Correction to: Synthesis and antibacterial activity of novel chalcone derivatives bearing a coumarin moiety

Yi-Hui Wang ${ }^{1} \cdot$ Shi-Chun Jiang $^{1} \cdot$ Ying Chen $^{1} \cdot$ Tao Guo $^{1} \cdot$ Rong-Jiao Xia $^{1} \cdot$ Xu Tang $^{1} \cdot$ Ming $\mathrm{He}^{1} \cdot$ Wei Xue 1

Published online: 23 July 2020
© Institute of Chemistry, Slovak Academy of Sciences 2020

Correction to: Chemical Papers (2019) 73:2493-2500

 https://doi.org/10.1007/s11696-019-00802-0Unfortunately the original article was published Online with incorrect entries as given below in the Table 3.

Table 3 was submitted for publication with numerous incorrect entries. \%Inhibition values for the entries for compound 31 at $50 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ against Xoo, and for 4-hydroxycoumarin and for compounds $\mathbf{3 a}-\mathbf{3 v}$ against Xac, are corrected. The values for thiodiazole-copper control in Table 3 essentially are unchanged. Where the difference between the corrected value and the previous incorrect value is greater than two-fold, both the correct and the previously reported incorrect values are listed here. The revised Table 3 given below shows all entries, each with their correct values. The corrected values are for 31, \% Inhibition at $50 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ against Xoo is 19 ± 3; for 4-hydroxycoumarin, \% Inhibition at $50 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ against Xac is 21 ± 4 and $\%$ Inhibition at $100 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ against Xac is 29 ± 4. The corrected values for $\%$ Inhibition at $50 \mu \mathrm{~g} \mathrm{~mL}$-1 against Xac are: $\mathbf{3 a}(4 \pm 4$, previously was 47 ± 2); $\mathbf{3 b}(18 \pm 1) ; \mathbf{3 c}(34 \pm 3) ; \mathbf{3 d}(19 \pm 4)$; $\mathbf{3 e}(41 \pm 2$, previously was $4 \pm 2)$; $\mathbf{3 f}(13 \pm 5$, previously was $6 \pm 5) ; \mathbf{3 g}(9 \pm 4$, previously was $4 \pm 1)$; $\mathbf{3 h}(3 \pm 5$, previously was $1 \pm 4) ; \mathbf{3 i}(34 \pm 3) ; \mathbf{3 j}(19 \pm 3$, previously was $51 \pm 4)$; 3k (33 ± 3); $\mathbf{3 1}(22 \pm 5)$; $\mathbf{3 m}(29 \pm 4$, previously was $6 \pm 5)$; 3n (54 ± 4, previously was 10 ± 2); 3o (37 ± 1, previously was $14 \pm 1) ; \mathbf{3 p}(45 \pm 4$, previously was $5 \pm 2) ; \mathbf{3 q}(9 \pm 3$,

The original article can be found online at https://doi.org/10.1007/ s11696-019-00802-0.

Ming He
mhe1@gzu.edu.cn
Wei Xue
wxue@gzu.edu.cn
1 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
previously was $32 \pm 7) ; \mathbf{3 r}(19 \pm 3)$; $\mathbf{3 s}(36 \pm 3$, previously was $6 \pm 2)$; $\mathbf{3 t}(33 \pm 4$, previously was $12 \pm 4) ; \mathbf{3 u}(7 \pm 1$, previously was $20 \pm 3) ; \mathbf{3 v}(27 \pm 1$, previously was $5 \pm 1)$. The corrected values are $\%$ Inhibition at $100 \mu \mathrm{~mL}^{-1}$ against Xac: 3a (10 ± 3, previously was 71 ± 2); $\mathbf{3 b}(22 \pm 2$, previously was $46 \pm 4) ; \mathbf{3 c}(49 \pm 4) ; \mathbf{3 d}(33 \pm 5) ; \mathbf{3 e}(72 \pm 3$, previously was 6 ± 3); $\mathbf{3 f}(30 \pm 1) ; \mathbf{3 g}(23 \pm 1) ; \mathbf{3 h}(9 \pm 4) ; \mathbf{3 i}$ (58 ± 2, previously was 23 ± 2); $\mathbf{3} \mathbf{j}(34 \pm 2)$; $\mathbf{3 k}(57 \pm 5)$; $\mathbf{3 1}$ (28 ± 4); 3m (54 ± 3, previously was 10 ± 5); 3n (72 ± 4, previously was $13 \pm 3)$; $\mathbf{3 o}(60 \pm 3$, previously was $17 \pm 4)$; $\mathbf{3 p}(78 \pm 5$, previously was $7 \pm 4)$; $\mathbf{3 q}(18 \pm 3$, previously was $48 \pm 2)$; $\mathbf{3 r}(29 \pm 3)$; $\mathbf{3 s}(50 \pm 4$, previously was $9 \pm 2)$; $\mathbf{3 t}(60 \pm 1$, previously was $17 \pm 3)$; $\mathbf{3 u}(16 \pm 2)$; $\mathbf{3 v}(47 \pm 4$, previously was 12 ± 2).

The revision of these data in Table 3 does not affect the conclusions of this paper. Its conclusions were based on the EC_{50} data of Table 4. The EC_{50} data were obtained by a separate experiment from the experiment used for the \% Inhibition data of Table 3 (as stated on p. 2497). From the data in Table 4 on p. 2499, and the statements in the fourth paragraph on pp. 2497 and 2498 ("Compounds 3c, 3e, 3i, $\mathbf{3 k}, \mathbf{3 m}, \mathbf{3 n}, \mathbf{3 o}, \mathbf{3 p}, \mathbf{3 s}, \mathbf{3 t}$, and $\mathbf{3 v}$ expressed strong antibacterial activity against Xac, with EC_{50} values of $98,59,80$, $83,94,48,72,51,94,77$, and $119 \mu \mathrm{~g} / \mathrm{mL}$, respectively"), compounds $\mathbf{3 e}, \mathbf{3 n}$, and $\mathbf{3 p}$ are identified as the most active compounds against Xac. The corrected data of Table 3 better support this conclusion. Moreover, the corrected data also support the statement (third paragraph on page 2497) that "Compounds 3c, 3e, 3i, 3k, 3m, 3n, 3o, 3p, 3s, 3t and 3v showed qualified antibacterial activity against Xac at $100 \mu \mathrm{~g} /$ mL , and the achieved inhibition ranged from 47 to 78% ".

Table 3 Antibacterial activities of compounds 4-hydroxycoumarin, 3a-3v, and Thiodiazole-copper

Compound	Inhibition rate (\%) ${ }^{\text {a }}$					
	Хоo		Xac		Rs	
	$100 \mu \mathrm{~g} / \mathrm{mL}$	$50 \mu \mathrm{~g} / \mathrm{mL}$	$100 \mu \mathrm{~g} / \mathrm{mL}$	$50 \mu \mathrm{~g} / \mathrm{mL}$	$100 \mu \mathrm{~g} / \mathrm{mL}$	$50 \mu \mathrm{~g} / \mathrm{mL}$
4-Hydroxy-coumarin	23 ± 4	15 ± 4	29 ± 4	21 ± 4	16 ± 3	9 ± 2
3a	71 ± 2	47 ± 2	10 ± 3	4 ± 4	39 ± 1	20 ± 4
3b	46 ± 4	29 ± 3	22 ± 2	18 ± 1	12 ± 2	7 ± 3
3c	42 ± 5	34 ± 5	49 ± 4	34 ± 3	18 ± 2	16 ± 1
3d	46 ± 3	26 ± 5	33 ± 5	19 ± 4	20 ± 2	8 ± 1
3e	6 ± 3	4 ± 2	72 ± 3	41 ± 2	28 ± 5	24 ± 3
3f	21 ± 2	6 ± 5	30 ± 1	13 ± 5	29 ± 3	26 ± 2
3 g	18 ± 5	4 ± 1	23 ± 1	9 ± 4	14 ± 3	8 ± 4
3h	6 ± 2	1 ± 4	9 ± 4	3 ± 5	20 ± 3	11 ± 5
3i	23 ± 2	17 ± 2	58 ± 2	34 ± 3	66 ± 5	49 ± 3
3j	60 ± 3	51 ± 4	34 ± 2	19 ± 3	32 ± 3	27 ± 5
3k	39 ± 5	26 ± 4	57 ± 5	33 ± 3	48 ± 6	33 ± 2
31	40 ± 4	19 ± 3	28 ± 4	22 ± 5	15 ± 7	7 ± 1
3m	10 ± 5	6 ± 5	54 ± 3	29 ± 4	23 ± 2	22 ± 3
3n	13 ± 3	10 ± 2	72 ± 4	54 ± 4	11 ± 2	1 ± 5
30	17 ± 4	14 ± 1	60 ± 3	37 ± 1	13 ± 3	0 ± 4
3p	7 ± 4	5 ± 2	78 ± 5	45 ± 4	38 ± 5	12 ± 1
3q	48 ± 2	32 ± 7	18 ± 3	9 ± 3	15 ± 2	1 ± 3
3r	24 ± 1	22 ± 1	29 ± 3	19 ± 3	20 ± 4	15 ± 6
3s	9 ± 2	6 ± 2	50 ± 4	36 ± 3	36 ± 6	28 ± 1
3t	17 ± 3	12 ± 4	60 ± 1	33 ± 4	26 ± 1	23 ± 6
3u	29 ± 5	20 ± 3	16 ± 2	7 ± 1	32 ± 3	30 ± 5
3v	12 ± 2	5 ± 1	47 ± 4	27 ± 1	12 ± 2	1 ± 5
Thiodiazole-copper ${ }^{\text {b }}$	36 ± 3	26 ± 4	37 ± 4	26 ± 4	41 ± 4	24 ± 2

${ }^{\mathrm{a}}$ Average of three replicates
${ }^{\mathrm{b}}$ The commercial antibacterial agent Thiodiazole-copper was used as positive control

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

