
ers, respectively. The adsorption mechanism was enhanced 
due to electrostatic attraction, surface complexation and 
coordination. Vázquez-Guerrero et al. (2021) incorporated 
 Fe2O3 NPs into cellulose nanofibers to improve Cd (II) and 
Pb(II) ion adsorption and maximum adsorption capacities 
of 12 and 81 mg/g were achieved, respectively. The results 
showed that the impregnation of  Fe2O3 within the nanofibers 
enhanced the adsorption performance for the uptake of metal 
ions in aqueous solution.

We report the combined use of M. oleifera, MONPs 
and PAN in the development of nanocomposite adsorbents 
through the electrospinning process. There are currently sev-
eral reports on the use of M. oleifera as a natural coagulant 
for water purification. The plant extract contains dimeric 
cationic proteins with the resultant surface charge increasing 
its capacity for adsorption (Ali 2016; Ndabigengesere and 
Narasiah 1998; Okuda et al. 2001). Its use incorporated with 
metal oxides into nanofibers for adsorption applications is 
limited.

Experimental

Materials

Iron(III) chloride  (FeCl3, 99%), iron(II) sulfate heptahy-
drate  (FeSO4·7H2O), manganese(II) sulfate  (MnSO4.
H2O), cobalt(II) sulfate  (CoSO4), potassium permanganate 
 (KMnO4), sodium hydroxide (NaOH), hydrochloric acid 
(HCl), polyacrylonitrile (PAN) average MW 150000, N, 
N-dimethylformamide (DMF), sodium chloride (NaCl), 
lead nitrate  (PbNO3, 98%) and ethanol were of analytical 
grade and used as purchased from Sigma-Aldrich. M. oleif-
era seeds were purchased from Umoyo Natural Health Store, 
Zambia.
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Instrumentation

The blended polymer solutions were electrospun using an 
electrospinning unit. The voltage was supplied by a high-
voltage power supply (JDF-1, Beijing, China), and the feed-
ing rate of the solution was controlled by a syringe driver 
(789100C, Cole-Parmer, Vernon Hills, IL, USA). The 
nanofiber mats were collected on aluminum foil fitted to 
the collector, which was placed vertically to the needle tip.

The surface morphology of the materials was examined 
using a Zeiss Crossbeam 540 field emission-scanning elec-
tron microscope (FE-SEM) operated at 2.00 kV. The cross-
beam 540 FEG was coupled with energy-dispersive X-ray 
spectroscopy, which was used to determine the elemental 
composition of the samples. To prevent electrostatic charg-
ing during analysis, the material samples were coated with 
a thin layer of carbon. ImageJ software was used to esti-
mate the average NPs and fiber diameters.  N2 absorption/
desorption isotherms were obtained on a Micromeritics 
TriStar II 3020 Analyzer at − 196 °C, operated in a relative 
pressure (P/Po) range of 0–1.0 with pre-degassing of the 
samples at 100 °C for 18 h under vacuum prior to the meas-
urement. The Brunauer–Emmett–Teller (BET) and Bar-
rett–Joyner–Halenda (BJH) models were used to determine 
the surface area, pore volume and size of the samples. X-ray 
diffraction (XRD) patterns were obtained using a Bruker D2 
Phaser X-ray diffractometer (XRD) with  CuKα radiation, a 
0.15418 nm wavelength and a scanning speed of 0.05° per 
minute. Infrared (IR) spectra were recorded using an Alpha 
(II) Brucker spectrometer.

Synthesis of NPs

Fe3O4 NPs

Fe3O4 NPs were synthesized by chemical co-precipitation of 
 Fe3+ and  Fe2+ with NaOH (Mascolo et al. 2013). In a typical 
experiment, 0.02 mol of  FeCl3 and 0.01 mol of  FeSO4·7H2O 
were dissolved in 100 mL degassed, deionized water and 
the mixture was sonicated for 15 min. A precipitating agent 
was prepared by dissolving 0.08 mol of NaOH in 100 mL 
degassed, deionized water which was added dropwise into 
the reaction mixture at room temperature (25 °C) under 
nitrogen gas while stirring. The mixture was stirred for 3 h, 
and the obtained precipitate was washed with deionized 
water and rinsed several times with ethanol. The particles 
were separated from the supernatant by centrifugation and 
were dried under vacuum at 80 °C for 6 h.

Co‑doped  Fe3O4 NPs

Synthesis of Co-doped  Fe3O4 NPs was carried out based 
on a modified co-precipitation method (Wahab et al. 2019). 

In brief, 0.014 mol of  FeCl3 and 0.007 mol of  FeSO4·7H2O 
were dissolved in 50 mL of degassed, deionized water at 
room temperature. The mixture was sonicated for 15 min 
followed by the addition of  CoSO4 (0.04 M, 10 mL), and the 
mixture was stirred for 10 min. Thereafter, NaOH (0.25 M, 
40 mL) in degassed water was added to the reaction mixture 
dropwise. The mixture was placed in a Teflon-lined stain-
less-steel autoclave and heated at 160 °C for 4 h. The mix-
ture was cooled, and the particles were washed with deion-
ized water, rinsed with ethanol and dried under vacuum for 
6 h at 80 °C.

Mn‑doped Fe3O4 NPs

Synthesis of Mn-doped  Fe3O4 NPs was adapted from Warner 
et al. (2012) with minor modification. Briefly, 1.0 g of  Fe3O4 
NPs was suspended in 50 mL degassed, deionized water and 
sonicated for 30 min. To this mixture,  MnSO4 (0.009 M, 
10 mL) in water was added and stirred for 50 min, followed 
by the addition of  KMnO4 (0.009 M, 10 mL) in water. The 
reaction mixture was stirred for 1 h at room temperature, 
and the formed particles were separated, washed, and rinsed 
with ethanol to remove traces of  KMnO4. The particles were 
dried in an oven at 120 °C for 2 h.

Co‑ and Mn‑doped Fe3O4 NPs

Co- and Mn-doped  Fe3O4 NPs were prepared following the 
method reported for Co-doped  Fe3O4 NPs. However,  CoSO4 
(0.02 M, 10 mL) and  MnSO4 (0.02 M, 10 mL) were added 
prior to the dropwise addition of NaOH.

M. oleifera biomass solution preparation

Finely ground M. oleifera seed powder was added to a 95% 
ethanol aqueous solution and stirred for 30 min to defat the 
powder. The powder was separated by centrifugation and 
dried at room temperature for 24 h (dos Santos et al. 2016). 
The M. oleifera extract was obtained by adding 1.0 g of 
defatted powder to aqueous NaCl (1 M, 100 mL) solution. 
The solution was stirred for 1 h, and the extract was sepa-
rated by filtration. The filtrate was frozen at − 4 °C for 24 h 
and then freeze-dried. The obtained white powder was stored 
at room temperature.

Synthesis of nanofibers

PAN/M. oleifera nanofibers

The PAN/M. oleifera mats were fabricated using the elec-
trospinning technique. Briefly, 8% (w/v) PAN solution was 
prepared by dissolving 0.8 g of PAN polymer powder in 
10 mL DMF solution. The mixture was stirred for 8 h to 
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form a homogeneous solution. Then 3.0 g M. oleifera pow-
der was added to the homogeneous solution, and stirring was 
continued for another 5 h to facilitate complete dissolution. 
The blended suspension was electrospun under optimal con-
ditions (flow rate of 0.8 mL/h, applied voltage of 10 kV, and 
tip-to-collector distance of 15 cm). The nanofibrous mats 
obtained were placed in a vacuum oven (160 °C, 60 min) 
to increase their stability in water. The mats were detached 
from the aluminum foil and cut into 2 cm × 2 cm sections.

PAN/M. oleifera/MONPs nanofibers

PAN/M. oleifera/MONPs mats were prepared by adding 
0.8 g of PAN to 10 mL of DMF solution. The mixture was 
stirred for 8 h to form a homogeneous solution. To this, 
1.5 g M. oleifera powder and 1.0 g MONPs powder were 
simultaneously added, and stirring was continued for another 
5 h. The solution was sonicated for 5 min prior electrospin-
ning. The solution was electrospun using the optimal condi-
tions listed in the previous section.

Surface charge characterization of nanofiber mats

The initial pH of the analyte solution plays a significant 
role in the adsorption process, as it influences the degree 
of ionization/dissociation of surface functional groups on 
the adsorbent. This can be explained by the adsorbent point 
of zero charge  (pHpzc), defined as the pH at which the sur-
face charge density of the material is zero. Surface charge 
characterization of the fabricated nanofibers was determined 
by the solid addition method (Naiya et al. 2009). Nanofiber 
mats were cut into 5 mg pieces and placed in 0.01 M NaCl 
solutions with varying pH values (2.5–9.0). The solution was 
stirred for 48 h, and the pH was measured thereafter. The 
 pHpzc was determined by plotting the difference in initial pH 
 (pH0) and final pH  (pHf) values against  pH0. The point of 
intersection of the resulting curve with  pH0 gives the point 
of zero charge (Zhao et al. 2015).

Adsorption experiments

Batch adsorption experiments were performed to investigate 
the adsorption behavior of electrospun composite nanofibers at 
different parameters such as solution pH, contact time and ini-
tial Pb(II) concentration. In order to achieve this, the compos-
ite nanofiber mat of mass 1.0 mg was immersed in 20 mL of 
Pb(II) solution (5 mg/L) while shaken at 100 rpm under ambi-
ent conditions. The initial pH of the Pb(II) solution was varied 
in the range of 3–10. The effect of contact time and initial 
Pb(II) concentration was studied in the range of 30–150 min 
and 1–30 mg/L, respectively. The concentrations of the metal 
ions were determined using ICP-MS. The equilibrium adsorp-
tion capacity  (qe) was calculated using Eq. (1) (Chang et al. 

2016); Tan et al. 2016). Blank experiments were conducted to 
validate the adsorption experiments. All the adsorption experi-
ments were carried out in triplicate for statistical purposes, and 
the averaged values were reported.

where Ci and Ce are the initial and equilibrium concentra-
tion, respectively (mg/L), V is the volume of the solution (L) 
and m is the mass of fiber mat used (g).

Adsorption isotherms

Adsorption isotherms are essential in understanding the 
adsorption process and represent the interaction between 
the amounts of the adsorbate adsorbed on the surface of the 
adsorbent at equilibrium concentration (Bharathi and Ramesh 
2013). The Langmuir and Freundlich isotherms are the most 
widely used models as they give information pertaining to the 
maximum adsorption capacity and binding mechanisms. With 
respect to the Langmuir isotherm, it is assumed that the adsor-
bent has a homogenous surface and can only allow monolayer 
adsorption. This model can be described by Eq. (2) (Fan et al. 
2012).

where qm is the maximum amount of adsorption (mg/g) 
and KL is the Langmuir constant related to binding energy 
between the adsorbate and adsorbent (L/mg).

KL can be used to determine the separation factor, RL. The 
RL value gives information on the strength of adsorption and 
is defined by Eq. (3) (Hasan et al. 2012).

The Freundlich isotherm on the other hand assumes multi-
layer and heterogeneous adsorption of solute on an adsorbent 
surface and is expressed by Eq. (4) (Li et al. 2003).

where KF is the Freundlich constant and is related to the 
binding capacity between absorbent and adsorbate and n rep-
resents the empirical constant that indicates heterogeneity 
factor and is related to the sorption intensity.

Adsorption kinetics

Adsorption kinetic models are formulated on the assump-
tion of the surface reaction being the limiting step in the 

(1)qe =

(

Ci − Ce

)

× V

m

(2)
Ce

qe
=

Ce

qm
+

1

KLqm

(3)RL =
1

1 + KLCi

(4)log qe = logKF +
1

n
logCe
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adsorption process without consideration of the diffusive 
transfer of metal ions onto the adsorbent (Nurlilasari et al. 
2019). The adsorption kinetics were investigated using 
pseudo-first-order and pseudo-second-order kinetic studies. 
The pseudo-first-order model assumes physical adsorption 
as the dominant mechanism. It can be represented according 
to Eq. (5) (Wang et al. 2014).

where k1 is the pseudo-first-order rate constant  (min−1)
While the pseudo-second-order model indicates chem-

isorption as the rate-limiting step (Cai et al. 2017), the 
pseudo-second-order model can be expressed using Eq. (6).

where k2 is the pseudo-second-order rate constant (g/
mg.min)

Results and discussion

SEM micrographs of the synthesized material

MONPs

SEM images show the morphology of the synthesized 
MONPs as presented in Fig. 1. The  Fe3O4 particles were 
predominantly spherical and agglomerated. The metal-
doped  Fe3O4 particles exhibited an identical shape as the 
prepared  Fe3O4 particles, suggesting that the surface mor-
phology was nearly unchanged during the co-precipitation 
process (Nurlilasari et al. 2019). According to Atacan et al. 
(2018), MONPs tend to agglomerate to reduce the high 
surface energy they possess. SEM images also reveal that 
the mean diameters of the MONPs are different, ranging 
between 46 ± 5 and 58 ± 6 nm as can be seen in Fig. S1 in 
the Supplementary Information, suggesting that the  Fe3+ and 
 Fe2+ ions of  Fe3O4 are substituted by metal dopants  (Co2+ 
and  Mn2+) of different radii (Suresh et al. 2012). SEM–EDX 

(5)Iog (qe − qt) = Iog
(

qe
)

− k1

(6)
t

qt
=

(

1

qe

)

t +

(

1

k2q
2
e

)

analysis shown in Fig. S2 further confirmed the successful 
synthesis of the NPs. Fig. S2a shows the presence of iron 
and oxygen in  Fe3O4, and Fig. S2b–d shows the presence of 
cobalt, manganese or both for the correspondingly doped 
 Fe3O4.

Table 1 shows the specific surface areas, pore volumes 
and pore diameters obtained for the MONPs. Analysis of 
the  Fe3O4 NPs before and after doping with  Co2+ showed 
an increase in the specific surface area from 61 to 65  m2/g. 
Similarly, an increase in the specific surface area to 80  m2/g 
was observed when  Mn2+ dopant was added to the  Fe3O4 
structure. The large specific surface area confirms a high 
number of active sites available for adsorption on the surface 
of the nanoparticles. When dopants with different atomic 
sizes compared to the parent crystal are added, more imper-
fections are expected to occur (Wahab et al. 2019; Warner 
et al. 2012). As previously stated, the  Co2+ ion has a smaller 
atomic radius and the  Mn2+ ion has a larger atomic radius 
than the parent ions of the ferrite crystal. This implies that 
the imperfections caused by doping with these metals will 
cause surface roughness and disorder of the  Fe3O4 structure 
leading to increased specific surface area. The inclusion of 
both  Co2+ and  Mn2+ dopants in the  Fe3O4 mother structure 
resulted in a significantly decreased specific surface area of 
30  m2/g and the lowest pore volume of 0.08  cm3/g (Table 1). 
This reduction may be related to the observed agglomeration 
of the  Fe3O4:Co-Mn NPs as observed in SEM images. Even 
though agglomeration is observed in all NPs, the large par-
ticle size of  Fe3O4:Co-Mn NPs may also contribute toward 
reducing the specific surface area. Increased agglomeration 

Fig. 1  SEM images of a  Fe3O4, b  Fe3O4:Co, c  Fe3O4:Mn and d  Fe3O4:Co-Mn NPs

Table 1  Textual properties of the MONPs

Sample Specific surface 
area  (m2/g)

Pore volume 
 (cm3/g)

Pore 
diameter 
(nm)

Fe3O4 NPs 61 0.21 3.73
Fe3O4:Co NPs 65 0.22 3.90
Fe3O4:Mn NPs 80 0.25 3.90
Fe3O4:Co-Mn NPs 30 0.08 2.72
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of particles has been found to reduce the specific surface 
area of doped nanomaterials (Mbakaan et al. 2021). The 
pore diameters of the materials ranged from 2.72 to 3.90 nm, 
revealing them as mesoporous. This means that the synthe-
sized nanofiber mats have the capacity to adsorb metal ions.

PAN/M. oleifera and PAN/M. oleifera/MONP nanofibers

SEM images of PAN/M. oleifera and PAN/M. oleifera/
MONP electrospun fibers have a characteristic interwoven 
network structure (Fig. S3) caused by thermal cross-link-
ing. The interwoven network structure has been reported to 
enhance the mechanical strength of fibers (Chen et al. 2019). 
The fibers are continuous and bead-free as shown in Fig. S3. 
The PAN/M. oleifera fibers (Fig. 2a) exhibited an uneven 
outer surface with an average diameter of 218 ± 22 nm (Fig. 
S4a). Incorporation of MONPs in the PAN/M. oleifera blend 
resulted in surface roughness of the fibers (Fig. 2b–e) and 
an increased mean diameter (268 ± 21–317 ± 27 nm) (Fig. 
S4b–e). The surface roughness may be an indication that 
the MONPs are incorporated inside the nanofibers. The 
enhanced surface roughness is expected to increase the sur-
face area of the composite nanofibers. The increased fiber 
diameter upon the addition of MONPs was attributed to the 
higher viscosity of the polymer composite (Lee et al. 2018; 
Liu et al. 2015; Ramakrishna et al. 2006).

FTIR analysis

FTIR spectroscopy was used to identify specific functional 
groups in the synthesized nanofibers (Fig. 3). This is essen-
tial for gaining insight into the adsorption mechanism of 
the fibers. Functional groups identified in Fig. 3a include 
a broad peak at 3293  cm−1 attributed to O − H stretching 
within the fatty acids, carbohydrates and protein structure 
present in the M. oleifera seed sample. The peak observed 
at 2937  cm−1 is attributed to C–H stretching, and peaks 
at 1650  cm−1 and 1070  cm−1 are attributed to C=O and 
C–O stretching, respectively (Araújo et al. 2010; Bhutada 
et al. 2016; Ibrahim et al. 2022; Narayan et al. 2022). The 
pure PAN (Fig. 3(b)) displayed the characteristic nitrile 
(C≡N) stretching peak at 2240   cm−1 and the alky bond 

(C–H) stretching peak at 1450  cm−1 (Fayemi et al. 2018; 
Narayan et al. 2022). The synthesized composite nanofibers 
(Fig. 3c–g) showed peaks for nitrile stretching at 2240  cm−1 
from the PAN component, a weak C–H stretching peak at 
2937  cm−1 from the M. oleifera extract with the C=O and 
C−O peaks at 1650  cm−1 and 1070  cm−1, respectively. The 
results support the suggestion made previously that the M. 
oleifera seed extract and PAN are incorporated within the 
nanofiber matrix.

X‑ray diffraction analysis

The crystal structures of the synthesized MONPs were elu-
cidated by XRD as illustrated in Fig. 4. The positions and 
relative intensities of the major diffraction peaks of the iron 
oxide sample were in accordance with the standard  Fe3O4 
(JCPDS card no. 89–3854) and comparable to other studies 
(Guo et al. 2011; Klencsár et al. 2019). The major peaks 
observed at 2θ = 29.6°, 34.9°, 42.6°, 53.1°, 56.6° and 62.3° 
correspond to the (220), (311), (400), (422), (511) and (440) 
planes, respectively (Nunes et al. 2006). The presence of 

Fig. 2  SEM images of a PAN/M. oleifera, b PAN/M. oleifera/Fe3O4, c PAN/M. oleifera/Fe3O4:Co, d PAN/M. oleifera/Fe3O4:Mn and e PAN/M. 
oleifera/Fe3O4:Co-Mn nanofibers

Fig. 3  FTIR spectra of a M. oleifera powder, b PAN powder, c 
PAN/M. oleifera, d PAN/M. oleifera/Fe3O4, e PAN/M. oleifera/
Fe3O4:Mn, f PAN/M. oleifera/Fe3O4:Co and g PAN/M. oleifera/
Fe3O4:Co-Mn nanofibers
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these planes in the patterns confirms the inverse-spinel struc-
ture of  Fe3O4 (Warner et al. 2012).

The XRD patterns of metal-doped  Fe3O4 were indexed 
and compared to the un-doped  Fe3O4 (Fig. 4a). The 2theta 
peaks of the Co-doped  Fe3O4 (Fig. 4b) showed peaks that 
were slightly shifted to higher angles due to slightly smaller 
atomic radius of  Co2+. The peak shifts are an indication 
of successful incorporation of  Co2+ within the ferrite lat-
tice structure. Figure 4c shows the Mn-doped  Fe3O4 XDR 
pattern. There was no significant shifts observed compared 
to the free  Fe3O4. Similar findings have been reported for 
Mn-doped  Fe3O4 (Warner et al. 2012). The pattern also 
shows no peaks that correspond to  MnO2 or  Mn3O4 further 

confirming the incorporation of  Mn2+ atoms in the ferrite 
lattice structure. The Co–Mn-doped  Fe3O4 XRD pattern 
shown in Fig. 4d follows the same pattern as that for Fig. 4c 
with no shifts or new peaks observed. This confirms that 
there are no cobalt oxide or manganese oxide peaks and 
since EDX analysis confirmed the presence of both Co and 
Mn atoms, and there was a significant change in the specific 
surface area on the material, doping can be confirmed.

Effect of solution pH

Figure 5a shows the  pHpzc of the composite fibers. The  pHpzc 
of PAN/M. oleifera nanofiber mat was found to be 6.1. Inclu-
sion of MONPs into PAN/M. oleifera blend reduced the 
 pHpzc values to 4.9 (PAN/M. oleifera/Fe3O4), 4.8 (PAN/M. 
oleifera/Fe3O4:Mn), and 5.0 (PAN/M. oleifera/Fe3O4:Co and 
PAN/M. oleifera/Fe3O4:Co-Mn). The reduced  pHpzc indi-
cates that the introduction of MONPs into PAN/M. oleif-
era blend resulted in an increased ionic strength of the fiber 
mats.

The effect of solution pH on the adsorption of Pb(II) ions 
onto composite fiber mats was investigated in the range of 
3 – 10 while maintaining the initial Pb(II) ions concentration 
at 5 mg/L. Figure 5b shows the effect of pH on the adsorp-
tion capacity of the composite fibers. The PAN/M. oleifera/
Fe3O4:Mn composite fiber showed the highest adsorption 
capacity at a wider pH range from 7.5 to 9. At solution pH 
below the  pHPZC, the adsorption capacities of the adsor-
bents are below 58 mg/g. When the solution pH is less than 
 pHPZC, the surface of the composite fibers becomes posi-
tively charged. As a result of this, adsorption of positively 
charged Pb(II) ions is least favored due to electrostatic repul-
sion. This explains the trend observed in Fig. 5b. The results 

Fig. 4  XRD patterns of a  Fe3O4, b  Fe3O4:Co, c  Fe3O4:Mn and d 
 Fe3O4:Co-Mn NPs

Fig. 5  Plots of a  pHpzc determination and b effect of pH on Pb(II) adsorption
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indicate that the optimum adsorption capacity and removal 
efficiency occur at high pH (above  pHPZC) when the adsor-
bents surface become negatively charged. It stands to reason 
that the mechanism of adsorption is electrostatic attraction.

Effect of contact time

The influence of contact time on adsorption was exam-
ined between 30 and 150 min, while keeping the Pb(II) ion 
concentration at 5 mg/L, and at optimal solution pH of 8 
(PAN/M. oleifera/MONPs) and 9 (PAN/M. oleifera). The 
results obtained are presented in Fig. 6. The figure shows 
that as the time is increased from 30 min, the adsorption 
capacity of the fiber mats increased until equilibrium was 
reached at 60 min (PAN/M. oleifera/MONPs) and 90 min 
(PAN/M. oleifera). A considerably faster adsorption 
with higher adsorption capacity was obtained by the fib-
ers incorporated with MONPs, with the PAN/M. oleifera/
Fe3O4:Mn fiber recording the highest adsorption capacity 
of 137.6 mg/g after 60 min. This was attributed to the high 
surface area of the MONPs as discussed previously.

Effect of initial Pb(II) concentration

The influence of initial Pb(II) ion concentration on the 
adsorption capacity and the removal efficiency of the fiber-
matrix surface was studied between the range of 1–30 mg/L 
and under optimum pH and contact time of 60 min (PAN/M. 
oleifera/MONPs) and 90 min (PAN/M. oleifera). Figure 7 
shows that as initial concentration of Pb(II) ions increased, 
the adsorption capacity increased until saturation was 
approached at 20 mg/L. The increase in adsorption capaci-
ties of the fiber mats is due to the numbers of vacant active 
sites available for adsorption during the initial stage. As the 

adsorption process proceeded, the remaining vacant surface 
sites decreased resulting in slowing down of the adsorption 
capacity until reaching the saturation point. The observed 
trends of the adsorption capacity in this study are in agree-
ment with other previous reports on the adsorption of heavy 
metals by composite fibers (Lei et al. 2022; Tripathy et al. 
2019). In order to further understand the adsorption behav-
ior, the data obtained were fitted to the isotherm models.

Adsorption isotherms

The adsorption equilibria were best expressed using adsorp-
tion isotherm equations. The linear fitting plots of  Ce/qe ver-
sus  Ce and log  qe versus log  Ce for the Langmuir and Fre-
undlich isotherm models, respectively, are shown in Fig. 8. 
The model parameters were determined and summarized in 
Table 2. From the graphs, the best isotherm fit was deter-
mined by the correlation coefficient  (R2). By comparing 
the  R2 values, the Langmuir model was determined to fit 
well with the linearized isotherm models. The Langmuir 
isotherm describes the adsorption sites as homogenously 
distributed on the adsorbents and the adsorption process is 
considered monolayer adsorption. It can be observed that  qm 
ranged from 172.4 to 227.3 mg/g with the PAN/M. oleifera/
Fe3O4:Mn fiber recording the highest qm value (227.3 mg/g). 
This indicates that the PAN/M. oleifera/Fe3O4:Mn fiber had 
the highest amount of Pb(II) ions adsorbed. The PAN/M. 
oleifera/Fe3O4:Mn fiber also recorded the highest  KL value 
of 0.272 L/mg implying a strong adsorption interaction.

The RL values for the adsorbents were determined to 
range between 0.11 and 0.88. The RL values specify if the 
adsorption is favorable (0 < RL < 1), unfavorable (RL> 1), 
irreversible (RL = 0) or linear (RL = 1). In this case, the fibers 
demonstrate a favorable Pb(II) adsorption process.Fig. 6  Effect of contact time on Pb(II) adsorption

Fig. 7  Effect of initial Pb(II) concentration on Pb(II) adsorption



607Chemical Papers (2024) 78:599–611 

1 3

Adsorption kinetics

In order to understand the adsorption kinetics of Pb(II) ions 
by the fibers, the pseudo-first-order and pseudo-second-
order kinetic models were used to test the experimental data. 
The linear fitting plots of log  (qe-qt) versus t and t/qt versus t 
for the pseudo-first-order and pseudo-second-order models, 
respectively, are depicted in Fig. 9. According to  R2 values, 
the kinetic model that best fit the data was the pseudo-sec-
ond-order model. The model is based on the assumption that 
chemisorption is the rate-determining step. Table 3 sum-
marizes the calculated parameters from the fitted models.

Based on the pseudo-second-order model, it can be seen 
that  qe values ranged between 87.71 and 144.97 mg/g with 
the highest value obtained by the PAN/M. oleifera/Fe3O4:Mn 
fiber. This implies that the PAN/M. oleifera/Fe3O4:Mn fiber 
had the highest amount of Pb(II) ions adsorbed at equilib-
rium. Additionally, the experimentally determined values 
of  qe (Fig. 6) were very close to the calculated values in the 
pseudo-second-order model. This supports the applicability 
of the pseudo-second-order model.

A comparison of the maximum adsorption capacities with 
similar adsorbents is shown in Table 4. As observed, the 

fabricated PAN/M. oleifera/Fe3O4:Mn adsorbent performs 
better compared to other adsorbents for removing Pb(II) 
ions. This may be due to the porous nature of the adsorbent 
coupled with the presence of carboxyl and hydroxyl func-
tional groups from the M. oleifera seed extract which can 
increase surface complexation with metal ions. The PAN/M. 
oleifera/Fe3O4:Mn composite mat can therefore be consid-
ered as a promising adsorbent for wastewater treatment due 
to its performance.

Conclusion

In this study, we demonstrated the fabrication of multicom-
posite fibers containing M. oleifera seed biomass, metal 
oxide nanoparticles and PAN using electrospinning. Their 
capability as adsorbents for Pb(II) ions in aqueous solu-
tion was successfully investigated using a batch adsorp-
tion process. Evaluation of the adsorption behavior of the 
PAN/M. oleifera/MONPs composite nanofibers for Pb(II) 
ions adsorption at optimal pH 8 and contact time 60 min 
revealed the adsorption followed the Langmuir isotherm 
and the pseudo-second-order kinetic model. The maximum 

Fig. 8  The fitted lines of a the Langmuir and b Freundlich isotherms

Table 2  Fitting parameters 
of Langmuir and Freundlich 
isotherm models

Adsorbent Langmuir model Freundlich model

R2 KL (L/mg) qm (mg/g) R2 KF (mg/g) n

PAN/M. oleifera 0.97 0.134 172.4 0.90 23.43 1.557
PAN/M. oleifera/Fe3O4 0.98 0.169 185.2 0.87 24.84 1.626
PAN/M. oleifera/Fe3O4:Co 0.97 0.200 208.3 0.92 35.96 1.885
PAN/M. oleifera/Fe3O4:Mn 0.99 0.272 227.3 0.88 46.29 1.991
PAN/M. oleifera/Fe3O4:Co-Mn 0.98 0.151 178.6 0.90 23.12 1.633
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adsorption capacity ranged between 172.4 and 227.3 mg/g 
with the PAN/M. oleifera/Fe3O4:Mn fiber recording the 
highest value. The results demonstrate the effectiveness of 
incorporating cost effective, nontoxic and indigenous mate-
rials as potential adsorbents for Pb(II) ion removal from 
wastewater.
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Fig. 9  The fitted lines of a pseudo-first-order and b pseudo-second-order models

Table 3  Fitting parameters of 
pseudo-first-order and pseudo-
second-order models

Adsorbent Pseudo-first-order model Pseudo-second-order model

R2 qe (mg/g) k1  (h−1) R2 qe (mg/g) k2 (g/g h)

PAN/M. oleifera 0.92 94.24 1.206 0.97 87.71 0.015
PAN/M. oleifera/Fe3O4 0.73 72.93 1.377 0.98 104.17 0.065
PAN/M. oleifera/Fe3O4:Co 0.93 92.56 1.494 0.96 114.94 0.040
PAN/M. oleifera/Fe3O4:Mn 0.94 100.05 1.366 0.98 144.97 0.045
PAN/M. oleifera/Fe3O4:Co-Mn 0.93 86.36 1.296 0.97 97.09 0.049

Table 4  Pb(II) ion maximum 
adsorption capacity of different 
adsorbents

Adsorbents qm (mg/g) References

PVA/ Chitosan/Aminated-Fe3O4 21.2 Koushkbaghi et al. (2017
Polyaniline/CoFeC6N6 13.6 Moazezi et al. (2018
Polydopamine/PAN/MnO2 185.2 Yanzi et al. (2018)
Cellulose nanofibrils/PVA/acrylic acid 131.5 Jiarong et al. (2018)
PAN/Hydrous  MnO2 194.4 Yadav et al. (2021)
Cellulose/Fe3O4 81.0 Vázquez-Guerrero et al. (2021)
PAN/M. oleifera/Fe3O4:Mn 227.3 This study
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