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Abstract
Oxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the 
body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by 
antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxi‑
dant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable 
interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and 
for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages 
and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool 
for the development of a number of fields, especially medicine what can help in the future detection and treatment of many 
serious diseases.
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Introduction

The period of the last 40 years was characterized by search 
for substances with antioxidant properties and methods 
for their determination (Bingol et al. 2021; Gülçin 2020). 
Nowadays there are too many analytical methods, but 
there is no one universal technique for assessing antioxi‑
dant properties and no single available assay provides all 
required information about the examined antioxidant (abil‑
ity to neutralize radicals both in the aqueous and lipophilic 
environments, ability to inhibit and/or delay the oxidation 
process or protect other important molecules) (Alam et al. 
2012). According to Prior et al. (2005), an ideal standard‑
ized method should be characterized by: study on chemical 

reactions actually occurring in potential applications; utili‑
zation of a radical sources which are relevant to biological 
structure; simplicity; well-defined endpoint and chemical 
mechanism; availability of the instrumentation, reproduc‑
ibility within-run and between-day or adaptability for dif‑
ferent antioxidants (both: hydrophilic and lipophilic) as 
well as radicals sources. While the requirements for the 
standard method are known, there is no information how 
to interpret the results obtained by it. The question arises 
how to express antioxidant activities of substances prop‑
erly by this method and what kind of parameters an ideal 
standard antioxidant should possess. It is of significant 
importance because the different ways of expressing the 
results applied today lead to their incompatibility as well 
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as to unreasonable interpretation of the results of clinical 
studies.

Hence, the presented paper is a literature review concern‑
ing the most frequent ways of antioxidant activities expres‑
sion and an attempt to point out their disadvantages and 
advantages. The manuscript can support searching for an 
easy and universal way of the obtained results interpretation. 
Moreover, a clear and comparable way of their expressing 
will enable reliable assessment of antioxidant properties in 
the future.

What are the antioxidant properties?

According to the literature (Schaich et al. 2015; Apak et al. 
2016; Rubio et al. 2016), antioxidant activities with respect 
to the methods are defined in different ways as: antioxidant 
capacity or efficiency or power or parameter or potential or 
potency, and activity. The three most commonly used terms 
(antioxidant capacity, antioxidant activity, antioxidant poten‑
tial) are explained and described below:

•	 Antioxidant capacity—the entire number of electrons 
which are donated to the oxidant or target molecules 
converted per mole of antioxidant during a definite time 
period. This usually corresponds to the number of phe‑
nolic –OH groups in the antioxidant structure, or two 
electrons per – the OH group, but not always (Gülçin 
2009, 2010). The adjective “total” is very often added 
to the term “antioxidant capacity” which indicates that it 
refers to all antioxidants which present in the sample. The 
expression “total antioxidant capacity” (TAC) concerns 
the resultant action of the whole sample, i.e., serum, 
blood, urine, etc. TAC is very often used to assess the 
antioxidant status of biological samples and can evalu‑
ate the antioxidant response of organism against the free 
radicals produced in a given disease (Rubio et al. 2016). 
This term is originated from chemistry; however, it can 
be applied to biology and medicine, and further to nutri‑
tion and epidemiology. According to Sies (2007), neither 
the term “total” nor the term “capacity” are applicable to 
the in vitro assays using an artificial, very often non-rele‑
vant to the biological system, selected oxidant generator 
and using quite different conditions than in the biological 
systems.

•	 Antioxidant activity—is antioxidant concentration 
which is required for providing a specified rate or extent 
of reaction. Hence, this term can be applied when the 
defined experimental conditions measuring the action 
of the potential antioxidant are presented (i.e., pressure, 
temperature, reaction media, coreactants, and reference 
points). Without these parameters, this term is insignifi‑
cant. According to Bartosz (2003) “antioxidant activ‑
ity”, it is the reactivity of the particular antioxidant to 

the particular oxidant. In other, this term can be applied 
with the specific method due to the fact that it expresses 
the chemical reactivity of antioxidant under the specific 
conditions applied in this method (Huang et al. 2005).

•	 Antioxidant potential – this term is used to a lesser 
degree because it is often confused with the thermody‑
namic potential. It describes the ability of an antioxidant 
to neutralize a radical under certain conditions (Schaich 
et al. 2015).

The other terms listed above are more independent of spe‑
cific reactions and have similar chemical meanings. Accord‑
ing to the data presented in the literature (Brainina et al. 
2019), the term “antioxidant activity” is the most commonly 
used. This phenomenon has been explained by the fact that 
this term provides direct information about the total concen‑
tration of antioxidants/oxidants in the sample.

It is worth mentioning that independently of the applied 
terms the activities of antioxidants depend not only on their 
chemical structures but also on many others factors such 
as concentration, temperature, type of substrate, chemical 
environment, as well as water content, a type of solvent, a 
metal and hydrogen ions presence (Gülҫin 2012; Olszowy 
2019; Olszowy-Tomczyk 2020).

The ways of expression of antioxidant properties

Inhibition percent (% I)

According to the term content in “Compendium of Chemi‑
cal Terminology (Gold Book),”(IUPAC 1997) the inhibition 
process is a reduction in the rate of a chemical reaction due 
to the addition of a substance (inhibitor) affecting the con‑
centration of the reactants, catalyst or intermediate product. 
The inhibitor is defined as a chemical which decreases a 
substrate activity. These terms are associated with the anti‑
oxidant activity means an antioxidant (inhibitor) and an 
oxidant (often a reactive radical, a substrate of oxidation 
process). The effect of the inhibitor action is measured as 
the percentage decrease of the initial activity of the oxidant 
at definite time. In the methods using absorbance measure‑
ments (for example DPPH, ABTS+, O2

−, OH, etc.), a percent 
inhibition is calculated from the changes of the absorbance 
(of the radical or the measuring system) relative to its ini‑
tial value after a specified duration reaction (ideally after 
reaching the reaction equilibrium constant) according to the 
following equation (Siddhuraju 2007; Olszowy et al. 2019; 
Kumar et al. 2020):

I(%) =

(

1 −
A60

A0

)

⋅ 100%
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where IP—the percentage of inhibition; At—the absorbance 
(of the radical) after a specified reaction time t; A0—the 
initial (radical) absorbance

A percent inhibition can range from 0 to 100% and 
depends upon: the concentration of the antioxidant, concen‑
tration of the oxidant (radicals), the used solvent, the used 
reagents ratios incubation time, temperature as well as the 
presence of metal, hydrogen, water in the measuring systems 
(Dawidowicz and Olszowy 2011, 2012, 2013; Dawidow‑
icz et al. 2012). The higher value of inhibition percent, the 
greater antioxidant activity.

It is worth remembering that the value of the percent‑
age of inhibition above 90 may be a subject to error which 
may be due to the lack of a linear relationship between the 
measured properties and the increasing concentration of the 
antioxidant.

Summarizing, this parameter can be used to compare 
the antioxidant properties of mixtures, extracts, single sub‑
stances for which measurements were made using the same 
method under the same measurement conditions (i.e., the 
same solvent, reagent ratio, time incubation, temp., etc.).

EC50 or IC50

The term “EC50” was associated with the antioxidant proper‑
ties by Brand-Williams et al. (1995) in the paper concerning 
the DPPH method. However, according to Sebaugh (2010) 
EC50 was used early in the pharmacy sciences to evaluate the 
suitability and performance of drugs. It is so-called efficient 
concentration interpreted in chemistry as the concentration 
of substrate that causes 50% loss of the oxidant’ concentra‑
tion (for example radical). The concentration of the antioxi‑
dant providing 50% inhibition is estimated by plotting the 
percent of inhibition against different concentrations of the 
antioxidant (Teixeira et al. 2013). In many papers (Mishra 
et al. 2012; Wang et al. 2015; Olszowy and Dawidowicz 
2016; Muhammad et al. 2017; Rivero-Cruz et al. 2020), the 
EC50 value is called also as the IC50, which is misused due 
to the fact that this term is reserved for the life sciences in 
which it denotes the inhibition concentration of microor‑
ganisms. The EC50 (IC50) is the most popular in spectro‑
photometric methods but also in other methods measuring 
antioxidant activities, for example using chemiluminescence 
(Samra et al. 2011).

Although the value EC50 (IC50) is very often used to 
assess the antioxidant activity, it is not free from drawbacks. 
Below there are mentioned some drawbacks in the applica‑
tion of EC50/IC50 parameter:

•	 The lack of the universality. This parameter can be 
applied only when a decrease of exactly definite known 
amounts of substrate in a definite reaction time is meas‑

ured. It cannot be applied in the methods in which other 
values are monitored.

•	 The lack of standardization during its estimation. Differ‑
ent conditions used during the measurements (incuba‑
tion time, v/v ratio of reagents, different concentrations 
of reagents, different temperature, different solvent) are 
responsible for the various EC50 (or IC50) values obtained 
for the same substance determined by the same assay. 
The exemplary data of EC50, obtained for BHT in DPPH 
and ABTS assays, which are presented in Table 1, evi‑
dently prove this statement. Hence, the comparison of 
antioxidant activity using EC50 (IC50) determined under 
different experimental conditions is unreliable. Addition‑
ally, it is worth mentioning that the other factors such 
as: metal ions, hydrogen ions or water contents present 
in the measuring system can result in differences in the 
estimation of antioxidant activity and different values 
of EC50 (IC50) (Dawidowicz and Olszowy 2011, 2012, 
2013; Dawidowicz et al. 2012).

It seems that the EC50 (IC50) parameter, similar to IP, can 
be used most appropriately in the case of comparing anti‑
oxidant properties of mixtures, extracts, single substances 
for which measurements were made using the same method 
under the same measurement conditions (i.e., the same sol‑
vent, reagent ratio, time incubation, temp., etc.)

•	 The lower is the value of EC50/IC50, the higher is the 
antioxidant activity which can be a disadvantage particu‑
larly when for better comparison the obtained results are 
presented as a bar chart.

•	 A difficulty with proper estimation of the EC50/IC50 
which can result from the lack of a “good” correlation 
between the percent inhibition values and the EC50/IC50 
values with the applied antioxidant concentration (Bellik 
2014). It is worth remembering that the higher the con‑
centration is, the lower linear increase of the inhibition 
percent is observed (Su et al. 2008). In the literature, 
there seems to be confusion about what kind of correla‑
tion to expect (Sebaugh 2010; Gubler et al. 2013).

TEC50 and AE parameter

The TEC50 parameter defines the time needed to reduce the 
value of the initial concentration of the oxidant (e.g., radi‑
cal) by 50%. It is established graphically from the reaction 
kinetics curve. According to this parameter, the kinetic 
behavior of the antioxidant is classified as follows: fast 
(TEC50 < 30 min), medium (TEC50 30–60 min) and slow 
reaction kinetics (TEC50 > 60 min) (Mahboub and Memmou 
2015). In practice, the TEC50 values (but also EC50) should 
be determined when the neutralization reaction reaches the 
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equilibrium state (so-called steady state). The TEC50 param‑
eter is dependent on the concentration of oxidant agent and 
to be used in a meaningful way it has to be correlated not 
only with the antioxidant concentration but also with the ini‑
tial amount of measuring oxidant agent (Fadda et al. 2014).

Both factors, TEC50 and EC50, can be combined in the 
antiradical efficiency parameter (AE) according to the fol‑
lowing equation (Sánchez-Moreno et al. 1998; Villaño et al. 
2007; Ahmad et al. 2018):

As results from the presented equation the lower EC50, the 
lower TEC50, the higher AE value and the higher antioxidant 
properties.

AE = 1∕
[

EC50 × TEC50

]

According to Ahmad et al. (2018), the classification of 
antiradical efficiency is as follows:

•	 Low (AE110−3)
•	 Medium (110–3 < AE < 510–3)
•	 High (510–3 < AE < 1010–3)
•	 Very high (AE > 1010–3)

Induction time (lag time)

According to the term included in the “Compendium of 
Chemical Terminology (Gold Book),”(IUPAC 1997) the 
induction time (also called the lag time) is an initial slow 
stage of a chemical reaction which lasts for a certain period 
of time. After the induction, the reaction accelerates. The 

Table 1   Literature data of EC50 
values obtained for BHT

EC50 (g/mL) Method Experimental conditions References

19.40 DPPH 50 mL of methanolic sample solution
5 mL of methanolic DPPH solution (4 mg/100 mL)
Incubation time 30 min
Temperature 25 °C

Guangrong et al. 2008

3.65 DPPH 400 L of ethanolic sample solution
400 L of ethanolic DPPH solution (11.8 mg/100 mL)
Incubation time 20 min,
Temperature 37 °C

Hsu et al. 2012

6.54 DPPH 1 mL of methanolic sample solution
2 mL of methanolic DPPH solution (3.55 mg/100 mL)
Incubation time 30 min,
Temperature 25 °C

Olszewska 2011

20 DPPH 0.5 mL of methanolic sample solution
3 mL of methanolic DPPH solution (4 mg/100 mL)
Incubation time 30 min,
Temperature 25 °C

Ceylan et al. 2015

17.78 DPPH 0.1 mL of methanolic sample solution
3.5 mL of methanolic DPPH solution (2.36 mg/100 mL)
Incubation time 30 min,
Temperature 25 °C

Shi et al. 2015

31.45 DPPH 1.5 mL of ethanolic sample solution
0.5 mL of ethanolic DPPH solution (3.94 mg/100 mL)
Incubation time 30 min,
Temperature 25 °C

Topal 2019

6.2 ABTS 10 L of ethanolic sample solution
1000 L of ethanolic ABTS+ solution (A = 0.7)
Incubation time 6 min,
Temperature 30 °C

Capuzzo et al. 2014

19.26 ABTS 1 mL of methanolic sample solution
2 mL of methanolic ABTS+ solution (A = 0.7)
Incubation time 15 min
Temperature 25 °C

Olszewska 2011

6.14 ABTS 0.15 mL of methanolic sample solution
2.85 mL of methanolic ABTS+ solution (A = 0.7)
Incubation time 10 min
Temperature 37 °C

Shi et al. 2015

32.36 ABTS 3 mL of ethanolic sample solution
1 mL of ethanolic ABTS+ solution (A = 0.7)
Incubation time 30 min,
Temperature 25 °C

Topal 2019
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induction time is most often expressed in time units (days, 
hours, minutes). In the antioxidative measurements, the 
induction time is associated with the oxidation process 
which is determined from the dependence of the measured 
value (for example the change in the amount of the oxida‑
tion product or substrate) versus time. The induction time 
(lag time) is established graphically as a segment (relatively 
constant), between the period for the beginning of the oxi‑
dation and the intercept of the tangent for the slope of the 
propagation phase response curve (Katsube et al. 2004). The 
measurements of the induction time are performed after the 
addition of a given amount of the examined or/and the ref‑
erence antioxidants in both their absence and presence in 
the measuring system. This time is usually equated to the 
time during which these additives (antioxidants) are able to 
reduce the rate of free radical process significantly (Llesuy 
et al. 2001). Some difficulties may appear in correct deter‑
mination of the induction time, which is related to the com‑
plexity of antioxidants in the tested sample. The measured 
signal changes slowly, and it is difficult to determine the 
induction time clearly. This particularly refers to the situa‑
tion when there are a large number of compounds with very 
low reactivity in the sample (Llesuy et al. 2001).

Antioxidant standards

In many studies, the antioxidant properties of the test sample 
are compared to those of the standard antioxidants. Many 

compounds can be used as standards, but the criteria of their 
choice are connected with the stability, price and solubility 
of standard antioxidant in the solvent (Eruygur et al. 2019). 
The most important feature is composition of the examined 
sample because the antioxidant standard used in the determi‑
nation should be very similar to the examined compounds. 
This paper describes the four substances most commonly 
used as standard antioxidants. Their structural formulae are 
presented in Fig. 1.

Trolox

Trolox is a water-soluble analog of vitamin E. As an antioxi‑
dant, it is applied in biological and biochemical systems to 
reduce oxidative stress or damage. It might be used for deter‑
mination of antioxidant activity of both single compounds 
and their mixture (Taslimi et al. 2020; Türkan et al. 2020). 
Additionally, for this compound a small impact of environ‑
mental conditions on the number of exchanged electron in 
the reaction is observed. The antioxidant value correspond‑
ing to Trolox is expressed in units known as Trolox Equiva‑
lents Antioxidant Capacity (TEAC) which are calculated 
from the ratio of the test compound reaction (measured as 
inhibition for example) to that of Trolox reaction. It is worth 
mentioning that the measurements for both Trolox and the 
sample should be performed under the same conditions and 
the examined solutions should have the same concentrations. 

Fig. 1   Structural formulae of: a Trolox, b gallic acid, c uric acid, d ascorbic acid



6163Chemical Papers (2021) 75:6157–6167	

1 3

According to Apak et al. (2013), the measurements of TEAC 
values should be based on the following concept:

Sometimes the IC50 values of the examined sample com‑
pared to IC50 of Trolox are used instead of inhibition (Xiao 
et al. 2020).

In practice, one can observe:

•	 The lack of standardization during the TEAC estimation. 
The TEAC values are calculated using different condi‑
tions during the measurements (incubation time, v/v ratio 
of reagents, different concentrations of reagents, different 
temperature, different solvent) which is responsible for 
the differences in the values obtained by different labo‑
ratories.

•	 The lack of units unification (if TEAC values are 
expressed in any units). The sample size can be expressed 
in the units of weight (gram of dry weight or 100 g or wet 
weight) or in the units of volume (in L, ml, etc.) resulting 
in the TEAC values as follows: µM Trolox/g dry weight 
or µM Trolox/g wet weight or per liter of extract. It seems 
that there is a need to normalize with regard to the mass 
or volume of the sample used for testing. However, in 
the case of solid matrices (e.g., plant matrices), some 
extraction technique must be used to bring the sample 
into solution. The extraction of the same material and the 
same amount but under different conditions will result 
in obtaining different extracts with various antioxidant 
properties. It would seem that the dose is the same but 
the result expressed per gram of sample will be different. 
Additionally, the amount of Trolox itself corresponding 
to the antioxidant properties of a given amount of sample 
can be reported in various units: in moles (e.g., mM) 
or in units of mass (e.g., g, mg). This depends on the 
concentration units used to create the calibration curve 
needed to relate the antioxidant properties of the test 
sample to the properties of the Trolox (Le Grandois et al. 
2017; Kubilienė et al. 2020).

Most commonly, the antioxidant measuring method, 
in which the antioxidant activity of a given substance or 
a mixture is compared to the Trolox, is the ABTS assay. 
This method is very often called as the TEAC method (Arts 
et al. 2004). The other antioxidant capacity assays which 
apply Trolox as a standard include DPPH, ORAC and FRAP 
(Abramovič et al. 2018).

Summarizing, Trolox is nowadays generally accepted as 
the reference compound in an attempt to support a common 
value to be used to compare the results from different labo‑
ratories for various samples having similar effects. However, 

TEAC value (unitless) = inhibition the test compounds∕inhibition by Trolox

this compound exhibits some drawbacks as a standard 
antioxidant: It is not the most efficient, has no physiologi‑

cal relevance and has unsuitable solubility characteristics 
especially in the assessment of oils antioxidant properties 
(Litescu et al. 2014).

Gallic acid

In many papers on the antioxidant properties of substances 
or mixtures, gallic acid is applied as a standard antioxidant 
(Sharma et  al. 2011; Dontha 2016; Noreen et  al. 2017; 
Abramovič et al. 2018). The gallic acid is mainly used as 
a standard antioxidant in the DPPH method (Pyrzyńska 
and Pękal 2013), in the process of determination of total 
phenolic compounds (Folin–Ciocalteu method) (Prior et al. 
2005; Gaba and Malik 2015; Aryal et al. 2019). The antioxi‑
dant activity of the examined sample is expressed, similar to 
Trolox, as the gallic acid equivalent (GAE) in the units, for 
example mol/g sample (Sirivibulkovit et al. 2018) or mg gal‑
lic acid equivalents (GAE)/100 g sample (dry weight) (Wang 
et al. 2019). In all cases, the results were calculated accord‑
ing to the standard curve of gallic acid (Boutennoun et al. 
2017; Zhijing et al. 2018). Similarly to the TEAC value, 
determining the GAE value is related to the lack of stand‑
ardization of its determination and the unification of units. 
However, its advantage over Trolox is its better antioxida‑
tive response. Gallic acid is frequently used as the stand‑
ard antioxidant because in many methods it gives the best 
response of all tested, standard compounds. For example, 
Antolovich et al. (2002) reported that when the antioxidant 
activity of four standard antioxidants (gallic acid, uric acid, 
Trolox and ascorbic acid) was compared using ABTS, TRAP 
(total radical-trapping antioxidant parameter) assays and the 
LDL (low-density lipoprotein) oxidation, the results were 
not comparable. Moreover, gallic acid was the strongest anti‑
oxidant in all three systems, but the relative activity of the 
remaining compounds depended on the system.

Uric acid

Uric acid can be used as the standard antioxidant owing to 
its natural presence in human fluids (urine, serum, blood 
and saliva) (Koracevic et al. 2001; Cybul and Nowak 2008; 
Gülҫin et al. 2008). This compound can be also found in 
the body of birds, reptiles and some primate species. The 
end product of purine degradation is found in all mentioned 
organisms (Settle and Klandorf 2014). Its antioxidant prop‑
erties are associated mainly with its ability to scavenge 



6164	 Chemical Papers (2021) 75:6157–6167

1 3

peroxynitrite and other free radicals. Additionally, it is 
responsible for protecting DNA against single-strand breaks 
caused by reactive oxygen species. This role is of significant 
importance in the neurodegenerative diseases (Settle and 
Klandorf 2014).

Antioxidant capacity using uric acid as the standard anti‑
oxidant is expressed in terms of the amount of the so-called 
equivalents of uric acid in the sample. For this purpose, a 
graph of the dependence of the uric acid response to the 
measured value versus its concentration is constructed. This 
dependence should be linear in the applied concentration 
range. For example, in the CUPRAC method, the graph of 
the absorbance relationship of the Cu (I) complex with neo‑
cupreine is linear in the uric acid concentration range of 
0.05–2 mM (Apak et al. 2005), whereas the range of its 
concentrations 0.5–2.5 mM caused linear inhibition of thio‑
barbituric acid reactive substances production (TBARS) 
(Koracevic et al. 2001). In the latter, the authors noticed that 
increasing the uric acid concentration did not cause 100% 
inhibition of the free radical reaction. The maximal inhibi‑
tion of TBARS production by uric acid was 80%.

Compared to Trolox, uric acid is characterized by worse 
activity in neutralizing H202, ABTS cation radical and exhib‑
its a smaller ability of metal chelating. However, it is a better 
antioxidant in the DPPH scavenging process (Apak et al. 
2005). Similarly to the TEAC value and the GAE value, the 
lack of universal conditions of its application is observed 
for the uric acid equivalents. This is associated with the 
lack of standardization of methods which are applied for 
the antioxidant activities determination. On one hand, uric 
acid appears to be an excellent standard antioxidant because 
it is an antioxidant that occurs naturally in the body. On the 
other hand, its use is limited due to its hydrophilic nature, 
which makes it not effective in all reaction environments. It 
loses an ability to scavenge lipophilic radicals and cannot 
break the radical chain propagation within the lipid mem‑
branes (Sautin and Johnson 2008) which is probably a major 
limitation of its antioxidant function. Additionally, the pro-
oxidant activity of uric acid, primarily within the cell, was 
reported which can occur in the cardiovascular disease and 
may have a contributory role in its pathogenesis (Sautin and 
Johnson 2008).

Ascorbic acid

Ascorbic acid (vitamin C) is regarded as a naturally occur‑
ring effective antioxidant (Khatoon et al. 2013) although the 
capacity of its biosynthesis does not occur in a number of 
species (including primates, guinea pigs, teleost fishes, bats, 
and birds) (Lachapelle and Drouin, 2011). Its antioxidant 
properties are associated with its ability of the hydrogen 
atom donation and the formation a relatively stable ascorbyl 
free radical. As a scavenger of reactive oxygen and nitrogen 

species, ascorbic acid has proved to be effective against the 
superoxide radical ion, hydrogen peroxide, the hydroxyl 
radical and singlet oxygen (Moreira et al. 2012). The anti‑
oxidant activity of the examined sample (in the measuring 
system in which ascorbic acid is used as a standard antioxi‑
dant), known as vitamin C equivalent antioxidant capacity 
(VCEAC), is expressed as μg of ascorbic acid equivalents 
(AAE) per mL (Ahmed et al. 2015) or M ascorbic acid 
equivalent AAE/100 g of dried weight (dw) (Kim et al. 
2002; Al-Laith et al. 2019). Similar to the other antioxidant 
standards, a graph of the dependence of the ascorbic acid 
response to measure the value versus its concentration is 
constructed. This dependence should be linear in the applied 
concentration range which can vary depending on many fac‑
tors (method, incubation time, volume ratio of the reagents, 
etc.). This is related to the lack of standardization of meth‑
ods for testing antioxidant properties. As the standard anti‑
oxidant, ascorbic acid is typically used in the hydrophilic 
antioxidant methods in which it exhibits large antioxidant 
properties (Prior et al. 2005). According to Moreira et al. 
(2012) in FRAP, TEAC, TRAP and ORAC, the ascorbic acid 
standard produced generally higher values than the other 
standards which can be associated with its highest hydro‑
philic character in comparison with Trolox and gallic acid 
as well as the aqueous environment of antioxidant reaction.

However, it is worth remembering that:

•	 Despite the fact that solid vitamin C is relatively stable, 
its solutions in water are unstable. Ascorbic acid (vita‑
min C) used as the control standard antioxidant should 
be dissolved in alcohol (for example ethanol or metha‑
nol) because in the aqueous environment it undergoes a 
decomposition process. The factors such as pH, tempera‑
ture, oxygen and the presence of catalysts (iron, copper) 
influence this process (Dolińska et al. 2012).

•	 Under certain conditions (high concentration and pres‑
ence of metal ions, such as iron and copper), ascorbic 
acid can act as a pro-oxidant which can limit its appli‑
cation as the standard antioxidant (Timoshnikov et al. 
2020)

Conclusions

At present, there is no one universal method for assessing 
antioxidant properties and no single available assay provides 
all of the required information about the examined antioxi‑
dant. Thus, assessing overall antioxidant activity requires 
multiple tests to generate a “universal antioxidant profile” 
that will reflect the actual “picture” of antioxidant activity 
in many respects. While the requirements for the standard 
method are known, there is no information on how to inter‑
pret the results obtained in it. The question arises how to 
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express antioxidant activities of substances properly and 
what kind of parameters an ideal standard antioxidant should 
possess. It is of significant importance because the present 
different ways of expressing the results lead to their incom‑
patibility as well as unreasonable interpretation of the results 
of clinical studies. Only standardization of the methods and 
the universal way of interpretation of the results obtained 
by them will allow for a credible and reliable assessment of 
the antioxidant properties. The proper interpretation of the 
obtained results will be a good tool for the development of a 
number of fields like medicine, sports, food, pharmacology, 
cosmetology and others. The research in these area particu‑
larly in medicine will be useful for detection and treatment 
of many diseases associated with oxidative stress.
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