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Abstract
Intrinsically conducting polymers and their copolymers and composites with redox-active organic molecules prepared by 
chemical as well as electrochemical polymerization may yield active masses without additional binder and conducting agents 
for secondary battery electrodes possibly utilizing the advantageous properties of both constituents are discussed. Beyond 
these possibilities these polymers have found many applications and functions for various further purposes in secondary bat-
teries, as binders, as protective coatings limiting active material corrosion, unwanted dissolution of active mass ingredients 
or migration of electrode reaction participants. Selected highlights from this rapidly developing and very diverse field are 
presented. Possible developments and future directions are outlined.

Keywords  Intrinsically conducting polymers · Secondary batteries · Redox-active molecules · Electrochemical energy 
conversion · Electrochemical energy storage

Introduction

Electronic and electric devices and with growing importance 
the use of renewable energies need systems for energy stor-
age and conversion. Electrochemical systems are in a promi-
nent position. Most likely they (and specifically lithium ion 
batteries (Pirnat et al. 2012)) will not provide economically 
viable large-scale and long-term storage different from fre-
quent advertisements with rather unrealistic claims (e.g., 
Armand and Tarascon 2008). But they will certainly have an 

important role in short-term storage, power quality manage-
ment and storage at off-grid locations. Their use in mobile 
and portable applications will definitely grow further. In 
particular, because of cost considerations and availability 
of raw materials there are absolutely good reasons to look 
for organic replacements for the currently used metal-based 
and inorganic electrode materials. Less environmental prob-
lems, in particular, when devices are not properly discarded 
or recycled and basically unlimited supplies are just a few 
further arguments.

Very soon after the discovery of their redox behavior (see, 
e.g., Otero and Cantero 1999; Kita et al. 1986; Matsunaga 
et al. 1990; Nishio and Furukawa 2011; Mammone 1987) 
intrinsically conducting polymers ICPs have been proposed 
as active materials for secondary batteries. Early reviews 
on their use as active mass or as an additional ingredient 
improving stability and other performance data are available 
(Novak et al. 1997; Holze and Wu 2014). Radical polymers 
(aliphatic and non-aromatic radical-bearing polymers) have 
been suggested for many applications in energy conversion 
and storage (Oyaizu and Nishide 2009; Suga et al. 2011), 
charge transport by self-exchange processes is sufficient 
even in the absence of charge transport along conjugated 
segments of a polymer chain to support electrode reac-
tions. Some considerations on tuning the redox potential of 
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molecular storage materials possible of general applicability 
have been reported by Jouhara et al. (2018). The particular 
challenge of finding materials with suitably positive poten-
tial for use as a positive electrode is highlighted. For an early 
example of the latter material see (Nakahara et al. 2002), the 
influence of electrode thickness has been examined (Kim 
et al. 2007) with a thinner electrode yielding higher mass 
utilization (about 100% at 17 μm thickness). This presum-
ably rather general finding has been reconfirmed in a more 
recent report on mass utilization of supercapacitor electrodes 
(Ge et al. 2021).

The recent rise of interest in organic materials (mono-
mers, oligomers, polymers, copolymers, composites and 
hybrids) as active masses in electrodes of secondary batter-
ies (Armand and Tarascon 2008; Armand et al. 2009; Chen 
et al. (2008), Chen et al. 2009; Chen 2019; Walker et al. 
2010) has moved beyond the developments briefly outlined 
above. In particular, studies of molecules or repeat units in 
larger entities showing a defined redox activity which can 
be employed for charge storage and when combined into a 
cell for energy storage have focused on molecules related to 
quinone and on ferrocene-related species (Fig. 1).

The interest in the latter is also due to the possibility to 
use natural sources containing significant amounts of qui-
none-like units like lignin (Admassie et al. 2016); the use of 
biobased electrode materials has also been addressed else-
where (Liedel et al. 2018).

The redox and thus charge storage capabilities of organic 
molecules can be employed in different ways. The material 
of interest can simply be mixed with a binder and, if needed, 
a conductive material like acetylene black. The molecules 
can also be made part of a polymer or a copolymer involving 
in the latter case, for example an intrinsically conducting 
polymer and said redox-active entity. Two fundamentally 
different approaches with implications for the molecular 
structure, the starting materials and the preparation process 
are conceivable: The redox-active moieties are attached to 
the molecular backbone of the conducting polymer (Fig. 2) 
or can be made part of the copolymer chain (Fig. 3).

Both products are true copolymers. For details of nomen-
clature and experimental approaches toward a distinction 
as well as differentiation from polymer blends or alloys 
or simple mixtures of homopolymers see (Holze 2011). 
With respect to optimized electronic conductance of the 

ICP component, a structure as suggested in Fig. 2 seems to 
be advantageous because the conjugation along the chain 
necessary for charge movement (i.e., conduction) along the 
molecular chain is not disturbed, possibly interrupted, by 
different molecules like quinone units in a polyaniline chain.

Charge storage in battery and in supercapacitor electrode 
materials can proceed in two initially different ways: By 
charge separation typical of a capacitor and by electrochemi-
cal redox transformation mostly associated with chemical 
changes, too.

In the former case electrons are moved into/out of the 
electronically conducting material (commonly called the 
electrode), to maintain electroneutrality ions compensat-
ing for this charge movement are accumulated or dispersed 
in the adjacent ionically conducting phase. The interaction 
between the ions and the electrode may be strong enough 
to suggest chemisorption, weaker interaction may be called 
physisorption. In both cases electrosorption is operative. 

Fig. 1   Schematic redox 
reactions of ferrocene and of 
quinone

Fig. 2   ICP chain with pendant quinone redox moieties (simplified 
scheme)

Fig. 3   ICP with redox moieties incorporated in the molecular chain 
(simplified scheme)
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Sorptive behavior may affect the capacitive performance of 
the electrochemical interface. Because other factors like ion 
size, diffusivity, pore size, etc., also affect the performance 
adsorption is frequently invoked, but hardly examined more 
closely in the reported literature.

Redox transformations observed with battery electrode 
materials show widely varying forms. They all share the 
reversibility of the reaction. A very simple case is the nega-
tive lead electrode in the lead acid battery:

An organometallic analogue of this reaction is the fer-
rocene/ferrocinium electrode according to.

 with the Fe(II)/(III) acting as electron source/sink. For 
charge compensation counterions will move in/out of the 
respective polymer. Such reaction is not feasible with all 
metal-free organic electrode materials suggested both for 
use in the negative and the positive electrode. Instead for 
metal-ion batteries at the negative electrode a material acting 
as metal host releasing the metal as cation upon discharge 
will be required; at the positive electrode the corresponding 
processes will happen (see Fig. 4).

Charge transfer and storage are associated with changes 
in bonding from, e.g., double to single bonds, bond rear-
rangements and redistribution of electrons participating in 
such bond systems. This is very much different from stor-
age processes in materials like graphene or metal oxides 
like LiCoO2. Certainly in these cases stoichiometries can 
be established enabling theoretical charge density calcu-
lations. But a fundamental difference—the dominance of 
covalent bonds in organic materials vs. electrostatic bond-
ing in metal oxides—remains. Graphite at first glance also 
seems to belong to the class of organic materials because of 
the covalent bonds between the carbon atoms, but the host’s 
interaction with the lithium or any other metal is more of 

(1)Pb ⇄ Pb2+ + 2e−.

(2)Fe(II)cp2 ⇄ Fe(III)cp2 + e−.

the non-directional electrostatic or metallic type. Structural 
aspects like layered architecture in graphite or many other 
electrode materials (TiS2, etc.) or availability of tunnels and 
other voids are presumably more relevant in more crystalline 
inorganic materials than in polymeric materials.

Beyond the use of ICPs as active masses their inclusion 
as binder in electrodes for lithium-ion batteries has been 
suggested. In the following overview these various uses are 
addressed and illustrated with examples. Since our earlier 
review (Holze and Wu 2014) the number of reports on the 
use of ICPs, their copolymers and their combination with 
other ingredients beyond redox-active molecules as well as 
their use as auxiliary materials in various functions have 
yielded a substantial number of reports. Selective reviews 
on, e.g., use of PANI (Chen 2019; Gilhotra et al. 2019; Li 
and Gong , 2020; Luo et al. 2019), polycarbazole (Nayana 
and Kandasubramanian 2020), PEDOT (Chen and Li , 
2020), polypyrrole (Bocchetta et al. 2020) and polyindole 
(Zhou and Xu 2017) are available. But even more impressive 
than plain numbers is the width of applications. This makes 
strict selection of reports included here difficult. Thus, we 
have decided to focus on representative examples instead 
of attempting (most likely in vain) to include every report 
applying most likely arbitrary rules. This will possibly be 
more helpful in demonstrating the versatility of ICPs and 
redox-active organic materials for electrodes in secondary 
batteries thus inspiring and encouraging further research.

Assignment of a report and a described material to any 
of the classes introduced below were sometimes difficult, 
possibly arbitrary. Whether an ICP serves as a coating of an 
active material (a metal oxide, for example) in its various 
shapes or as an embedding or host material can sometimes 
be concluded only from the experimental description, unfor-
tunately the authors not always clearly defined function of 
the various constituents of their electrode materials.

Modeling of ICPs (e.g., PEDOT) in contact with an 
ionic liquid has been introduced providing a glimpse at 

Fig. 4   Redox transformation of a poly(1,4-anthraquinone) during charge/discharge as electrode material in a lithium-ion battery (Song et  al. 
2015)
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charge distributions and interactions between charged 
PEDOT and the mobile species (Craig et al. 2020).

Because of possible confusion some terms repeatedly 
used in the following text are defined following, for some 
of them a brief definition has been mentioned in passing 
above.

Intrinsically conducting polymers are macromolecular, 
polymeric substances with extended conjugated π-electron 
systems showing electronic conductivity without added con-
ducting filler materials. Typical examples are conjugated 
polymers like polyaniline and polyacetylene. Electronic 
(not ionic) conduction proceeds by electron movement 
along more or less extended conjugated parts of the polymer 
chains. Between chains electron hopping becomes operative.

The electrical conductivity of these polymers depends 
strongly on the degree of oxidation or, as usually stated the 
degree of doping, which implies the creation of positively 
(p-doping) or reduction creating negatively charged delo-
calized states (n-doping) which are compensated by cor-
responding insertion of counterions. The doping/dedop-
ing processes in the conducting polymers are related to 
the mixed electronic and ionic transport in the bulk of the 
material. The electronic conductivity is due to the motion 
of delocalized electrons or holes along the polymer chains 
with conjugated bonds, which is accompanied by corre-
sponding motion of charge-compensating ions. These dop-
ing processes alter the electrical and optical properties of the 
intrinsically conducting polymers, and thus, potential control 
is a prerequisite for obtaining desired properties of polymers.

Some of the numerous ICPs have established themselves 
as important compounds and components in much differ-
ent applications, e.g., as antistatic coating, as material in 
electrolytic capacitors, in printed circuit manufacturing, in 
organic electronics.

Extrinsically conducting polymers (the term is less com-
mon, a frequently used definition does not appear to be 
established yet) are polymers which become conductive after 
addition of an electronically conducting agent, and most fre-
quently these materials are just called conducting polymers.

Conducting polymers are macromolecular, polymeric 
substances showing electronic conductivity only when con-
ducting materials like graphite, acetylene black or metal 
powders have been mixed into the polymers. Typical exam-
ples are conducting rubber or metal-filled polymers. These 
materials are widely used as flexible contact materials in 
electronics and in applications where electrostatic charging 
needs to be handled.

Redox-active polymers (also: redox polymers) are poly-
mers with redox functionalities incorporated either in the 
polymer chain or as pendant group at the polymer chain 
(Inzelt 2008). As the main difference from ICPs is charge 
transport proceeds by exchange reactions between the local-
ized redox groups. Redox polymers are applied in sensors, 

medicine and energy technology (Casado and Mecerreyes 
2020).

Successful application of an ICP in whatever function 
critically depends on the stability of the ICP itself, but even 
more on the stability of the device. Thus, particular attention 
is paid to stability aspects in the following overview. When 
stated in the original reports we have included information 
about number of recorded charge/discharge cycles, capacity 
retention after a number of cycles and further details helpful 
in assessing stability of a material or a device. This property 
is frequently not considered adequately for a practical use: 
A battery stable for 50 cycles or less can hardly be called 
a promising option despite highly optimistic claims of an 
author. Unfortunately, reports are sometimes a bit diffuse 
regarding the distinction between stability of an electrode 
and of a complete cell. When cell data are definitely reported 
this is explicitly stated below.

The energy storage performance of an electrochemical 
device critically depends on the amounts of charge stored in 
both electrodes and the cell voltage observed between these 
electrodes. Energy storage with respect to a single electrode 
does not make sense, it is impossible. Why and how it is fre-
quently reported nevertheless has been discussed elsewhere 
(Ge et al. 2020, 2021; Holze and Wu 2021). Storage capabil-
ities in terms of theoretical and/or theoretical gravimetric or 
volumetric charge densities (sometimes slightly imprecisely 
called capacities (see Dubal et al. 2015, 2016a, b), in units 
of A·s·g−1) can be calculated. In case of a battery electrode 
(material) with a well-established electrode reaction equa-
tion calculation of a theoretical value of a gravimetric charge 
density assuming complete conversion of the reactants and 
exact knowledge of the electrode reaction (Beck and Euler 
1984) is no problem. Reporting of volumetric data will be 
more difficult because reliable and exact knowledge or even 
more determination of the volume of a more or less porous 
electrode is a non-trivial task. Practical values are more 
complicated because they depend on experimental param-
eters. The electrode potential limits where charge/discharge 
have been started and stopped are obviously of major impor-
tance, because of the influence of charge/discharge current 
on electrode potential (overpotentials (Vetter 1967)), values, 
will be smaller when reported at higher currents. Accord-
ingly, comparisons between different reports and materials 
may be rather imprecise. Matters are even more complicated 
with supercapacitor electrode materials. For double-layer 
storage materials there are no electrode reaction equations, 
accordingly this point of reference is missing. Because the 
amount of charge stored with these materials depends on 
the change of electrode potential a value of charge speci-
fied with respect to this change and the mass (in units of 
A s V−1 g−1 or F g−1) can be provided based on experimental 
data. Theoretical storage capabilities (sometimes also called 
capacitances, see (Dubal et al. 2015, 2016a, b)) are difficult 
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to establish (Ge et al. 2021). For supercapacitor electrode 
materials utilizing redox reactions this problems becomes 
even more intricate. The availability of a redox reaction 
equation (even when incorrectly displayed as frequently 
observed) suggests a calculation as simple as done for a bat-
tery electrode material sometimes conveniently neglecting 
the rather different electrochemical response of the material 
(pseudocapacitive). This matter appears to be beyond the 
scope of the present report, but the noticeable merger of 
supercapacitor and battery electrode materials with some 
materials discussed below showing up also in supercapaci-
tor electrodes (Holze 2020) suggests a short mentioning. In 
any case in the present report storage data are not provided. 
Although the dominant aim of many reported studies seems 
to be a value as high as possible incomplete reporting of 
experimental parameters and frequently lack of compara-
bility as discussed elsewhere (Ge et al. 2020) leave such 
numbers with rather limited practical value.

Active masses

Following ICPs, further polymers, copolymers and further 
combinations are briefly presented starting with materials 
employing in addition to an ICP a redox-active moiety.

Quinones in secondary batteries

2-Aminoanthraquinone as redox-active storage material was 
kept in place by a combination of polyacrylic acid and PANI 
(Tong et al. 2020). The latter provided electronic conductiv-
ity, the former condensed with the amino-compound keep-
ing the otherwise soluble molecule in place. Two thousand 
cycles could be achieved.

The lithium salt of poly(2,5-dihydroxy-p-benzoquinonyl 
sulfide) (60%wt) mixed with acetylene black (30%wt.) and 
PTFE (10 wt.) as binder was used as the positive electrode 
in a lithium-ion battery by Song et al. (2014). At an average 
polymerization degree of 7 solubility of the organic material 
in the electrolyte solution was irrelevant, further advantages 
of the electrode mixture resulted in a capacity retention of 
90% after 1500 cycles at a Coulomb efficiency of around 
100%. Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methyl-
ene) as a positive electrode material for lithium-ion batter-
ies has been proposed (Le Gall et al. 2003), it kept 90% of 
its initial storage capability after 100 cycles.

A quinone-formaldehyde polymer was synthesized by 
Pirnat et al. and studied as an electrode mass for lithium-ion 
batteries (Pirnat et al. 2016). Poly(5-amino-1,4-dihydroxy 
anthraquinone) (see Fig. 5) has been proposed as positive 
electrode material for lithium-ion batteries by Zhao et al. 
(2013).

The PANI-related molecular structure was invoked 
as supporting electronic conductivity of the material, 

nevertheless the electrode material contained 40%wt. acety-
lene black and 19%wt. binder (PTFE).

Rapid performance deterioration of polyquinone as a 
positive electrode material in a lithium-ion battery by elec-
trochemical lithiation has been reported by Ignatova et al. 
(2017). In a theoretical study of poly(2,5-diaza-1,4-benzo-
quinone) Shestakov estimated promising storage capability 
(Shestakov et al. 2018). Polyanthraquinone has been pre-
pared by a simple polycondensation reaction with poly(1,5-
anthraquinone) being particularly stable as positive electrode 
in a lithium-ion battery (Song et al. 2015).

Poly(2,5-dihydroxyl-1,4-benzoquinonyl sulfide) (see 
Fig. 6) in a composite with CNTs has been used as posi-
tive electrode in a flexible pouch lithium-ion battery with a 
negative lithium electrode employing PANI-coated CNTs as 
lithium metal hosts (Zhang et al. 2019a).

After 90 cycles about 71% of the initial cell capacitance 
were retained.

Sterby et  al. (2017) prepared a PEDOT from EDOT 
monomer units functionalized with p-benzoquinone using 
various linker groups. The material was tested in aqueous 
secondary batteries. Fast redox conversion of the quinone 
unit was found in an electrode potential region where the 
PEDOT was electronically conducting. This aspect is of 
particular importance when considering preparation of an 
active mass without added conducting carbon.

Inclusion of the catechol moiety increased the storage 
capability threefold. PEDOT with pyridine and quinone 
groups in the sidechains (see Fig. 7) with the pyridine moi-
ety acting as proton trap keeping the protons released dur-
ing oxidation of the hydroxyl group at the hydroquinone 
substituent thus making this electrode material versatile in 
nonaqueous electrolyte solutions (Ǻkerlund et al. 2019).

Fig. 5   Reaction scheme of the polymerization of 5-amino-1,4-di-
hydroxy anthraquinone into poly(5-amino-1,4-dihydroxy anthraqui-
none) (Zhao et al. 2013)

Fig. 6   Poly(2,5-dihydroxyl-1,4-benzoquinonyl sulfide)
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A quinone-substituted PEDOT (Fig. 8) has been sug-
gested as positive electrode material for lithium-ion batter-
ies (Oka et al. 2019). The redox transition of the pendant 
quinone happens in the electrode potential range wherein 
PEDOT is in its highly conducting state, this supports uti-
lization of its storage capability. High rate capability of the 
material with a water-in-salt electrolyte has been observed.

A polymer with a polythiophene backbone and diethyl 
terephthalate pendant groups has been proposed as nega-
tive electrode material for lithium-ion batteries (Yang 
2016). The high rate capability is attributed to the open 
(porous) morphology and the fast electron transport along 
the PTh backbone. Designation of the material as redox 

polymer instead of intrinsically conducting polymer 
(Inzelt 2008) is slightly confusing.

Electrode kinetics of poly(pyrrol-3-ylhydroquinone) 
suggested as electrode mass for secondary batteries have 
been examined (Karlsson et al. 2014). With very thin films 
kinetics were limited by the quinone redox process.

Cross-conjugated oligomeric quinones combined with 
CNTs have been suggested as cathode material for lithium-
ion batteries with a two-step lithiation process as charge 
storage reaction depicted in Fig. 9 Jing et al. (2017).

Ninety-six percent of the initial storage capability were 
still present after 250 cycles, this suggests effective sup-
pression of active mass dissolution being a common prob-
lem of organic electrode materials in lithium-ion batteries 
with organic solvents in the electrolyte solution.

The lithium salt of tetrahydroxybenzoquinone has been 
proposed as a positive electrode material for a lithium-
ion battery (Chen et al. 2009). Tetrahydro-hexaquinone 
has been examined as an electrode material by Zou et al. 
(2014). A quinone derivative of calyx[4]arene combined 
with carbon black used as the positive electrode in a lith-
ium-ion battery showed improved stability and kinetics 
when comparing materials obtained by chemical and elec-
trochemical grafting of the active moieties ion a carbon 
support (Pirnat et al. 2012). Success of electrochemical 
grafting depended more on surface properties of the used 
carbon substrate. Dibenzo[b,i]thianthrene-5,7,12,14-
tetraone has been suggested as a particularly stable posi-
tive electrode material providing large storage capability 
(Ma et al. 2016).

Sulfonated substituted anthraquinone has been examined 
as positive electrode material in a potassium-ion battery by 
Zhao et al. (2018). After 100 cycles no capacity loss was 
noticed.

Fig. 7   Substituted PEDOT with 
pyridine and quinone groups in 
the sidechains (Ǻkerlund et al. 
2019)

Fig. 8   Substituted PEDOT with quinone groups in the sidechain (Oka 
et al. 2019)
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An option for utilization of the redox capability of qui-
nones has already been discussed previously: Their use in 
the counteranion incorporated in an ICP upon its (reversible) 
oxidation for charge balancing (Holze 2020). The redox stor-
age capability of PEDOT has thus been enhanced by add-
ing anthraquinone-2-sulfonate (Sheng et al. 2020). Both rate 
capability and stability of the electrode could be increased. 
After 10,000 cycles 173.5% of the initial capacity were 
found when 0.03 M of the anthraquinone-2-sulfonate had 
been added to the electrolyte. A gel electrolyte presumably 
helped in limiting self-discharge.

PEDOT with a bifunctional dopant composed of 4-vinyl-
catechol and styrenesulfonic acid moieties (Fig. 10) has been 
proposed as positive electrode (Chhin et al. 2019).

Low electronic conductivity and gradual dissolution of 
molecular quinones have been noticed as a major drawback 
for their use in batteries with nonaqueous electrolyte solu-
tions resulting in incomplete material utilization and insuf-
ficient cycling stability (Takada et al. 2001). To overcome 
both limitations poly(3,4-dihydroxystyrene) PDHS (see 

Fig. 11) has been prepared and combined with PEDOT 
into a composite for use as a positive electrode material in 
a lithium-ion battery (Lukyanov et al. 2019).

PHS alone shows moderate performance. When com-
bined with PEDOT the rate performance was improved 
considerably suggesting a catalytic effect of PEDOT, after 
50 cycles about 65% of the initial capacitance were left.

The glass fiber separator in a lithium-ion sulfur battery 
was modified with potassium-modified graphene, PANI 
and poly-1,5-diaminoanthraquinone for enhanced sup-
pression of polysulfide movement (Kiai and Kizil 2019). 
The noticed suppression was assigned to a “strong binding 
energy for the adsorption of polysulfides.”

Trapping of quinones inside a zeolite-templated carbon 
(ZTC) has been suggested as another option to suppress 
their dissolution and associated electrode capacitance loss 
(Nueangnoraj et al. 2016). When two different quinones, 
e.g., anthraquinone and tetrachlorohydroquinone, with dif-
ferent redox potentials were used, an organic proton bat-
tery could be assembled with 29% capacitance loss after 
500 cycles.

Somewhat beyond the scope of this update is the use 
of 3,4,9,10-perylene–tetracarboxylicacid–dianhydride 
(PTCDA) as positive electrode material for a sodium-ion 
battery with a capacity retention of 66.1% after 200 cycles 
(Chen et al. 2015).

Fig. 9   Two-step lithia-
tion/delithiation process of 
poly(benzo[1,2-b:4,5-b′]
dithiophene-4,8-dione-2,6-diyl)

Fig. 10   Bifunctional copolymer of 4-vinylcatechol and styrenesul-
fonic acid

Fig. 11   Poly(3,4-dihydroxysty-
rene)
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Ferrocenes in secondary batteries

Su et al. (2015) reported on a ferrocene-substituted aniline 
(6-(2-amino-phenol-9H-yl)-hexyl ferrocenecarboxylate) 
(Fig. 12) that has been synthesized and polymerized by 
chemical oxidation. For comparison a copolymer with ani-
line and PANI were prepared. The copolymer kept 76.3% of 
its initial capacitance after 30 cycles as a positive electrode.

Park et al. (2007) have prepared a copolymer of pyrrol 
and [(ferrocene) amidopropyl]pyrrole (Fig. 13) yielding a 
redox-active copolymer with a charge storage capability big-
ger than the one already provided by the plain PPy.

The observed storage capability was deemed to be unat-
tractive, further research went toward LiFePO4 (LFP) 
embedded in PPy yielding more than double storage capa-
bility. PPy doped with poly(styrenesulfonate-co-vinylferro-
cene) (see Fig. 14) was proposed as positive electrode in a 
neutral electrolyte solution zinc battery (Lee et al. 1995). 

Within 500 cycles no loss of Coulombic efficiency was 
found.

A homopolymer of 4-(1H-pyrrol-1-yl) phenyl ferrocen-
ecarboxylate (see Fig. 15) has been compared with its copol-
ymer with pyrrol and with PPy for use as positive electrode 
material in a lithium-ion battery (Su et al. 2013). When com-
pared to plain PPy the copolymer showed a major increase of 
storage capacity attributed to the ferrocene moiety.

Ferrocene-containing coordination polymers have been 
suggested as electrode materials for lithium-ion batteries by 
Strekalova et al. (2019) and Khrizanforov et al. (2019). GO 
covalently modified with alkyne-terminated ferrocene by a 
click reaction subsequently mixed with Mn3O4 and PANI 
was made into an electrode using additional carbon black 
and PVDF as a binder on a carbon paper support (Payami 
et al. 2020) The author did not suggest use of the electrode 
as positive or negative one. Stability data are a further miss-
ing detail.

Miscellaneous copolymers in active masses

Poly(aniline-co-N-methylthionine) (see Fig. 16) has been 
proposed as active mass for a zinc-ion battery (Chen et al. 
2016). The observed gain in storage capability was attributed 
to the redox-active N-methylthionine. 99.4% of the initial 
capacity were found after 150 cycles.

Fig. 12:   6-(2-amino-phenol-9H-yl)-hexyl ferrocenecarboxylate

Fig. 13   Copolymer of pyrrol and [(ferrocene) amidopropyl]pyrrole

Fig. 14   Poly(styrenesulfonate-co-vinylferrocene)

Fig. 15   Poly4-(1H-pyrrol-1-yl) phenyl ferrocenecarboxylate

Fig. 16   Poly(aniline-co-N-methylthionine)
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An ester-functionalized poly(aniline-co-fluorene) (see 
Fig. 17) was suggested as positive electrode for lithium-ion 
batteries (Li et al. 2017) showing a capacity retention of 
95.2% after 50 cycles.

A copolymer of N-phenyl-p-phenylenediamine and pyr-
ene (see Fig. 18) has been suggested for the positive elec-
trode of a lithium-ion battery (Yao et al. 2019a).

An output voltage of 3.2 V and 75.2% capacity retention 
after 180 cycles were noticed.

The use of PANI as active mass has been hampered by 
the pH-dependency of the electrochemical activity of this 
ICP. A copolymer poly(aniline-co-o-aminophenol) provided 
only minor improvements when compared with plain PANI, 
stability, in particular, was not noteworthy (Mu 2004). The 
use of self-doping PANI (sulfonated aniline was used as a 
comonomer) as positive electrode in an aqueous zinc-PANI 
battery may solve this problem (Shi et al. 2018). A copoly-
mer of aniline and metanilic acid (3-aminobenzo sulfonic 
acid) at a 1:1 molar ratio was employed. Similar results 
were observed with m-aminobenzoic acid as comonomer 
(Rahmanifar et al. 2002). A copolymer of aniline and azure 
C was examined as positive electrode material in a quasi-
solid zinc battery (Li et al. 2019c). More than 1000 cycles 
were recorded. PEDOT:PSS was used as proton source for 
pH-management in PANI as positive electrode in a flexible 
zinc-ion battery keeping about 80% of its initial capacitance 
after 1500 cycles (Liu et al. 2019a). A flexible, all-in-one 
solid-state zinc-ion battery with a composite of PANI and 
reduced graphene oxide with a solid electrolyte has been 
described (Zhang et al. 2019b). 94.6% of the initial capacity 
were still present after 500 cycles. An assembly of PPy-
coated nanowires of MnO2 and carbon nanotubes has been 
examined as positive electrode for a flexible aqueous zinc-
ion battery (Zhang et al. 2020c). 87.4% of the initial stor-
age capability were still present after 1000 cycles. A similar 

approach with nanorods of α-MnO2 coated with PPy by a 
“self-polymerization” (using MnO2 as the oxidant) process 
has been described (Guo et al. 2020). Significant improve-
ment ascribed to suppressed leaching of Mn2+-ions and 
improved electrode kinetics were stated.

Carbon cloth with deposited PANI on it has been soaked 
in an aqueous solution of [Fe(CN)6]4− yielding a positive 
electrode material for a zinc-ion battery (Yao et al. 2020). 
Addition of the hexacyanoferrate improved capacity reten-
tion after 1000 cycles from 17 to 71%. Nevertheless reports 
with plain PANI as active mass for zinc-ion batteries have 
appeared with rather incomplete details and no data on sta-
bility, see, e.g., (Li et al. 2020a).

A copolymer of PANI and a sulfur-containing substituted 
aniline has been examined as positive electrode in search for 
a stable lithium–sulfur battery (Dai et al. 2019). After 500 
cycles 70.5% capacity retention were recorded. A similar 
approach with a highly cross-linked, electronically conduct-
ing sulfur-rich copolymer with PANI has been reported (Key 
et al. 2020). After 450 cycles about 73% of the initial capaci-
tance were still present.

Copolymers of thiophene and EDOT have been examined 
as positive electrode material with the 1:1 copolymer being 
the most stable material (Chang et al. 2005). Copolymers 
of thiophene and pyrrole at various comonomer ratios have 
been examined as positive electrode masses for lithium-ion 
batteries, for comparison PPy prepared at various humidity 
levels were included (Sanchez De Pinto et al. 1997). The 
electrodeposition potential had a significant effect on the 
storage capability of the copolymer, the material prepared 
at 3. 9 V versus Li/Li+ achieved the highest value.

A copolymer of aniline and o-nitroaniline used as positive 
electrode in a sodium-ion battery showed only minor capac-
ity losses during 50 cycles and a remarkable rate capability 
(Zhao et al. 2012).

Copolymerization of pyrrole and N-(3-hydroxypropyl)
pyrrole yielded a positive electrode mass for a lithium-ion 
battery with higher current and charge storage capability 
(Chen-Yang et al. 2004). Copolymerization with dopamine 
resulted in a rather moderate increase in storage capability 
(Liedel et al. 2018). Agglomeration of PPy negatively affect-
ing its performance as positive electrode in lithium-ion bat-
teries can be suppressed by copolymerization of pyrrole and 
4-(1H-pyrrol-1-yl)phenol (see Fig. 19) yielding a material 

Fig. 17   Ester-functionalized poly(aniline-co-fluorene)

Fig. 18   Poly(N-Phenyl-p-phe-
nylenediamine-co-pyrene)
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with more suitable morphology and tripled storage capabil-
ity (Su et al. 2012).

PPy, polyazulene and their copolymers have been com-
pared as positive electrode masses for a nonaqueous lithium-
ion battery (Naoi et al. 1990). Polyazulene showed the high-
est specific capacitance and rate capability. The latter was 
attributed to higher diffusivity in polyazulene.

Radicals in active masses

A copolymer prepared by chemical oxidation of aniline and 
(4-(6-(2-amino-phenol-9H-yl)hexanoyloxy)-2,2,6,6-tetra-
methylpiperidin-1-yloxy) (Fig. 20) has been examined in the 
positive electrode of a lithium-ion battery (Xu et al. 2016). 
Even the polymer obtained with an optimized comonomer 
ratio had only 82.7% of the initial capacitance left after 20 
cycles at 31.3% Coulombic efficiency.

A copolymer of pyrrole and Py-C-TEMPO (see Fig. 21) 
was used as positive electrode active mass (Xu et al. 2017).

The charge/discharge curves do not show plateaus typical 
of battery electrode materials but instead are more similar 
to those obtained with pseudocapacitive materials (Holze 
2017) suggesting strong electronic interactions between the 
redox centers. Significant capacity losses were observed 
already after 20 cycles.

ICPs and composites in secondary batteries

Although the rather limited success of early applications 
of PANI and PPy in secondary batteries seemed to slow 

down a bit further development suggestions of ICPs as 
active masses sometimes with particular attention to specific 
morphologies and architectures have resulted in a renais-
sance. Improvement in the perceived structural instability 
of plain PANI as an electrode material has been achieved by 
polymerizing aniline in the presence of aramid nanofibers 
and single-walled carbon nanotubes (Flouda et al. 2020). 
Nanopillars of PANI deposited on cracked carbon fibers 
have been suggested for a flexible aqueous zinc-ion battery 
(Li et al. 2019d). After 1500 cycles the electrode retained 
93.2% of its initial capacity. PANI on carbon paper has been 
proposed as a negative electrode for a lead acid battery (He 
et al. 2019). 84.2% of the initial cell capacity were present 
after 3000 cycles.

PPy and lithium (tri-(4-carboxyphenyl)amine) have been 
suggested as positive electrode for a lithium-ion battery (Su 
et al. 2020). At optimum composition about 10% capacity 
loss of the electrode were observed after 100 cycles.

A composite of PANI and 2,5-dimercapto-1,3,4-thiadi-
azole has been suggested for use in a lithium-ion battery 
with a gel electrolyte (Sotomoura et al. 1992). Stability data 
were not reported, the redox reaction used for charge stor-
age was attributed to the organic disulfide, whereas PANI 
was designated a promoter. Another copolymer of aniline 
and 1,4-dihydrobenzo[d][1,2]dithiin-5-ylamin has been 
suggested later as potential electrode material (Cho et al. 
2001). Practical utilization of the many attractive advantages 
of sulfur itself as an electrode material in lithium-ion bat-
teries has so far been hampered by several challenges, the 
solubility of polysulfide intermediates and the associated 
redox shuttle mechanism is presumably the most prominent. 
Many attempts to eliminate this problem have been reported. 
Nano-microspherical and nanotubular PANI-sulfur com-
posites have been suggested with the latter showing higher 
storage capability and better cycling stability at only 40% 
loss after 70 cycles (Wang and Zhang , 2020). The use of 
PANI as described above will add “dead weight” to the elec-
trode because PANI does not contribute to charge storage. 
Thus, optimization of PANI coating thickness is welcome 
as reported by Yao et al. (2019b). At 2 wt% PANI after 500 
cycles 55% capacity retention were reported. Another option 
is the use of PPy-coated nanotubes of MnO2 (Du et al. 2019). 

Fig. 19   Poly(pyrrole-co-4-(1H-pyrrol-1-yl)phenol)

Fig. 20   4-(6-(2-amino-phenol-9H-yl)hexanoyloxy)-2,2,6,6-tetrameth-
ylpiperidin-1-yloxy

Fig. 21   Py-C-TEMPO
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The modified nanotubes accommodated volume changes of 
the sulfur particles and suppressed polysulfide diffusion; 
during 700 cycles 0.088% capacity decay per cycle were 
observed. Nanosheets of zirconium phosphate coated with 
PPy served as host for sulfur in a lithium–sulfur battery 
with the PPy acting as a physical barrier and an electronic 
conductivity enhancer (Liu et al. 2019b). A mesoporous 
composite of TiO2 and sulfur with an encapsulation of PPy 
successfully prevented escape of soluble polysulfides, in 
addition PPy increased electronic conductivity of the elec-
trode material for a lithium–sulfur battery (Song et al. 2020). 
0.103% capacitance per cycle loss were measured during 
300 cycles. Less pronounced effects were reported for com-
posites of TiO2 in PEDOT (Liu et al. 2020d). Microspheres 
of Co3O4 embedded in PPy nanotubes served as hosts for 
sulfur in a lithium–sulfur battery (Wu et al. 2020b). 0.034% 
capacitance loss per cycle were observed during 1900 
cycles. Channels established by PPy in a sulfur-rich tria-
zine framework contributed to 86.8% capacity retention after 
500 cycles of this positive electrode material (Kim et al. 
2020). Further concepts employing ICPs as encapsulating 
or restraining material to keep sulfur in place and restrict 
polysulfide movement have been reported (Ahn et al. 2020; 
Chelladurai et al. 2020; Díez et al. 2020; Gao et al. 2020b, 
c; Ghosh et al. 2019; Hu et al. 2020; Huang et al. 2020; 
Kaiser et al. 2019; Lu et al. 2019; Lan et al. 2020; Liu et al. 
2019c; Rajkumar et al. 2019; Raulo et al. 2019; Ren et al. 
2020b; Song et al. 2019; Tang et al. 2019; Wang et al. 2019a, 
2020d, e; Wei et al. 2019b, c, 2020a, b, c; Wu et al. 2019, 
2020c; Yang et al. 2020a, b). An overview of the various 
uses of ICPs in lithium–sulfur batteries is available (Hong 
et al. 2020).

Growing interest in using selenium instead of sulfur and 
combining this positive electrode material with other nega-
tive ones has resulted in similar considerations for, e.g., a 
sodium–selenium battery see (Zhang et al. 2019c).

Enhanced storage capability of hyper-protonated PANI 
nanorods has been observed for an aluminum-ion battery 
employing AlCl+

2
 as active species (Wang et  al. 2020a) 

Noticeably stability, in particular only 0.003% capacitance 
loss per cycle during 8000 cycles was stated ported. Theo-
retical considerations regarding the interactions between 
chloroaluminate ions and PANI have been reported (Wang 
et al. 2020b).

Layered titanate with PANI inserted for increased inter-
layer spacing and enhanced structural stability as well as 
higher electronic conductivity has been suggested as nega-
tive electrode mass for sodium and potassium-ion batteries 
(Liao et al. 2020). With sodium ions 99.6% of the initial 
capacitance were found after 2500 cycles, and with K+ no 
obvious fading was seen after 2500 cycles. In V2O5 sug-
gested as positive electrode material for a zinc-ion battery 
sluggish electrode kinetics (slow zinc-ion intercalation/

deintercalation) could be accelerated by intercalating PANI 
resulting in increased interlayer spacing (Liu et al. 2020e). 
A very similar approach has been reported by Chen et al. 
(2020c); for V2O5 as positive electrode material in an aque-
ous zinc-ion battery the same approach and rationale has 
been reported (Liu et al. 2020f). Nanowires of V2O5 coated 
with PPy showed 95% capacity retention after 1000 cycles in 
an aqueous zinc-ion battery (Qin et al. 2020). For increased 
mass loading with VO2 in the positive electrode a 3D cur-
rent collector and binder based on carbon fabric and PEDOT 
has been tested (Ma et al. 2020b). After 2000 cycles 23% 
capacity loss for a full cell were recorded. As another option 
ultrathin nanobelts of VO2 and PEDOT, the exact architec-
ture remains unclear have been suggested with 84.5% capac-
ity retention of the full battery after 1000 cycles (Liu et al. 
2020a, b, c, yd, e, f).

As discussed above the problem of needing an acidic 
electrolyte (solution) for PANI to work properly and a neu-
tral solution to avoid excessive corrosion of zinc in a sec-
ondary battery a polymer of aniline-2,5-disulfonic acid has 
been suggested (Wang et al. 2020f). With a quasi-solid elec-
trolyte a flexible battery with 80% capacity retention after 
1000 cycles was prepared. Instead of the Ph-dependency 
of the electrochemical activity of PANI its agglomeration 
has been invoked as a major cause of poor mass utilization 
in an aqueous zinc-ion battery (Wang et al. 2019g). Conse-
quently, combination with graphene was proposed result-
ing in a material with 95.05% capacity retention after 100 
cycles. PPy grown on an aerogel of polyvinyl alcohol served 
as a flexible positive electrode in an aqueous zinc-ion battery 
with 76.7% of the initial storage capability left after 1000 
cycles (Li et al. 2019j).

A composite of sulfur and PPy with PSS (the copolymer 
claimed to be formed in this report is hardly conceivable 
given the experimental procedure, any experimental evi-
dence is absent) has been suggested as positive electrode for 
a lithium–sulfur battery (Han et al. 2019). 64% of the initial 
capacitance were found after 200 cycles. A copolymer of 
sulfur and 3-butylthiophene encapsulated with PEDOT:PSS 
has been examined in a lithium–sulfur battery (Zeng et al. 
2017). High stability of the material (99.947% capacitance 
retention per cycle during 500 cycles) was attributed to the 
high conductivity of the material, physical and chemical 
confinement of polysulfide electrode reaction intermediates.

In particular, for metal-ion batteries beyond lithium-ion 
the suitability of ICPs has been examined again, e.g., for an 
aluminum-ion battery using an ionic liquid as electrolyte 
(Schoetz et al. 2020). A polymer of o-phenylenediamine has 
been examined as positive electrode for an aqueous zinc-ion 
battery; it had 66.2% of its initial capacitance left after 3000 
cycles (Zhang et al. 2020a).

Composites of ICPs with metal chalcogenides for use 
as supercapacitor electrode material have been reviewed 
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elsewhere (Fu et al. 2019); given the ongoing merger of the 
fields of secondary batteries and supercapacitors the reader 
may inspect this report for further suggestions.

Auxiliary components and functions

ICPs have been examined as auxiliary materials in second-
ary batteries in various functions. Strictly speaking ICPs 
do not act as active masses in these applications, they serve 
mostly in other functions. Any charge storage is of minor 
importance if it proceeds at all. Nevertheless these materials 
act as vital components in battery electrodes meriting their 
mentioning here. Most frequently, they can be used as coat-
ing or as embedding material, obviously these functions may 
be difficult to distinguish sometimes. Associated functions 
and advantages of the use of ICPs will be discussed below 
with selected examples.

A polypyrrole-coated LiV3O8-nanocomposite has been 
prepared by Liu et al. (2013) for use as a negative electrode 
material in a lithium-ion battery with an aqueous electro-
lyte solution. The basically promising performance of the 
vanadate was initially compromised by insufficient stability 
caused by rapid release of vanadium ions into the electrolyte 
solution. The coating kept these ions in the coated particle 
(see Fig. 22) and thus enhanced performance stability (see 
Fig. 23).

A coating with PPy of V2O5 suggested as positive elec-
trode material in nonaqueous lithium-ion batteries served the 
same purpose, up to 5000 cycles were recorded (Liang et al. 
2020). Core–shell nanobelts of V2O5 coated with PEDOT 
have shown remarkable lithium storage capability and even 
at high rate (10 C) no capacity loss after 500 cycles (Ren 
et al. 2020a).

Dissolution of MnO2 from an aerogel composite of MnO2 
and reduced graphene oxide could be suppressed by coating 
with PANI (82.7% capacity retention after 600 cycles) (Mao 
et al. 2020). Reduced electric resistance of the material and 
enhanced electrode kinetics were also noticed.

Coating of particles with an ICP (or any other mate-
rial, also) is frequently associated with the terminology 
core–shell. The shell—in the present context an ICP—serves 
again various purposes. As shown above it can keep reac-
tants inside the particle. The function can include mitigation 
of volume changes otherwise possibly resulting in active 
mass pulverization. By mechanical and implicitly electronic 
contact with other coated particles it can also enhance elec-
tron transport across the electrode. A typical example is the 
use of a PEDOT:PSS shell around a SnO2 core (Li et al. 
2019e). Overall performance improvements, in particular a 
major stability improvement, were reported. PPy has been 
used as a coating instead yielding an electrode with 85% 
capacity retention after 300 cycles (Wang et al. 2019b). 
LixSn has been examined as negative electrode material 
with a coating of PPy (Li et al. 2019a). Stable capacity with 
86.1% retention after 300 cycles was reported. Another con-
version material considered for use as positive electrode in 
a sodium-ion battery is CoS2. Like in the previous example 
volume changes and subsequent electrode pulverization limit 
the usability of the pristine material. Coating particles of 

Fig. 22   Suggested mode of 
action of PPy coating

Fig. 23   Cycling stability of coated and uncoated LiV3O8 in 0.5  M 
Li2SO4 aqueous electrolyte solution [based on data in Liu et  al. 
(2013)]
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an aerogel of CoS2 and rGO with pyrrole yielding PPy by a 
vapor-phase process yielded a material with 65.8% capacity 
retention after 700 cycles. (Liu et al. 2020c).

Conventionally, carbon coatings are used as a shell to 
increase the conductivity of electrode materials. A compari-
son of a carbon coating and polymer coating of LiV3O8 has 
shown that the polymer coating provides a greater capacity 
of the material, but is inferior to carbon in stability (Cao 
et al. 2015).

Particles of lithium iron silicate, a material with an attrac-
tive theoretical charge density, have been encapsulated with 
PEDOT (Rasool et al. 2020). Some of the numerous draw-
backs limiting its application initially could be mitigated. 
In a similar way the use of δ-MnO2 as a conversion elec-
trode material for the negative electrode of a lithium-ion 
battery has been hampered by the inherently low electronic 
conductivity of δ-MnO2 and insufficient cycling stability. 
Coating with PPy has been suggested as an option to remedy 
both shortfalls (Sui et al. 2020). With films about 50 nm 
thick 95% of the initial capacitance were observed after 120 
cycles. The thickness of such coating with PPy by vapor-
phase polymerization on particles of FeS2 has been exam-
ined when the composite was used in the positive electrode 
of a lithium-ion battery (Wang et al. 2019c). An optimum 
thickness of 5 nm was identified. The advantage of a con-
formal coating of constant thickness using this methodology 
has also been reported for coating of PPy on CuO (Zhou 
et al. 2019). The coating significantly enhanced the avail-
able storage capability and cycling stability. Similar results 
have been reported for this system elsewhere (Feng et al. 
2020). Using a wet process a slightly thinner coating of PPy 
(about 3 nm) was identified as an optimum thickness for 
a LiNi0.5Co0.2Mn0.3O2 (NCM523) electrode in a lithium-
ion battery (Li et al. 2019f). Coating of this material (also 
abbreviated as NMC532) with PANI by a vapor-phase pro-
cess has been investigated thoroughly (Shao et al. 2021). 
With the best material 84% of the electrode’s initial capacity 
were still present after 100 cycles. A mixed uniform coat-
ing layer of PPy and lithium polyacrylate on particles of 
Li1.2Ni0.2Mn0.6O2 showing both ionic and electronic con-
ductivity protects the active material against corrosion and 
other superficial side reactions resulting in 88.5% capacity 
retention after 100 cycles (Mu et al. 2019). A combination 
of PPy and LiNi1/3Co1/3Mn1/3O2 (it remains open whether 
the ICP served as host or as coating material) resulted in 
overall performance improvement in a lithium-ion battery 
(Zhu et al. 2020). Coating of a binary composite of ZnS 
and reduced graphene oxide yielded a very stable (157% 
capacity retention after 200 cycles) with remarkable storage 
capability (Xu et al. 2019). The advantageous properties of 
the mixed-valence compound Sb2WO6 are marred by struc-
tural collapse during cycling as a battery electrode material. 
Coating of microspheres of this material with PPy yielded 

an electrode material showing stable capacity retention dur-
ing 200 cycles after significant losses in the initial cycles 
(Yang et  al. 2020a). Wrapping of MOF-derived micro-
sheets of ZnMnO3 with PPy yielded a more stable material 
with improved rate capability (Sun et al. 2020). A coating 
of PANI (initially called chemisorbed PANI in the report) 
resulted in increased surface area and optimum porosity of 
Co3O4 enabling a storage capability greater by 50% as com-
pared to the uncoated oxide for use as positive electrode in 
a supercapacitor/battery hybrid (Izwan Misnon et al. 2020). 
Manganese hexacyanoferrate as a positive electrode mate-
rial for sodium-ion batteries shows high theoretical storage 
capability and working electrode potential, its prospects 
are dimmed by insufficient cycling stability and poor cur-
rent capability because of low electronic conductivity. Both 
flaws can be alleviated with PEDOT. The “reinforcement” 
reported by Wang et al. (2020c) is apparently a coating of 
the particles which results in 78.2% capacity retention after 
1000 cycles and further improvements.

Boosting of the sodium storage in Prussian blue nano-
cubes and its analogues has been observed (Kim et al. 
2019a). During 100 cycles no capacity loss was observed. 
Further considerations of the function of coatings have 
been discussed elsewhere (Kim et al. 2019b). MoS2 as 
an attractive material for lithium (Gao et al. 2020a) and 
sodium-ion storage in the negative electrode suffers from 
poor electronic conductivity and volume changes during 
charge/discharge. Using hollow nitrogen-doped carbon 
spheres as host for MoS2 and a coating with PPy a material 
with a fairly stable sodium storage capability after seri-
ous losses in the initial cycles was prepared (Wang et al. 
2019d). MoO3 particles employed as hosts for Al3+-ions 
in an aluminum-ion battery have been coated with PPy 
(Wang et al. 2019e). 83.2% capacity retention after 100 
cycles were reported.

Lithium-rich manganese compounds attractive as positive 
electrodes for lithium-ion batteries are hampered by poor 
rate performance, lacking stability and voltage decay. In 
case of Li1.2Mn0.54Ni0.13Co0.13O2 a mixed coating of PANI 
and Li1.4Al0.4Ti1.6(PO4)3 suppressed active mass dissolution 
and improved rate performance showing 79% capacity reten-
tion after 200 cycles (Lai et al. 2019). A similar approach 
has been studied for nickel-rich LiNi0.8Co0.1Mn0.1O2 with 
a coating of PPy and LiAlO2 (Ma et al. 2020a). After 100 
cycles (presumably the meaning of “loop”) 92.8% of the 
initial electrode capacitance was left.

Another coating on a much larger scale is the encapsula-
tion of the lithium metal electrode used as negative electrode 
securing dendrite-free metal deposition upon charging. A 
mesoporous PPy-graphene oxide heterostructure has been 
proposed enabling 1000 stable charge/discharge cycles with 
more than 90% capacitance retention after 450 cycles (Shi 
et al. 2020).
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The low electronic conductivity of MnOx has hampered 
its use as a positive electrode material in zinc-ion batter-
ies. A nanocomposite with PPy prepared in a simple one-
pot reaction has shown good rate performance and stability 
(Li et al. 2020b).

Most simply a composite electrode material can be 
obtained by simply pressing LiMn2O4 and PPy pow-
der without using any binder (Kuwabata et al. 1999). It 
was shown that PPy works well as a conducting matrix, 
improving electrochemical performance of the composite 
cathode material LiMn2O4/PPy.

ICPs can be used as the (only) binder, completely 
replacing traditional polymer like PVDF.

With increased amounts of ICPs electrodes without 
added carbon can be prepared, for example for LiFePO4 
with 17–20 wt% of PEDOT (Cíntora-Juárez et al. 2014). 
Various preparation methods were tried, clear distinctions 
between coating of active material particles, mixing with 
ICP powder (blending) or electropolymerization of the 
ICP in the presence of active material particles are hard 
to identify. This difficulty will possibly cause uncertain-
ties regarding assignment of a particular material in the 
following overview.

By emulsion polymerization a copolymer of conduc-
tive polypyrrole and poly(acrylonitrile/butyl acrylate) was 
prepared for use as a binder in the positive electrode in a 
lithium-ion battery with Li4Ti5O12 as active mass (Qi et al. 
2020). Improved rate capability was attributed to the con-
ducting PPy-segments whereas the enhanced stability was 
assumed to be due to the adhesive properties of the second 
polymer, in particular, when the ratio of the comonomers 
was at the optimum.

PEDOT has been used as a conductivity-enhancing coat-
ing on LiFePO4 by Lepage et al. (2011) for use as positive 
electrode active mass in lithium-ion batteries. The coat-
ing with a thickness of a few nanometers was applied with 
a soft chemistry procedure. The oxidative capability of 
Li(1−x)FePO4 was utilized to polymerize chemically EDOT 

yielding PEDOT-coated particles as schematically illustrated 
in Fig. 24.

No additional carbon was needed to achieve the electronic 
conductivity of the active mass, as a binder PVDF was used.

Similar results were reported using PEDOT:PSS (see 
Fig. 25) coated from its solution (Dinh et al. 2013). Coating 
with PEDOT:PSS from an aqueous dispersion has been sug-
gested as another option (Raj and Sil 2019) (while conveni-
ently ignoring the report by Lepage et al. (2011)). Various 
modes of blending/mixing LiFePO4 with PEDOT have been 
evaluated, stability data were not provided (Ozerova et al. 
2020). Uniform coating of LiFePO4 with PPy (as already 
mentioned above) of about 5 nm thickness yielded a positive 
lithium-ion battery material with promising low-temperature 
performance and rate capability, both presumably due to 
the added PPy coating, and a capacity stable for at least 50 
cycles (Gao et al. 2019).

At this point it is worth noting that of all examined ICPs 
PEDOT:PSS has probably the brightest perspective for 
application in battery materials. In many reports it is simply 
blended as its dispersion (which is stable and commercially 
available) into a standard-composition electrode containing 
added carbon and one of the conventional binders. Beyond 
the positive effects of the ICP there is almost no change in 
the process of preparation of the electrode; in addition good 
mechanical stability provided by conventional binders.

Cíntora-Juárez et  al. (2015) examined two composi-
tions of LiFePO4 electrodes containing PEDOT:PSS in 
different ratios: LFP/C/PVDF/PEDOT:PSS 79/7/7/7 and 
84/8/7/1. Since PEDOT:PSS is not very conductive (about 
1 S cm−1) added ethylene glycol and dimethyl sulfoxide, 
which increase the conductivity of the polymer, were tried. 
In both cases a significant improvement in electrochemical 
performance was observed compared to electrodes prepared 
with PVDF only.

Using PEDOT:PSS as a binder can reduce the content 
of inactive battery components as proposed by Das et al. 
(2015) to use compositions without added carbon with 

Fig. 24   Formation scheme for core–shell structures LiFePO4/PEDOT
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increased mass of LFP 92 and 94 wt%. This type of disper-
sion can be easily modified for use in printing technologies. 
PEDOT:PSS and LFP ink was used to print lithium-ion bat-
tery cathodes showing improved performance compared to 
electrodes printed with carbon additives and PVDF (Syrový 
et al. 2016).

Potentially, replacing conventional binder with 
PEDOT:PSS allows an increase of the mass fraction of the 
active component up to 99.5%, thus reaching extremely high 
capacity values (Kim et al. 2014). However, the decrease 
in the mass fraction of the binder inevitably worsens the 
mechanical properties of electrode materials, which is exac-
erbated by the relatively moderate adhesion of PEDOT:PSS, 
as well as by by-products of phase separation of dispersion 
when drying out.

An alternative approach using a redox copolymer 
poly(4-((10-(12-dodecyl phenoxazine) vinylpyridinium)-
co-4-vinylpyridine) (Fig. 26) as binder has been suggested 
(Wang et al. 2009). Charge is shuttled between the current 
collector and particles of LiFePO4 via the phenoxazine units.

A copolymer of polyaniline and poly(ethylene glycol) 
has been suggested as a coating for LiFePO4 (Dong et al. 
2014). The electrodes prepared with added acetylene black 
and PVDF as a binder kept 95.7% of their initial capacitance 
after 100 cycles. This copolymer has also been coated on 
LiNi0.6Co0.1Mn0.3O2 for the positive electrode in a lithium-
ion battery (Yoo et al. 2017). Enhanced electrode kinet-
ics and improved stability (3% capacitance loss during 50 
cycles) were attributed to the coating. The use of ICPs as an 
effective means to remedy poor electronic conductivity and 

volume changes of electrode materials has been extended 
to, e.g., ZnFe2O4 (Hou et al. 2019). Nanowires encapsulated 
with PPy showed a capacity almost stable over more than 
200 cycles after some initial fluctuation assigned to some 
activation process. Spherical particles of ZnFe2O4 coated 
with PPy for use as positive electrode material (Jiang et al. 
2019); the capacity remained practically unchanged after 
500 cycles. Coating of nanosheets of ZnFe2O4 with PPy 
yielded a positive electrode material with 94.9% capacity 
retention after 200 cycles (Jin et al. 2020).

Fig. 25   PEDOT:PSS

Fig. 26   Poly(4-((10-(12-dodecyl phenoxazine)vinylpyridinium)-co-
4-vinylpyridine)
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PEDOT:PSS has been suggested as a binder improving 
rate performance and stability, in particular, of lithium titan-
ate as negative electrode material in lithium-ion batteries by 
Zeng et al. (2018), Wang et al. (2014) and Liu et al. (2016). 
Both ionic and electronic conductivity of the ICP were uti-
lized. A further improvement in performance by reduction of 
the added amount of conducting carbon was achieved by Eli-
seeva et al. (2019) with a combination of PEDOT:PSS and 
carboxymethyl cellulose CMC as binders. This combination 
provided sufficient conductivity enabling a significant reduc-
tion of the required addition of carbon, it further avoided the 
chemical incompatibility problems encountered with PVDF 
as a binder and lithium titanate and yielded superior per-
formance and stability (see Fig. 27). Similar improvements 
were observed with MoS2 as active positive electrode mate-
rial and this binder combination (Volkov et al. 2020). Fur-
ther materials combination of PEDOT:PSS with electrode 
materials for lithium-ion batteries have been reviewed by 
Eliseeva et al. (2019), (2020), and Kamenskii et al. (2019).

The effect of conductive binder on the interfacial resist-
ance and Li+-ion transport is somewhat similar to the influ-
ence of carbon coating of active grains, when carbonization 
provides the greatly enhanced surface electronic conductiv-
ity of particles. The wrapping of active grains by conduct-
ing polymer PEDOT:PSS provides more reliable electrical 

contact between neighboring particles. In combination with 
ionic conductivity of both ICP components of binder this 
would greatly enhance the interfacial coupled electron and 
ion transfer and Li+ ion transport in pores around active 
grains. This is illustrated in Fig. 28, the difference between 
non-conductive and conductive binders, the possible mecha-
nism of electron and ion pathways in conductive binder is 
indicated.

The conductive polymer coating of active particles 
increases the electronic conductivity on the surface of an 
individual particle and reduces the transfer resistance of 
ionic and electronic charge. In case of non-conducting 
PVDF binder, charge transfer occurs only in the region of 
point contact of active grains with carbon black particles.

Using only PEDOT:PSS as conducting additive resulted 
in inferior high-rate performance when compared with CNTs 
in a positive electrode of LiNi0.5Co0.2Mn0.3O2 (Medvedev 
et al. 2020). The optimized binder and conducting additive 
combinations addressed above were not included in this 
comparison.

Chitosan-grafted PANI has been suggested as another 
binder system for negative silicon electrode for lithium-ion 
batteries (Rajeev et al. 2020). At 1:1 ratio of both constitu-
ents conductivities (both ionic and electronic) and mechani-
cal properties including adhesion were best. 42% of the 
initial capacitance were found in the 200th cycle. PEDOT 
cross-linked with glycerol with PSS as counter anion has 
been suggested for a negative silicon electrode (Liu et al. 
2020a). After 200 cycles the electrode had 68.3% of its ini-
tial capacitance left. A polymeric binder poly(1-pyrenem-
ethyl methacrylate-co-methacrylic acid) (Fig. 29) has been 
examined for a nanosilicon negative electrode in a lithium-
ion battery (Zhao et al. 2015). A stable capacity is found 
after 50 cycles, evidence of the conductivity of the binder 
(neither ionic nor electronic) is not shown.

The influence of PANI structure (linear, cross-linked, 
star-like) on performance of a silicon electrode has been 
examined; star-like PANI turned out to be best perform-
ing (Han et al. 2020). A 3-D binder system composed of 
PANI, polyacrylic acid and phytic acid was used for pre-
paring a negative silicon electrode for a lithium-ion battery 
(Wang et al. 2019f). 83.6% capacitance retention were found 
after 100 deep cycles. PEDOT:PSS has been used together 
with rGO to prepare nanosilicon particles into a negative 

Fig. 27   Cycling performance of Li4Ti5O12 with various binder sys-
tems, based on data in Eliseeva et al. (2019), Kamenskii et al. (2019)

Fig. 28   Electronic and ionic 
transport in electrode materials 
(based on Eliseeva et al. 2017)
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electrode showing moderately stable capacity along 500 
cycles (Qi et al. 2019). When using SiOx as the starting 
material for a negative silicon electrode in a lithium-ion bat-
tery microparticles of this material coated with bilayers of 
carbon and PEDOT have turned out to be beneficial yielding 
an electrode with a capacity stable along 1000 cycles (Wu 
et al. 2020a). Because of environmental concerns water-
soluble binders for active masses in secondary batteries are 
gaining growing attention. A copolymer of polyvinylpyr-
rolidone and PANI has been reported for use in a silicon 
electrode for lithium-ion batteries (Zheng et al. 2019). Evi-
dence of hydrogen bonding between the comonomers was 
somewhat unusually taken as proof of true copolymerization 
(for a critical examination see also Holze 2011). At optimum 
composition after 100 cycles 47.3% of the initial storage 
capacity of the electrode were left.

Copper foil used as negative electrode support and cur-
rent collector in lithium-ion batteries has been coated with 
PANI (Zhang et al. 2020e). Storage capability and stabil-
ity were increased, and the cell impedance decreased. Cor-
rosion protection could also be achieved with a coating of 
electrodeposited PPy (Jiang et al. 2020a, b). A reported 
charge transfer resistance—presumably the corrosion resist-
ance—was increased sevenfold even after 500 h of contact 
between coated metal foil and electrolyte solution. No cell 
performance data were provided. At the positive electrode 
in lithium-ion batteries an aluminum foil is used as current 
collector and mechanical support. Its coating with PEDOT 
by chemical vapor deposition has been suggested (Lepage 
et al. 2019). A 30% increase in discharge capacity was attrib-
uted to this coating.

PPy has been examined as corrosion protection for a zinc 
electrode in aqueous ZnSO4 electrolyte solution providing 
67% inhibition efficiency (Nuanwat and Pattananuwat 2019).

Reduced self-discharge and enhanced corrosion protec-
tion (75.8% corrosion inhibition) in an aqueous zinc-ion 
battery was achieved by coating the zinc electrode with 

PANI (Nam et al. 2019); after 24 h storage 96.9% of the 
initial capacitance were still available. A coating with PPy 
has been suggested for improved control of both plating and 
stripping of the negative zinc electrode (Zhang et al. 2020f). 
After 12,000 cycles 96% of the electrode capacity were still 
available. An enhanced corrosion protection of PANI coated 
on the zinc electrode in a zinc–air battery by adding zinc 
phtaholcyanine has been noticed (Deyab and Mele 2019). 
Corrosion inhibition grew from 74.8% without the addition 
to 97.7% resulting in increased capacity retention.

Lightweight grids for lead-acid batteries have been pre-
pared from polymers coated with lead (Martha et al. 2006). 
Corrosion protection of these coatings at both electrodes is 
particularly important, it was afforded by coating with PANI 
resulting in batteries with improved gravimetric energy den-
sity and high rate capability.

Miscellaneous uses of ICPs

Solid electrolytes with composites containing various com-
binations of PPy or PANI have been suggested (Dalas et al. 
1995). Gel electrolytes for lithium-ion batteries based on 
combinations of PANI and polyacrylonitrile have been stud-
ied (Amaral et al. 2007). Advantageous electrochemical per-
formance and stability were reported. Enhanced conductiv-
ity of PANI by incorporation of polyethyleneoxide has been 
reported (Yang et al. 2017), this may possibly be useful for 
enhancing current-carrying properties of electrode materials. 
Coating of a polypropylene separator with PANI increased 
wetting with a nonaqueous electrolyte solution resulting in 
increased ionic conductance (Hao et al. 2019). Coating of a 
polyethylene separator with particles of AlF3 and a copoly-
mer of EDOT and ethylene glycol yielded decreased thermal 
shrinkage and improved electrolyte solution uptake resulting 
in improved cycling performance (Shin et al. 2015). Molecu-
lar sieves coated with PEDOT:PSS have been proposed as 
water scavenger for lithium-ion batteries with NMC as posi-
tive electrode (Xue et al. 2020). Coating of the separator for 
a lithium-ion sulfur battery with a blend of PEDOT:PSS 
and carbon black resulted in overall performance improve-
ments (Yi et al. 2019). A similar effect was achieved with a 
coating of porous PPy spheres (Li et al. 2019g). To prevent 
polysulfide diffusion an additional interlayer of carbon fib-
ers coated with PPy has been proposed (Li et al. 2019h). 
Beyond physical adsorption of polysulfide the interlayer also 
reduced electrode polarization of the sulfur electrode. Vapor-
phase deposition of PPy on a commercial Celgard separator 
yielded a separator with several advantages (Li et al. 2019i).

An interlayer of PPy on carbon cloth assisted in load-
ing Li4Ti5O12 nanosheets for use as negative electrode in a 
sodium-ion battery (Jiang et al. 2020a). After 1100 cycles 
96.6% of the initial capacitance were retained.

Fig. 29   Poly(1-pyrenemethyl methacrylate-co-methacrylic acid)
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A composite of CNTs and PEDOT has been suggested as 
mechanical support and current collector instead of metal foils, 
when incorporated with further active mass, e.g., positive elec-
trodes have been prepared (Rousselot et al. 2020).

A skeleton of PEDOT:PSS keeps an ionic liquid providing 
ion channels in an aqueous zinc-polysulfide battery in place 
(Zhao et al. 2020).

ICPs have been examined as coatings in the positive elec-
trodes of metal air batteries (Cao et al. 2020).

Modification of the frequently used lignosulfonate as an 
expander in the negative electrode of a lead acid battery (Pav-
lov 2006) with PANI has been proposed (Chen et al. 2020b). 
Significant overall performance improvements were noted.

Precursors and templates

Several ICPs can be prepared chemically as well as electro-
chemically in a variety of shapes and morphologies, for exam-
ple see Dubal et al. (2016b), Stejskal et al. (2010) and Stejskal 
and Trchova (2018). These morphologies may be suitable as 
electrode material themselves, but they may also be used as 
precursor in subsequent carbonization or pyrolysis steps yield-
ing carbon structures related to the advantageous structural 
details of the precursor. A particular advantage of the use of 
ICPs as precursor materials in such transformation is the easy 
introduction of heteroatoms (nitrogen, sulfur) into the resulting 
carbon material. These additions (sometimes slightly mislead-
ingly called dopants) frequently result in enhanced electronic 
conduction (for example, see (Zhang et al. 2020b, 2020d)).

Dubal et al. (2019) have carbonized PPy-nanopipes yield-
ing a host material for the negative electrode of a lithium-ion 
capacitor, together with the pristine nanopipes as positive 
electrode they assembled a capacitor keeping 93% of its ini-
tial capacitance after 2000 cycles. Whereas the positive elec-
trode shows pseudocapacitive behavior (see Holze 2017), the 
negative electrode is a battery-type electrode.

In a simplified approach an ICP can be used as a heter-
oatom source for preparation of, e.g., nitrogen-containing 
carbon materials (Li et al. 2019b). Mesoporous spheres of 
TiO2 embedded in PPy yielded after carbonization a nega-
tive electrode material for a lithium-ion battery (Chen et al. 
2020a) 53% of the initial electrode capacity were left after 
500 cycles.

The particular morphology, e.g., nanotubes, can be used 
as template (Wei et al. 2019a) for active material deposition 
first, followed by pyrolysis or carbonization.

Conclusions

Intrinsically conducting polymers, their copolymers with 
redox-active molecules, and their composites with such 
molecules have attracted growing attention in secondary 

battery research and development. Their application ranges 
from being the sole active material to use as a binder, protec-
tive coating of active material, precursor for active masses, 
and separator. However, despite the significant progress 
on all aspects, stability of the obtained electrodes and cell 
constituents varies widely and too much for practical use; 
further research should be focused on this aspect which is 
definitely of major practical importance. When combined 
with more attention to a rational electrode design in terms 
of architecture and possible mass utilization keeping an eye 
on possible and actually utilized capabilities of the polymer 
component(s) in an actual electrode obtained materials care-
fully and comparably examined for performance and stabil-
ity will provide attractive options in electrochemical energy 
technology.
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