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Abstract
A method for the synthesis of rafoxanide 6, a halogenated salicylanilide used as an efficient anthelmintic in sheep and cat-
tle, is presented. Rafoxanide 6 was synthesized in only three steps from readily available 4-chlorophenol with 74% overall 
yield. The synthesis has two key stages: the first was salicylic acid iodination, adding iodine in the presence of hydrogen 
peroxide, which allowed obtaining a 95% yield. The second key stage was the reaction of 3,5-diiodosalicylic acid 5 with 
aminoether 4, where salicylic acid chloride was formed in situ with  PCl3 achieving 82% yield. Chemical characterization 
of both intermediates and final product was achieved through physical and spectroscopic (IR, NMR and MS) techniques.
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Introduction

A wide variety of interesting biological properties have 
been reported for salicylanilides (Waisser et al. 2006; De 
La Fuente et al. 2006). Furthermore, salicylanilides display 
potent antifungal and antibacterial activity (Waisser et al. 
2001 and 2003; Kuneš et al. 2002; Imramovský et al. 2009; 
Férriz et al. 2010; Dahlgren et al. 2007; Lal et al. 2021; 
Miró-Canturri et al. 2020). They have shown activity against 
gram-positive pathogens including methicillin-resistant 
Staphylococcus aureus and vancomycin-resistant Enterococ-
cus faecium, strains representing a significant problem in 
clinical practice (Vinsova and Imramovský 2004; Hiramatsu 
et al. 1997). Otherwise, antimycobacterial activity of salicy-
lanilides has been reported (Waisser et al. 2003; Krátký and 
Vinšová 2011; Krátký et al. 2012; Le et al. 2022). Addi-
tionally, some studies identified the salicylanilide esters of 
N-protected amino acids as selective inhibitors of Interleu-
kin-12p40 production and inhibitors of the protein kinase 
epidermal growth factor receptor (EGFR PTK) (Kamath and 
Buolamwini 2006; Liechti et al. 2004; Brown et al. 2008). A 

recent study showed that some halogenated salicylanilides 
can reduce SARS-CoV-2 replication and suppress induction 
of inflammatory cytokines in a rodent model (Blake et al. 
2021). Halogenated salicylanilides, are important anthelmin-
tics that are used extensively in the control of Haemonchus 
spp., Fasciola spp. infestation in sheep and cattle in many 
countries (Sjogren et al. 1991; Swan 1999), and as potential 
antileishmanial agents (Lal et al. 2023).

N-[3-Chloro-4-(4-chlorophenoxy)-phenyl]-2-hydroxy-
3,5-diiodobenzamide, rafoxanide 6 (Singh et  al. 1977; 
Merck and Co Pat 1968), is a salicylanilide currently used 
and known for its antihelmintic and fasciolicide properties 
(Rot et al. 1988; Jabbar et al. 2006; Diiwel and Metzger 
1973) and an efficient inhibitor of chitinase in Onchocerca 
volvulus (Gooyit et al. 2014). Recent studies determined that 
rafoxanide is very effective in treating multiple myeloma 
(MM) and showed great effectiveness on diffuse large B-cell 
lymphoma (DLBCL), which is one of the most aggressive 
lymphoid neoplasms (He, et al. 2020). In addition, rafoxa-
nide promotes apoptosis and autophagy of gastric cancer 
cells by suppressing PI3K/Akt/mTOR pathway (Liu et al. 
2019) and triggers apoptosis and cell cycle arrest in multi-
ple myeloma by enhancing responses to DNA damage, sup-
pressing the p38 MAPK pathway (Xiao et al.2019) and as a 
novel agent for the treatment of non-small cell lung cancer 
(Hu et al. 2023) and colorectal cancer (Laudisi et al. 2022).

 * Víctor Kesternich 
 vkestern@ucn.cl

1 Departamento de Química, Facultad de Ciencias, 
Universidad Católica del Norte, Avda. Angamos 0610, 
Antofagasta, Chile

http://crossmark.crossref.org/dialog/?doi=10.1007/s11696-023-02846-9&domain=pdf
http://orcid.org/0000-0001-7455-547X


5092 Chemical Papers (2023) 77:5091–5095

1 3

Its chemical structure has an amide as its main functional 
group and three benzene rings with iodine and chlorine 
atoms, and the last two rings (B and C) linked through a 
diphenyl ether functional group. In the previous synthesis 
of rafoxanide described in the bibliography, iodine chloride 
(ICl) is used as the iodination reagent in the final stage of 
the synthesis (Merck and Co Pat 1968), a volatile, unstable, 
toxic and difficult to handle compound, which results in low 
yields (Zhonghua 2016; Srivastava et al. 1990). On the other 
hand, it is possible to use preformed 3,5-diiodosalicylic acid 
(Mrozik et al. 1969). In this sense, obtaining 3,5-diiodosali-
cylic acid is of great relevance, and several methods have 
been described: ICl (Woollet et al. 1934), in situ generation 
of ICl (Imanieh et al. 2011; Kajigaeshi et al. 1987; Palav 
et al. 2021), N-iodosuccinimide (Misal et al. 2021; Wu et al. 
2020) or in situ generation of  KI3 (Sharma et al. 2016), in 
all these cases the yields have been good, but with very little 
atom economy.

This study describes a synthetic route consisting of only 
three steps with good overall yield and a more efficient iodi-
nation method of salicylic acid.

Experimental

Materials and methods

The reagents and solvents used in this work were obtained 
from Fluka, Sigma-Aldrich or Merck and used without fur-
ther purification. Melting points were determined on a Stuart 
SMP3 and were uncorrected. The infrared spectroscopy (IR) 
was performed on a Perkin-Elmer FT-IR Spectrometer Spec-
trum Two with KBr. NMR spectra were recorded in  CDCl3, 
at 500 MHz (Bruker). Chemical shifts were reported in parts 
per million (δ) using the residual solvent signals  (CDCl3: δH 
7.26, δC 77.16) as internal standards for 1H and 13C NMR 
spectra and coupling constants (J) are reported in Hz. Mass 
spectra were acquired using IT-MS Bruker AmaZon SL 
spectrometer. TLC was performed on silica gel Merck 60 
 F254 and TLC plates were visualized by spraying with phos-
phomolybdic acid reagent and heating.

Preparation of 3‑chloro‑4‑(4′‑chlorophenoxy)nitrobenzene 
3

A mixture of 4-chlorophenol 2 (12.56 g, 97.7 mmol) and 
KOH (6.83 g, 121.8 mmol) was heated at 70–80 °C with 
vigorous stirring until phenol 2 was completely dissolved. 
Then, fine copper (29 mg, 0.456 mmol) and 3,4-dichloron-
itrobenzene 1 (11.04 g, 57.5 mmol) were added, and the 
mixture was stirred at 110–120 °C for 2.5 h. Then it was 
allowed to reach rt, NaOH 0.8 M (14 mL) was added and the 
resulting mixture was stirred for 20 min, until a precipitate 

was formed. The precipitate was filtered and washed with 
 H2O until neutral pH. Purification of the crude residue by 
flash chromatography  (SiO2, 10% EtOAc/hexanes) afforded 
diphenylether 3 as a pale-yellow solid (15.73  g, 96% 
yield). m.p.: 110–112 °C. IR  cm−1: 3090 (C–H aromatic), 
1560–1570 (C=C aromatic). 1H NMR (500 MHz,  CDCl3) 
δ 8.38 (d, J = 2.7 Hz, 1H), 8.07 (dd, J = 9.1, 2.7 Hz, 1H), 
7.41 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 8.9 Hz, 2H), 6.90 (d, 
J = 9.0 Hz, 1H). 1H NMR data according to literature (Fujii 
et al. 2020). 13C NMR (126 MHz,  CDCl3) δ 158.65 (C), 
153.31 (C), 143.15 (C), 131.09 (C), 130.60 (CH), 126.79 
(CH), 125.13 (C), 123.80 (CH), 121.44 (CH), 117.24 
(CH). HRMS-ESI calculated for  C12H8Cl2NO2 [M +  H]+: 
283.9876, found 283.9876.

Preparation of 3‑chloro‑4‑(4′‑chlorophenoxy)aminoben‑
zene 4

A mixture of iron powder (0.99 g, 17.74 mmol), diphe-
nylether 3 (1.44 g, 5.07 mmol) and acetic acid (1.13 mL, 
19.77 mmol) in EtOH/H2O (2 mL, 3:1) was refluxed for 
2 h. Then, the mixture was cooled to rt and NaOH 1 M was 
added until pH 7. Solids were removed by filtration and the 
filtrate was extracted with chloroform. Organic layer was 
dried over anhydrous sodium sulfate and concentrated to 
give a crude product that was purified by flash chromatog-
raphy  (SiO2, 20–50% EtOAc/hexanes) to afford the corre-
sponding aniline 4 as an orange solid (1.21 g, 94% yield). 
m.p.: 74–75 °C. IR  cm−1: 3400, 3310–3290, 3180 (NH, 
primary amine), 1460 (C=C aromatic). 1H NMR (500 MHz, 
 CDCl3) δ 7.23 (d, J = 6.7 Hz, 2H), 6.89 (d, J = 8.6 Hz, 1H), 
6.81 (d, J = 9.0 Hz, 3H), 6.78 (d, J = 2.8 Hz, 1H), 6.57 (dd, 
J = 8.6, 2.8 Hz, 1H), 3.69 (br s, 2H). 1H NMR data according 
to literature (Fujii et al. 2020). 13C NMR (126 MHz,  CDCl3) 
δ 157.18 (C), 144.49 (C), 143.16 (C), 129.59 (CH), 127.51 
(C), 127.21 (C), 123.54 (CH), 117.51 (CH), 116.72 (CH), 
114.73 (CH). HRMS-ESI calculated for  C12H10Cl2NO 
[M +  H]+: 254.0134, found 254.0135.

Preparation of 3,5‑diiodosalicylic acid (5)

Hydrogen peroxide (3.0 mL, 29.37 mmol, 30% in  H2O) was 
slowly added (20–30 min.) to a mixture of salicylic acid 
(1.50 g, 10.86 mmol) and iodine (1.50 g, 5.85 mmol) in 
EtOH (50 mL) at 80 °C. The mixture was refluxed for 2 h 
and an aqueous solution of  Na2S2O5 (9.5 mL, 10%) was 
added at the same temperature. The mixture was then added 
to  H2O (250 mL) and the precipitate formed was filtered. 
The product was purified by crystallization in EtOH to afford 
the 3,5-diiodosalicylic acid 5 as colorless crystals (4.03 g, 
95%). m.p.: 226–228 °C (according to literature (Imanieh 
et al. 2011) 233 °C). IR  cm−1: 3256 (O–H, phenolic), 1667 
(C=O), 1582–1480 (C=C, aromatic). 1H NMR (500 MHz, 
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 CDCl3) δ 11.32 (s, 1H), 8.25 (d, J = 2.1 Hz, 1H), 8.17 (d, 
J = 2.1 Hz, 1H). 13C NMR (126 MHz,  CDCl3) δ 170.45 
(C), 160.81 (C), 153.15 (CH), 139.32 (CH), 113.17 (C), 
87.05 (C), 81.00 (C). HRMS-ESI calculated for  C7H5I2O3 
[M +  H]+: 390.8323, found 390.8323.

Preparation of N‑[3‑chloro‑4‑(4‑chlorophenoxy)
phenyl]‑2‑hydroxy‑3,5‑diiodobenzamide 6

Phosphorus trichloride (0.11 µL, 1.24 mmol) was added 
to a mixture of 3-(chloro-4-(4´-chlorophenoxy)aminoben-
zene 4 (0.316 g, 1.24 mmol) and 3,5-diiodosalicylic acid 
(0.485 g, 1.24 mmol) in xylene (12 mL) at room tempera-
ture. The resulting mixture was warmed up to 110 °C and 
stirred for 1.5 h. Then, it was allowed to reach room tem-
perature and concentrated. Crude residue was purified by 
flash chromatography  (SiO2, 10–20% EtOAc/hexanes) to 
afford the corresponding salicylanilide 6 as a white solid 
(0.637 g, 82% yield). m.p.: 168–170 °C (according to lit-
erature (Mrozik et al. 1969) 168–170 °C). IR  cm−1: 3400 
(NH, secondary amide), 1630 (C=O), 1460–1480 (C=C, 
aromatic). 1H NMR (500 MHz,  CDCl3) δ 12.47 (s, 1H), 
8.20 (d, J = 1.9 Hz, 1H), 7.99 (s, 1H), 7.79 (t, J = 2.3 Hz, 
2H), 7.41 (dd, J = 8.8, 2.6 Hz, 1H), 7.30 (d, J = 8.9 Hz, 2H), 
7.02 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 8.9 Hz, 2H). 13C NMR 
(126 MHz,  CDCl3) δ 166.39 (C), 160.20 (C), 155.59 (C), 
151.42 (CH), 149.89 (C), 134.49 (CH), 132.92 (C), 129.99 
(CH), 128.77 (C), 126.69 (C), 124.06 (CH), 121.36 (CH), 
121.27 (CH), 119.15 (CH), 116.50 (C), 89.12 (C), 80.59 
(C). HRMS-ESI calculated for  C19H12Cl2I2NO3 [M +  H]+: 
625.8278, found 625.8281.

Results and discussion

Scheme 1 shows the route used for synthesizing salicylani-
lide 6 (Scheme 1). The treatment of 4-chlorophenol 2 with 
KOH generates the phenoxy ion that reacts, in situ, with 
compound 1 in order to form nitroether 3 (96%). The infra-
red spectrum of compound 3 shows bands at 3080 from 1560 
to 1570  cm−1, typical of C–H and aromatic C=C stretch-
ing, respectively. Besides, a band centered at 1420  cm−1 

corresponding to N–O stretching of the nitro group is shown. 
In the 1H-NMR spectrum it is possible to observe a dou-
blet (J = 2.7 Hz) at 8.38 ppm, corresponding to the proton 
located in ortho respect to the nitro group and the iodine 
atom, present in ring B. Also, it is possible to see a doublet 
at 8.07 ppm (J = 9.0 Hz), a signal attributable to the second 
proton ortho to the nitro group. At 6.90 ppm appeared a 
doublet (J = 9.0 Hz), corresponding to the ortho proton to 
the oxygen atom of the ether bridge that joins to the two 
benzene rings, all corresponding to ring B. On the other 
hand, in the ring C, it is possible to observe an AB system as 
a doublet at 7.40 ppm (J = 9.0 Hz), corresponding to the two 
ortho protons to the ether functional group and, a doublet at 
7.03 ppm (J = 9.0 Hz) belonging to the two ortho protons to 
the chlorine atom. The 13C NMR spectrum allows us to see 
the carbon carrying the nitro group at 143.15 ppm and the 
two carbons linked to the oxygen atom of the ether linkage 
that joins the two benzene rings, at 158.65 and 153.31 ppm, 
respectively. The HRMS-ESI analysis showed a molecular 
ion [M +  H]+ of 283.9876, corresponding to the molecular 
formula  C12H8Cl2NO2, which corroborated the structure 
of nitroether 3. Among the reduction methods for diphenyl 
ether 3 tested so far (Table 1) (Li et al. 2014; Bellamy and 
Ou 1984; Lane et al. 2012; Hesse et al. 2013), the reduc-
tion with Fe/HOAc provided the aminoether 4 as a crystal-
line solid in higher yield (94%). The IR spectrum of this 
compound clearly shows the two primary aromatic amine 
bands at 3400 and 3310  cm−1. The two protons of the amine 
functional group appear in the 1H NMR spectrum as a broad 

Scheme 1  Synthesis of Rafoxa-
nide

Table 1  Comparative reduction reactions for compound 3 

a Product of dehalogenation was detected
b Dark doughy product
c Crystalline product

Entry Method 3 yield (%) Refs.

1a Pd–C/NH2NH2 Mix. of products Li et al. (2014)
2 SnCl2/HCl 52% Bellamy and Ou (1984)
3b Fe/HCl 92% Lane et al. (2012)
4c Fe/HOAc 94% Hesse et al. (2013)
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singlet at 3.69 δ. The mass spectrum show a molecular ion 
[M +  H]+ 254.1120 corresponding to  C12H10Cl2NO.

On the other hand, the synthesis of 3,5-diiodosalicylic 
acid (5) was carried out from salicylic acid using 0.5 
equivalents of  I2 in the presence of hydrogen peroxide as 
oxidizing agent. This methodology allowed obtaining com-
pound 5 with 95% yield in an efficient process and with 
great atom economy. The IR spectrum of 3,5-diiodosalicylic 
acid (5) shows intense bands at 3256, 1667 and 1582  cm−1, 
typical of O–H, C=O and C=C stretching, respectively. In 
the 1H-NMR spectrum it is possible to observe a singlet 
at 11.32 ppm, corresponding to phenolic proton, and two 
doublets at 8.25 and 8.17 ppm (J = 2.14 Hz), correspond-
ing to the aromatic protons of 3,5-diiodosalicylic acid. In 
the 13C-NMR spectrum the carboxylic C=O is observed at 
170.45 ppm, the four quaternary carbons of the benzene ring 
at 160.81, 113.17, 87.05 and 81.00 ppm, and the two CH 
at 153.15 and 139.32 ppm. HRMS-ESI analysis showed a 
molecular ion [M +  H]+ of 390.8323, corresponding to the 
molecular formula  C7H5I2O3, which corroborated the struc-
ture of compound 5.

Finally, the condensation between 4 and 3,5-diiodosali-
cylic acid 5 was the key step of the synthesis since it was 
done in a one-pot procedure by forming, in situ, the corre-
sponding acid chloride with  PCl3, thus giving rafoxanide 6 
in 82% yield using xylene as solvent, compared to 52% yield 
using toluene. Unlike the methods previously described 
(Kahl et al. 2011), the intermediate chloride formed does 
not need to be isolated and purified before carrying out the 
condensation reaction leading to the amide. The IR spec-
trum showed the characteristic band of the N–H bond of the 
amide at 3400  cm−1 and the carbonyl band at 1630  cm−1 In 
the 1H NMR spectrum it is possible to see all protons located 
in ring A. At 8.20 ppm a doublet (J = 1.9 Hz) corresponding 
to the ortho proton to the carbonyl group of the amide and at 
7.99 ppm a singlet corresponding to the ortho proton to the 
two iodine atoms. These results are consistent with the mass 
spectrum that shows a molecular ion [M +  H]+ 625.8278 
corresponding to  C19H12Cl2I2NO3, and would be indicative 
of the presence of the tetra substituted ring derived from 
3,5-diiodosalicylic acid, in the structure of rafoxanide 6.

The method we described herein represents an advan-
tageous alternative procedure for the preparation of new 
salicylanilides with structures related to rafoxanide.

Conclusion

The present research allowed us to synthesize the halogen-
ated salicylanilide, rafoxanide, in only three steps, with an 
overall yield of 74%, from simple, cheap and efficient rea-
gents. In addition, a new method of iodination of salicylic 
acid based on the use of  I2 and hydrogen peroxide with high 

yield and great atom economy is proposed. Therefore, this 
method represents a novel and cost-effective alternative pro-
cess for obtaining rafoxanide and its derivatives.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11696- 023- 02846-9.
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