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Abstract
This paper presents the corrosion and inhibition behavior of heat-treated EN8 dual-phase steel with ferrite-martensite struc-
ture with pectin in 0.5 M sulphuric acid. The corrosion studies were performed using the weight loss method, electrochemi-
cal techniques such as potentiodynamic polarization measurements, and impedance spectroscopy. The study was done at 
different concentrations of pectin in the temperature range of 40 to 70 °C and immersion time of 1, 3, 5, and 7 h. The results 
showed that the inhibition performance of pectin has enhanced with an increase in pectin concentration and decreased with 
the temperature and time of exposure. From the weight loss study, highest inhibition efficiency of 76.43% was achieved at 
5.0 g/L at 1 h of exposure at 40 °C. The maximum inhibition efficiency of 62% was obtained with 5.0 g/L of pectin at 40 °C 
by potentiodynamic polarization method. The energy, enthalpy, and entropy of activation and also thermodynamic parameters 
like free energy, enthalpy, and entropy of adsorption were assessed and discussed. Appropriate adsorption isotherm was fit 
to the obtained experimental outcomes and achieved Langmuir adsorption isotherm to be the best fit and obeyed physical 
adsorption. Surface analysis: scanning electron microscopy, X-ray diffraction techniques, atomic force microscopy, and 
energy dispersive X-ray were done with and without the addition of pectin. The metal surface appears to be uniform and 
smooth in the presence of pectin and adsorption was confirmed by surface analysis.

Keywords  EN8 steel · Heat treatment · Ferrite-martensite · Sulphuric acid medium · Weight loss method · Electrochemical 
studies

Introduction

Heat treatment is a process used to modify the properties 
of a material. Here, the metal is heated and then cooled at 
the desired temperature, to attain the desired microstruc-
ture. EN8 steel is plain medium carbon steel with moder-
ate strength in an as-cast state and possible to modify the 
properties in a wider range. It is the most commonly used 
type of steel, usually used in the normalized condition. This 
steel can be utilized for the manufacturing of automobile 

parts such as axle shaft, gear shaft, bolts, and studs. Dual-
phase (DP) steels have received massive consideration in 
the past few decades because of increased application in 
the automotive industry. When compared to conventional 
high strength low alloyed (HSLA) steels, DP steels display 
improved mechanical properties (Abedini et al. 2019; Sala-
mci et al. 2017). Steels with DP structure have a place with 
a gathering of present-day multi-phase steels described by 
ferrite matrix containing at least one or more phases (mar-
tensite, bainite, and leftover austenite) (Abedini et al. 2019; 
Gerengi et al. 2020; Keleştemur et al. 2009; Song et al. 
2019). The concurrence of delicate/hard phases and their 
connection in working conditions permit both high strength 
and malleability to be accomplished. DP steels comprising 
of delicate ferrite and hard martensite show better mechani-
cal properties looked at than regular HSLA steels (Abedini 
et al. 2019; Song et al. 2020). That has driven the special-
ists to investigate their appropriateness for various structural 
and constructional purposes (Katiyar et al. 2019). Though 
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plenty of research articles were published concerning a 
generally excellent blend of mechanical properties in DP 
steels (Karimi et al. 2017; Basantia et al. 2021; Bilal et al. 
2019; Fereiduni and Ghasemi Banadkouki 2014; Kumar 
et al. 2019; Shahzad et al. 2018; Xiong et al. 2019; Zhao 
et al. 2019; Zhu 2019), further examinations are important 
to discover the impact of phase constituents on the corrosion 
resistance properties (Bignozzi et al. 2020; Gürkan Aydın 
2019; Ma et al. 2020; Prabhu et al. 2020a, b; Zhang et al. 
2020).

Corrosion of metals is an issue that needs to be resolved. 
Deterioration of chemical plants, equipment, or disaster due 
to corrosion had been widely reported. The study of carbon 
steel corrosion in several corrosive conditions is very impor-
tant. Even though there is the development of new corrosion-
resistant alloys, carbon steel is still the frequently used steel 
because of its versatility in terms of mechanical properties, 
availability and economics. Corrosion inhibitors remain an 
important method to protect materials against the process of 
corrosion in a corrosive environment (Nathan 1973; Saxena 
et al. 2020; Shinato et al. 2020). The essential organic mol-
ecules containing heteroatom like sulfur, oxygen, nitrogen, 
etc., exhibit inhibiting action which is mainly referring to 
their adsorption on the surface of the metal (Branzoi et al. 
2020; El Faydy et al. 2020; Mahgoub et al. 2010; Tabatabaei 
majd, 2020). Moreover, the latest development in the pro-
tection of the surface of the metal is using nontoxic inhibi-
tors (Galo et al. 2020; Hoai et al. 2019; Hynes et al. 2021; 
Manssouri et al. 2021; Negm et al. 2011; Pais and Rao 2021; 
Şahin et al. 2020). Saxena et al. have assessed the inhibi-
tion action of Citrus sinensis extract on C-steel corrosion in 
0.5 M H2SO4 (Saxena et al. 2020).

Pectin is a heteropolysaccharide predominantly extracted 
from citrus fruits. It has a poly (D-galacturonic acid) linked 
through α(1,4)-glycosidic linkage. There has been a study 
of pectin on 6061Al–15%(V) SiC(P) composite in 0.025 M 
HCl (Charitha and Rao 2020). Pectin, with a low cost of 
production, soluble in sulphuric acid, was selected to act as 
an active inhibitor to control corrosion of EN8 steel. In the 
framework of our studies with environment-friendly inhibi-
tors (Li et al. 2019; Prabhu and Rao 2019; Prabhu et al. 
2020a, b) for corrosion control of EN8 steel, in the present 
examination, we have investigated the usefulness of pectin 
as an inhibitor to control the corrosion of EN8 steel in sul-
phuric acid medium.

Furthermore, there is general evidence that temperature is 
one of the important factors that may affect the performance 
of metals in a corrosive environment, and may also affect the 
interaction between the metal and the inhibitor. Also, in cor-
rosive medium, the rate of metal dissolution increases with 
temperatures (Bentiss et al. 2005; Mert et al. 2011). Several 
investigations have been done in reviewing the inhibition 
of corrosion of steel in acidic medium with the influence of 

temperature in the presence of eco-friendly inhibitors (Low-
munkhong et al. 2010; Obi-Egbedi et al. 2012; Prabhu and 
Rao 2013). Qiang et al. (2018) experimented to understand 
the influence of temperature on corrosion and inhibition of 
X70 steel by Ginkgo leaf extract in HCl solution. Solomon 
et al. (2010) studied the inhibition and adsorption nature of 
carboxymethyl cellulose on mild steel in H2SO4 at varying 
temperature.

Different measuring techniques are available to study the 
behavior on the steel like gravimetric, electrochemical and 
surface measurements. The electrochemical measurements 
are useful due to their high sensitivity, simple procedures 
and low cost (Stoica et al. 2012). The rate of the corrosion 
process can be obtained by weight loss method, Tafel extrap-
olation, impedance spectroscopy, linear polarization resist-
ance, electrochemical noise, etc. (Berradja 2019).

The current work emphasizes the assessment of the inhi-
bition of pectin in EN8 DP steel with ferrite-martensite 
(F-M) structure corrosion in 0.5 M sulphuric acid (H2SO4) 
at various temperatures, exposure time, and concentration of 
inhibitor. Various kinetic and thermodynamic parameters for 
EN8 steel corrosion with and without the use of pectin were 
calculated and deliberated.

Methodology

Material, medium, and inhibitor preparation

Table 1 presents the chemical composition of the EN8 steel 
used for the study. The heat-treated test samples were pre-
pared in a cylindrical rod shape of 19 mm diameter and 
8 mm height. The specimens were then polished with vary-
ing grades of emery papers (100–2000 µm) and followed 
by disk polishing with different grades (3 µm to 0.25 µm) 
of diamond paste. The specimens were then washed with 
distilled water, cleaned with acetone, and eventually desic-
cated before submerging it in the medium.

The medium selected for the investigation is 0.5 M sul-
phuric acid. The sulphuric acid solution was prepared by 
diluting analytical reagent-grade sulphuric acid (98%) to the 
appropriate volume. The solution was standardized by the 

Table 1   Chemical composition of EN8 steel

Element Composition 
(wt%)

Element Composi-
tion (wt%)

C 0.247 Cr 0.095
Si 0.199 Ni 0.044
P 0.027 Cu 0.059
Mn 0.54 Mo 0.027
S 0.037 Fe 98.7
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volumetric method. The corrosion tests were then performed 
at varying temperatures of 40, 50, 60, and 70 °C.

The inhibitor used in our experiments is pectin (commer-
cially available). The structure of pectin is given in Fig. 1. 
Its main constituent is galacturonic acid that is a sugar acid 
(derived from galactose). The investigation was done in 
0.5 M H2SO4 solution in the absence and presence of the 
pectin (0.5, 2.0, 3.5, and 5.0 g/L).

Heat treatment

Initially, the samples were heated in an electric muffle 
furnace at the predetermined austenitization temperature 
(900 °C). The process PQ (as shown in Fig. 2a) represents 
the austenitization process. The experimental coupons were 
kept at the austenitization temperature for a fixed duration of 
2 h. After isothermal holding for 2 h, specimens are quickly 
taken out from the furnace for air cooling to get the room 
temperature structure. Further, austenitizing is carried out 
at 790 °C for 2 h followed by quenching in water to form an 
F-M dual-phase structure. Figure 2b shows the heat treat-
ment procedure to obtain an F-M dual-phase structure.

Figure 3a shows the microstructure of EN8 steel in as-
received conditions. The steel shows ferrite and lamellar 

pearlite grains. The steel rods might have undergone air 
cooling, resulting in the formation of fine grains. Figure 3b 
shows the microstructure of steel in the normalized condi-
tion. The microstructure displays fine and lamellar pearlite 
and proeutectoid ferrite. The interlamellar distance in nor-
malized pearlite is smaller when compared to the as-bought 
steel as a result of normalizing heat treatment. Fine pearlite 
enhances the mechanical properties of the steel. Figure 3c 
shows the duplex structure in the steel containing F-M. The 
steel is heated in between lower critical temperature (LCT) 
and upper critical temperature (UCT) of the iron carbide 
phase diagram where homogeneous austenite is not formed. 
During this process, the pearlite of as-received steel con-
verts into austenite first and proeutectoid ferrite remains 
unchanged. When the steel is quenched from this tempera-
ture, the austenite converts to lower-temperature structures 
like martensite. When austenite is cooled in this temperature 
range, carbon atoms redistribute in austenite. Low carbon 
regions transform to ferrite by diffusionless processes and 
result in fine needles of ferrite. As time passes, carbon dif-
fuses out and precipitates in the form of fine carbides, the 
arrangement of carbides here is not in the form of lamellar 
structure. Figure 3c shows the microstructure having ferrite 
and martensite. Martensite is a highly distorted structure 
formed because of the arrested diffusion of carbon particles 
from austenite. When the steel is held in the inter-critical 
temperatures and is quenched in liquid at room temperature, 
the austenite converts into martensite and proeutectoid fer-
rite remains unchanged. As the cooling takes place, the car-
bon atoms do not get enough time to diffuse out of austenite 
and lead to the formation of a distorted martensite structure.

Weight loss method

The measurement of weight loss of metals was studied on 
the EN8 steel in a circular form of size 19 mm diameter and Fig. 1   Structure of pectin

Fig. 2   a Normalizing heat treat-
ment cycle, b Heat treatment 
procedure for dual-phase F-M 
structure
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8 mm height in 0.5 M H2SO4 solution with various concen-
trations of pectin. Each sample was weighed using a digital 
electronic balance of four decimal points and then placed in 
100 ml of corrosion and inhibitor solutions. The duration 
of the immersion was 1, 3, 5, and 7 h at the temperature of 
40, 50, 60, and 70 °C. After the exposure, the surface of the 
test specimens was cleaned according to the ASTM G1-90 
standard procedure (A. G1-90 1999), and the weight differ-
ence (Δw) was calculated before and after exposure to obtain 
the inhibition efficiency (IEw, %) with the help of Eq. 1 and 
followed by corrosion rate (CRw) calculation using Eq. 2. 
The mean value of the weight loss was taken after perform-
ing the trials in triplicate.

where wi and w0 represent weight loss values in the pres-
ence and absence of pectin, respectively, in grams.

(1)IEw(%) =
w0 − wi

w0

× 100,

The corrosion rate (CRw) of the specimen was calculated 
using the relation:

where Δw, weight loss (g m); A, area of the specimen 
exposed to acid medium (cm2); t, the immersion time (h); 
and d, density of EN8 steel (g cm−3).

Effect of corrosion process with temperature 
and calculations of activation parameters

The CR’s were calculated at different temperatures 
(40–70 °C) by the weight loss method was applied for the 
determination of Ea (activation energy), ΔH# (activation 
enthalpy), and ΔS# (activation entropy) (Prabhu et al. 2021). 
The determination of each activation parameter is done as 
per the literature (Prabhu and Rao 2019).

(2)CRw =
3.45 × 106 × Δw

A × t × d
(mpy),

Fig. 3   SEM images of EN8 steel in different conditions. a As bought, b normalized, c Austenitized at 790 °C for 2 h followed by quenching in 
water to form DP F-M structure
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Adsorption isotherm and thermodynamic 
parameters

The interaction of the metal surface with the pectin molecule 
is described by adsorption isotherm. The correlation coef-
ficient (R2) and best fits are the deciding criteria for selecting 
the suitable adsorption isotherm. The calculation of standard 
free energy of adsorption (∆G°ads) was obtained from the 
adsorption equilibrium constant (K) (Prabhu and Rao 2013; 
Prabhu et al. 2021). The standard enthalpy of adsorption 
(ΔH°ads) and standard entropy of adsorption (ΔS°ads) were 
obtained from a plot of ∆G°ads vs T.

Potentiodynamic polarization (PDP) 
and electrochemical impedance spectroscopy (EIS)

For PDP and EIS studies the procedures were as per the liter-
ature (Prabhu et al. 2021). The specimen with a surface area 
of 0.5 cm2 was taken for the study. The experiments were 
carried out at 40 ± 1 °C. The instrument used for performing 
the electrochemical measurement was model CH600E. The 
anodic and cathodic polarization segments were extrapolated 
to the corrosion potential to acquire corrosion current densi-
ties (icorr). The inhibition efficiency (IEi, %) was estimated 
from the icorr values using the Eq. 3:

where i0
corr

 and iinh
corr

 are the corrosion current densi-
ties when pectin is absent and in the presence of pectin, 
respectively.

Measurements of the EIS were also performed according 
to the literature (Prabhu et al. 2021). Impedance charts are 
given in the Nyquist representation and the Bode phase and 
magnitude graphs. The polarization resistance values (Rp) 
were achieved by EIS by adding the solution resistance (Rs) 
and charge transfer resistance (Rct). The inhibition efficiency 
(IEEIS, %) of pectin was computed from Eq. 4:

where R0
p
 and Rinh

p
 are the charge transfer resistance with-

out and in the presence of pectin, respectively. All electro-
chemical measurements were performed in an aerated solu-
tion with the unstirred condition.

Surface characterization

The heat-treated samples surface analysis was done using 
scanning electron microscopy (SEM) at 5 K X magnification. 

(3)IEi (%) =
i0
corr

− iinh
corr

i0
corr

× 100,

(4)IEEIS(%) =
Rinh
p

− R0
p

Rinh
p

× 100,

The surface morphology of EN8 steel immersed in 0.5 M 
H2SO4 solution with and without 5.0 g/L pectin inhibitor 
was investigated by capturing the images with the magni-
fication of 1 K X using EVO MA18 for SEM and energy 
dispersive X-ray (EDX). IB342 Innova model was used 
for capturing atomic force microscopy (AFM) spectral 
images. Using Miniflex 600 model instruments, the X-ray 
diffraction (XRD) images were obtained. All the surface 
characterization was carried out on the surface of corroded 
(EN8 steel + 0.5 M H2SO4) and inhibited surfaces (EN8 
steel + 0.5 M H2SO4 + 5.0 g/L).

Result and discussion

Weight loss method

Figure 4 represents the effect of weight loss of EN8 DP 
steel with F-M structure in 0.5 M H2SO4 solution at various 
temperatures and at various time intervals. It is observed 
that weight loss increased with increasing time of exposure 
as well as with an increase in temperature suggesting the 
enhanced corrosiveness of the metal on prolonged exposure 
to acid medium due to hydrolytic degradation. Figure 4 rep-
resents the weight loss data of EN8 steel in 0.5 M H2SO4 
solution. Figure 5 reflects the weight loss data of EN8 steel 
in 0.5 M H2SO4 solution in the presence of pectin with vari-
ous concentrations and at different temperatures. Increased 
pectin concentration increases the inhibition effectiveness 
EIw% to approximately 76.43% at 5.0 g/L at 1 h of exposure 
at 40 °C. The EIw% is attributed to the adsorption of pectin 
over the EN8 steel specimen surface. This adsorption con-
fines the degradation of metals and therefore reduces weight 
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loss and increases inhibition efficiency as the inhibitor con-
centration increased.

Effect of corrosion process with temperature 
and calculations of activation parameters

Figure 6 shows the effect of weight loss at different immer-
sion times and various temperatures for various pectin 
concentrations. There was an increase in the weight loss 
for both the conditions due to deterioration of efficiency at 
higher exposure time and physical adsorption of inhibitor 
is indicated with a reduction in efficiency with increase in 
temperature. There is the electrostatic interaction between 
pectin molecules and the surface of the metal. These elec-
trostatic interactions between the inhibitor and the metallic 

surface decrease their attractive strength with increasing 
temperatures.

Arrhenius plot [ln (CR) vs 1/T] and ln (CR/T) vs 1/T in 
0.5 M H2SO4 comprising various concentrations of pectin 
at 1 h immersion time for EN8 DP steel with F-M structure 
is presented in Fig. 7. The activation parameters for the 
deterioration of EN8 steel in 0.5 M H2SO4 comprising pec-
tin are presented in Table 2. As inhibitor concentrations 
increase, activation energy (Ea) has increased, indicating 
that the energy barrier increases as pectin concentration 
increases (Prabhu et al. 2021). Activation enthalpy (∆H#) 
values vary depending on Ea, indicating the recommended 
mechanism. The activation values of entropy (∆S#) were 
negative, which symbolizes the association of the mole-
cules and the decrease in the disorder during the formation 
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Fig. 5   Weight loss data of EN8 steel in 0.5 M H2SO4 with pectin at a 40 °C, b 50 °C, c 60 °C and d 70 °C temperature
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of the activated complex (Oguzie et al. 2008; Prabhu et al. 
2021).

Adsorption isotherm and thermodynamic 
parameters

Pectin adsorption on EN8 steel with DP structure F-M in 
0.5 M H2SO4 followed the Langmuir adsorption isotherm, 
shown in Fig.  8a. The standard free adsorption energy 
(∆G°ads) is provided by the adsorption equilibrium constant 
(K) (Akinbulumo et al. 2020; Prabhu et al. 2021). A graph 
of ∆G°ads with T for pectin on EN8 steel with DP structure 

F-M in 0.5 M H2SO4 is given in Fig. 8b. The thermodynamic 
factors for the absorption of pectin are presented in Table 3.

With pectin as an inhibitor, the ΔG°ads was less than 
− 20 kJ/mol (Galo et al. 2020) and the value increased with 
the increase in T, which proposed physical adsorption of pectin 
on the surface of the metal (Fouda et al. 2009). The negative 
value of the adsorption enthalpy (ΔH°ads) indicated the exo-
thermal process, which also confirms physisorption. The high 
and negative value of adsorption entropy (∆S°ads) represents 
the systematic placement of inhibitory molecules on the sur-
face (Tang et al. 2003).
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Fig. 6   Weight loss data of EN8 steel in 0.5 M H2SO4 at various temperatures and at a 0.5 g/L, b 2.0 g/L, c 3.5 g/L and d 5.0 g/L pectin concen-
tration
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Open circuit potential (OCP) and Potentiodynamic 
polarization measurements

Figure 9 shows the difference of the open circuit potential 
(OCP) with time for EN8 steel corrosion against 0.5 M 

H2SO4 solution in the presence and absence of pectin. The 
inclusion of an inhibitor in the sulphuric acid medium led 
to a positive shift in OCP versus blank potential. This is due 
to a delay in anodic reaction. The slight positive variation 
in potential over time is due to the formation of corrosion 
products and/or an inhibitor film on the surface of the metal 
that offered partial protection of the material.

The corrosion of EN8 steel was carried out in 0.5 M 
H2SO4 and with different pectin concentrations at 40 °C. 
Figure 10 shows the potentiodynamic plots for the corrosion 
of EN8 DP steel in 0.5 M H2SO4 with different pectin con-
centrations at 40 °C. The anodic slopes of Tafel (βa) and the 
cathodic slope of Tafel (βc) obtained showed no substantial 
variation in values, indicated that there was no change in the 
mechanics of the anodic and cathodic process of pectin. The 
difference of Ecorr values between the blank and inhibited 
solution was not more than ± 85 mV (Nathan 1973) suggest-
ing that pectin acts as a mixed type of inhibitor. The icorr val-
ues decreased with increased pectin concentration indicating 
increased effectiveness of pectin inhibition. Results obtained 
from PDP on EN8 DP steel with F-M structure containing 
pectin at 40 °C are given in Table 4.

EIS method

The Nyquist plots for the corrosion of EN8 steel with F-M 
DP structure were performed in 0.5 M H2SO4 and with vari-
ous amounts of pectin at 40 °C are given in Fig. 11.

The Nyquist plots displayed a high-frequency (HF) capac-
itive loop indicating the Faradic process at the electrode 
sites. HF loops can be credited on the charge transfer process 
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Fig. 7   Arrhenius plot and graph of ln (CR/T) versus 1/T for DP EN8 F-M steel in 0.5 M H2SO4 comprising various concentrations of pectin at 
1 h immersion time

Table 2   Activation parameters for the corrosion of EN8 steel in 
0.5 M H2SO4 with various pectin concentrations

Time [Pectin] (g/L) Ea (kJ/mol) ∆H# (kJ/mol) ∆S# (J/mol/K)

1 h 0.0 23.90 21.18 − 157.98
0.5 43.47 40.75 − 103.43
2.0 45.65 42.93 − 98.95
3.5 46.06 43.34 − 98.68
5.0 42.40 39.68 − 111.11

3 h 0.0 41.38 38.66 − 98.06
0.5 54.46 51.75 − 62.06
2.0 59.45 56.73 − 49.48
3.5 62.36 57.52 − 41.73
5.0 60.24 59.64 − 49.52

5 h 0.0 24.43 21.71 − 147.19
0.5 42.25 39.53 − 95.75
2.0 42.03 39.31 − 97.69
3.5 44.70 41.98 − 90.62
5.0 47.83 45.11 − 82.15

7 h 0.0 10.35 7.63 − 188.68
0.5 28.47 25.75 − 135.60
2.0 30.35 27.63 − 130.84
3.5 33.44 30.72 − 121.98
5.0 37.10 34.38 − 111.46



6091Chemical Papers (2021) 75:6083–6099	

1 3

and the time constant of the dual electric layer (Cesiulis 
et al. 2016).

The equivalent circuit is comprised of the constant phase 
element (CPE) [from which double-layer capacitance (C dl) 
is calculated using Eq. 5 & 6] parallel to the charge transfer 
resistance (Rct) [from which Rp is calculated using Eq. 7].

A C dl is replaced by a CPE (Q) in the circuit used is 
to take into account the depressed capacitive nature of 

Nyquist plotted and the C dl can be computed using the 
Eq. 5 (Machnikova et al. 2008; Toppo et al. 2013).

where Q, CPE; ωmax, maximum impedance rate and n, 
CPE exponent. The slight change in capacity relative to its 
actual value was calculated using Eq. 6.

(5)Cdl = Q(�max)
n−1,
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Fig. 8   a Langmuir adsorption isotherm and b Graph of adsorption free energy compared to T for pectin in 0.5 M H2SO4 for corrosion of EN8 
steel during at 1 h immersion time

Table 3   Thermodynamic parameters for pectin adsorption to EN8 
steel in 0.5 M H2SO4 at various temperatures

Time Temp (K) ∆G°ads (kJ/
mol)

∆H°ads (kJ/
mol)

∆S°ads (J/mol/K)

1 h 313 − 14.0836 − 64.90 − 161.94
323 − 12.9229
333 − 10.7127
343 − 9.4223

3 h 313 − 12.6030 − 49.22 − 117.23
323 − 11.0780
333 − 10.5005
343 − 8.8877

5 h 313 − 11.7881 − 65.76 − 172.39
323 − 10.3844
333 − 7.8275
343 − 6.8939

7 h 313 − 12.1600 − 82.82 − 227.11
323 − 9.1790
333 − 6.5089
343 − 5.4794
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Fig. 9   OCP plots in 0.5 M H2SO4 comprising various concentrations 
of pectin at 40 °C for corrosion of EN 8 steel using saturated calomel 
electrode (SCE) as the reference electrode
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fmax = maximum frequency at which the imaginary com-
ponent. The polarization resistance (RP) was calculated 
using Eq. 7.

The results of the regression calculations for this system 
are illustrated in Fig. 12, obtained by fitting the experimental 
data in the ZSimpWin software to the relevant equivalent 
circuit model. Impedance parameters such as charge transfer 
resistance (Rct), double-layer capacitance (C dl), and inhibi-
tion efficiency (IEEIS %) are given in Table 5.

From the results, it is seen that the value of Rp was 
increasing with increased pectin concentration and Cdl was 
decreasing. This is due to the absorption of pectin mole-
cules on the surface of EN8 steel forming a physical barrier 
between the metal and the corrosive medium. The dielectric 
constant decreases and the thickness of the double layer at 
the metal and electrolyte interface increases, resulting in a 
decrease in the capacitance of the double electric layer (Cdl). 

(6)Cdl =
1

2�fmaxRp

,

(7)Rp = Rs + Rct

The IE% obtained from the EIS measurements was in agree-
ment with that obtained from the PDP technique.

Bode plots depict the nature of the electrochemical sys-
tem according to frequency. Figure 13 presents the Bode 
graph for DP EN8 steel in the absence and presence of dif-
ferent pectin concentrations. The increase in the phase angle 
with the increase in pectin concentrations is attributable to 
the decrease in metallic corrosion. This is due to the reduc-
tion of capacitive behavior at the metal–inhibitor interface. 
In the Bode magnitude graph, only one slope was found for 
the corrosion and inhibition process. The Bode plots signify 
that the difference between the HF limit and LF limit cor-
responds to the Rp (Pais and Rao 2020) values.

Surface characterization

Scanning electron microscopy (SEM) analysis

In Fig. 14a, the metal surface appears to be very smooth and 
even, with few scratches due to polishing. Figure 14b shows 
the EN8 steel metallic surface in contact with 0.5 M H2SO4 
for 3 h. The material undergoes severe corrosion of DP EN8 
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Fig. 10   PDP graphs in 0.5 M H2SO4 comprising different pectin con-
centrations at 40 °C for corrosion of EN8 steel

Table 4   Results of PDP 
measurements for corrosion 
of EN8 steel in 0.5 M 
H2SO4 containing various 
concentrations of pectin at 
40 °C

[Pectin] (g/L) Ecorr (mV vs 
SCE)

icorr (mA cm−2) −βc (m V 
dec−1)

βa (m V dec−1) IE (%)

0.0 − 491 4.413 588 605 –
0.5 − 488 2.733 630 656 38.06
2.0 − 482 2.269 644 676 48.58
3.5 − 477 2.153 690 766 51.20
5.0 − 481 1.650 723 819 62.60
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Fig. 11   Nyquist plots in 0.5 M H2SO4 comprising various pectin con-
centrations at 40 °C for corrosion of DP F-M EN8 steel
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steel in the selected medium which is observed in the SEM 
image. The surface of the corroded specimen is very uneven 
as a result of the dissolution of the metal and the deposi-
tion of the corrosion product. In certain areas, there are pits. 

Cavity formation may be caused by the separation of the 
corrosion product from the metal. Adding 5.0 g/L of pectin 
revealed a remarkable change in the surface of the metal 
(Fig. 14 c). The added inhibitor was capable of covering 

Fig. 12   Equivalent circuit fit 
with experimental data using 
ZSimpWin software
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Table 5   Results of EIS 
measurements for corrosion of 
DP EN8 steel in 0.5 M H2SO4 
comprising various pectin 
concentrations at 40 °C

[Pectin] (g/L) Rs (Ω cm2) CPE (× 10−3) n Rct (Ω cm2) Rp (Ω cm2) Cdl (μ F cm−2) IE (%)

0.0 3.105 1.181 0.8485 4.941 8.046 98.85 –
0.5 2.649 0.995 0.8469 7.989 10.638 46.77 24.36
2.0 2.413 1.202 0.7897 13.13 15.543 25.61 48.23
3.5 3.341 1.041 0.7899 13.08 16.421 23.08 51.00
5.0 2.579 1.015 0.8096 13.98 19.259 15.03 58.22
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Fig. 13   a Bode magnitude plots and b Bode phase plots for control of corrosion of DP EN8 steel in the absence and presence of various concen-
trations of pectin at 40 °C in 0.5 M H2SO4
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almost all cavities of the surface, forming a barrier between 
the metal and the medium, preventing corrosion.

Energy dispersive X‑ray (EDX) analysis

The EDX spectra were taken for polished, corroded, and 
inhibited samples. The images of the spectra are shown in 
Fig. 15 along with its elemental analysis. The presence of a 
large amount of percentage of oxygen is observed in the cor-
roded sample. This is due to the formation of the metal oxide 
layer. In the presence of 5.0 g/L pectin, there is an increase 
in the percentage composition of carbon and decreased con-
centration of oxygen. This confirmed the adsorption of pec-
tin on the surface of the metal thereby successfully decreases 
the corrosion. Now, the presence of oxygen after inhibition 
is due to the OH groups present on pectin.

Atomic force microscopy (AFM) analysis

The 3D images of DP EN8 steel for the freshly polished, 
sample dipped in 0.5 M H2SO4 along with the 5.0 g/L pectin 
are presented in Fig. 16a–c, respectively. The values such 
as average surface roughness (Ra), root mean square rough-
ness (Rq), and Rmax values derived from AFM studies are 
provided in Table 6. It is clear from the results of Ra, Rq, and 
(P–V) that for the inhibited sample, the values are much 
lower than in the absence of pectin (Pais and Rao 2020). 
This is a clear indication of the adsorbed pectin on the sur-
face of the EN8 steel.

X‑ray diffraction technique (XRD) analysis

XRD was utilized to study the formation of pectin film on 
DP EN8 steel. XRD spectra were recorded for the EN8 steel 
and EN8 steel + 5.0 g/L pectin by dipping in 0.5 M H2SO4 
for 24 h. The DP EN8 steel in the presence of 0.5 M H2SO4 
underwent corrosion produces peaks at 2θ = 44.70°, and 
64.92° (Fig. 17a) due to iron oxides (Fe3O4 and FeOOH). 
The XRD spectra of the DP EN8 steel surface submerged in 
the 0.5 M H2SO4 acid solution comprising 5.0 g/L of pectin 
are shown in Fig. 17b. The high peak intensity observed 
around 45° at 2θ is linked to the Fe phase and the iron oxide 
peaks are significantly reduced. This change in peaks of 
inhibited surface suggests a layer formed on the surface of 
the metal. The results also signify the possibility of pectin 
film formation on the surface of the metal.

Corrosion inhibition mechanism

Pectin reacts with the sulphuric acid solution in the corro-
sive. Because of this, they become cations, existing in equi-
librium with the corresponding molecular shape.

Fig. 14   SEM images of a freshly polished, b EN8 steel + 0.5  M 
H2SO4, c EN8 steel + 0.5 M H2SO4 + 5.0 g/L pectin
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Physical adsorption can occur due to electrostatic inter-
action among protonated pectin molecules with the sulfate 
ion-covered metal surface. Interaction between electrons 
of oxygen of OH group with the metallic surface may also 
take place. Chemical adsorption occurs due to the result 
of π-orbitals interaction with the metallic surface, this is 
not happing because there are very few π bonds (C = O) 
usually placed away from the metal surface as indicated in 
Fig. 18. In the present study, the free energy of adsorption 
values is lower than the − 20 kJ/mol, therefore, shows that 
the adsorption of pectin molecules at the surface of DP 
EN8 steel is primarily by physical adsorption.

(8)PECTIN − OH + xH+
→ [PECTIN − OHHx]

x+ Conclusions

In this study, the effect of DP EN8 F-M steel exposed to 
0.5 M H2SO4 solution was studied by immersion corrosion 
and electrochemical measurements. From the results of the 
experiments, the following conclusions were arrived at.

•	 From the weight loss study, highest inhibition effi-
ciency of 76.43% was achieved at 5.0 g/L at 1 h of 
exposure at 40 °C.

•	 The inhibition efficiency increases with increased 
inhibitor concentration and decreases with temperature.

Fig. 15   EDX spectra of a 
freshly polished, b EN8 
steel + 0.5 M H2SO4 (c) EN8 
steel + 0.5 M H2SO4 + 5.0 g/L 
pectin

(a)

(b)

(c)

Element Weight %
C 2.43
Si 0.28
P 0.15
Cr 0.14
Mn 0.70
Fe 96.30

Element Weight %

C 6.76
O 32.25
Si 0.11
P 0.68
S 1.29
Cr 0.10
Mn 0.73
Fe 56.47
Ni 0.68
Cu 0.94

Element Weight%
C 7.20
O 19.35
Si 0.12
P 0.14
S 0.95
Cr 0.17
Mn 0.48
Fe 70.87
Ni 0.28
Cu 0.44



6096	 Chemical Papers (2021) 75:6083–6099

1 3

•	 The inhibitor acts as a mixed inhibitor at the surface of 
EN8 steel with a dual-phase F-M structure.

•	 The pectin is physically adsorbed onto the surface of the 
DP EN8 steel with an F-M structure and obeys the Lang-
muir adsorption isotherm.

•	 The corrosion control of DP EN8 steel with F-M struc-
ture in 0.5 M sulphuric acid solution with pectin with 

Fig. 16   AFM spectra of a freshly polished, b EN8 steel + 0.5 M H2SO4, c EN8 steel + 0.5 M H2SO4 + 5.0 g/L pectin

Table 6   AFM data obtained for DP EN8 steel in 0.5 M H2SO4

Samples Ra (nm) Rq (nm) Rmax (nm)

Freshly polished DP EN8 steel 50 80 951
EN8 steel + 0.5 M H2SO4 478 403 3156
EN8 steel + 0.5 M H2SO4 + 5.0 g/L 

pectin
195 254 1846

Fig. 17   XRD spectrum of DP 
EN8 steel corrosion in 0.5 M 
H2SO4 a Blank (Blue) and b 
presence of pectin (Red)
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an efficiency of 62% was obtained with 5.0 g/L of pec-
tin at 40 °C.

•	 Thus, pectin is a good, renewable, easy to find, cost-
effective, and environmentally safe inhibitor.
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