CORRECTION

Correction to: Synthesis and antibacterial activity of novel chalcone derivatives bearing a coumarin moiety

Yi-Hui Wang¹ · Shi-Chun Jiang¹ · Ying Chen¹ · Tao Guo¹ · Rong-Jiao Xia¹ · Xu Tang¹ · Ming He¹ · Wei Xue¹

Published online: 23 July 2020 © Institute of Chemistry, Slovak Academy of Sciences 2020

Correction to: Chemical Papers (2019) 73:2493-2500 https://doi.org/10.1007/s11696-019-00802-0

Unfortunately the original article was published Online with incorrect entries as given below in the Table 3.

Table 3 was submitted for publication with numerous incorrect entries. %Inhibition values for the entries for compound **3I** at 50 μ g mL⁻¹ against Xoo, and for 4-hydroxycoumarin and for compounds 3a-3v against Xac, are corrected. The values for thiodiazole-copper control in Table 3 essentially are unchanged. Where the difference between the corrected value and the previous incorrect value is greater than two-fold, both the correct and the previously reported incorrect values are listed here. The revised Table 3 given below shows all entries, each with their correct values. The corrected values are for **3l**, % Inhibition at 50 μ g mL⁻¹ against Xoo is 19 ± 3 ; for 4-hydroxycoumarin, % Inhibition at 50 µg mL⁻¹ against Xac is 21 ± 4 and % Inhibition at 100 μ g mL⁻¹ against Xac is 29 ± 4. The corrected values for % Inhibition at 50 µg mL⁻¹ against Xac are: **3a** $(4 \pm 4,$ previously was 47 ± 2 ; **3b** (18 ± 1); **3c** (34 ± 3); **3d** (19 ± 4); **3e** $(41 \pm 2$, previously was 4 ± 2); **3f** $(13 \pm 5$, previously was (6 ± 5) ; 3g (9 ± 4) , previously was (4 ± 1) ; 3h (3 ± 5) , previously was 1 ± 4 ; **3i** (34 ± 3) ; **3j** $(19 \pm 3$, previously was 51 ± 4 ; **3k** (33 ± 3) ; **3l** (22 ± 5) ; **3m** (29 ± 4) , previously was $6 \pm 5)$; **3n** $(54 \pm 4$, previously was 10 ± 2 ; **3o** $(37 \pm 1$, previously was 14 ± 1 ; **3p** (45 ± 4 , previously was 5 ± 2); **3q** (9 ± 3 ,

The original article can be found online at https://doi.org/10.1007/s11696-019-00802-0.

Ming He mhe1@gzu.edu.cn

Wei Xue wxue@gzu.edu.cn

¹ State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China previously was 32 ± 7); **3r** (19 ± 3) ; **3s** $(36 \pm 3$, previously was 6 ± 2); **3t** $(33 \pm 4$, previously was 12 ± 4); **3u** $(7 \pm 1$, previously was 20 ± 3); **3v** $(27 \pm 1$, previously was 5 ± 1). The corrected values are % Inhibition at 100 µg mL⁻¹ against Xac: **3a** $(10 \pm 3$, previously was 71 ± 2); **3b** $(22 \pm 2$, previously was 46 ± 4); **3c** (49 ± 4) ; **3d** (33 ± 5) ; **3e** $(72 \pm 3$, previously was 6 ± 3); **3f** (30 ± 1) ; **3g** (23 ± 1) ; **3h** (9 ± 4) ; **3i** $(58 \pm 2$, previously was 23 ± 2); **3j** (34 ± 2) ; **3k** (57 ± 5) ; **3l** (28 ± 4) ; **3m** $(54 \pm 3$, previously was 10 ± 5); **3n** $(72 \pm 4$, previously was 13 ± 3); **3o** $(60 \pm 3$, previously was 17 ± 4); **3p** $(78 \pm 5$, previously was 7 ± 4); **3q** $(18 \pm 3$, previously was 48 ± 2); **3r** (29 ± 3) ; **3s** $(50 \pm 4$, previously was 9 ± 2); **3t** $(60 \pm 1$, previously was 17 ± 3); **3u** (16 ± 2) ; **3v** $(47 \pm 4$, previously was 12 ± 2).

The revision of these data in Table 3 does not affect the conclusions of this paper. Its conclusions were based on the EC_{50} data of Table 4. The EC_{50} data were obtained by a separate experiment from the experiment used for the % Inhibition data of Table 3 (as stated on p. 2497). From the data in Table 4 on p. 2499, and the statements in the fourth paragraph on pp. 2497 and 2498 ("Compounds 3c, 3e, 3i, 3k, 3m, 3n, 3o, 3p, 3s, 3t, and 3v expressed strong antibacterial activity against Xac, with EC_{50} values of 98, 59, 80, 83, 94, 48, 72, 51, 94, 77, and 119 µg/mL, respectively"), compounds 3e, 3n, and 3p are identified as the most active compounds against Xac. The corrected data of Table 3 better support this conclusion. Moreover, the corrected data also support the statement (third paragraph on page 2497) that "Compounds 3c, 3e, 3i, 3k, 3m, 3n, 3o, 3p, 3s, 3t and 3v showed qualified antibacterial activity against Xac at 100 µg/ mL, and the achieved inhibition ranged from 47 to 78%".

Table 3Antibacterialactivities of compounds4-hydroxycoumarin, 3a–3v,and Thiodiazole-copper

Compound	Inhibition rate (%) ^a					
	Хоо		Xac		Rs	
	100 µg/mL	50 µg/mL	100 µg/mL	50 µg/mL	100 µg/mL	50 µg/mL
4-Hydroxy-coumarin	23 ± 4	15±4	29±4	21±4	16±3	9 ± 2
3a	71 ± 2	47 ± 2	10 ± 3	4 ± 4	39 ± 1	20 ± 4
3b	46 ± 4	29 ± 3	22 ± 2	18 ± 1	12 ± 2	7 ± 3
3c	42 ± 5	34 ± 5	49 ± 4	34 ± 3	18 ± 2	16 ± 1
3d	46 ± 3	26 ± 5	33 ± 5	19±4	20 ± 2	8 ± 1
3e	6±3	4 ± 2	72 ± 3	41 ± 2	28 ± 5	24 ± 3
3f	21 ± 2	6 ± 5	30 ± 1	13 ± 5	29 ± 3	26 ± 2
3g	18 ± 5	4 ± 1	23 ± 1	9 ± 4	14 ± 3	8 ± 4
3h	6 ± 2	1 ± 4	9±4	3 ± 5	20 ± 3	11 ± 5
3i	23 ± 2	17 ± 2	58 ± 2	34 ± 3	66 ± 5	49 ± 3
3ј	60 ± 3	51 ± 4	34 ± 2	19±3	32 ± 3	27 ± 5
3k	39 ± 5	26 ± 4	57 ± 5	33 ± 3	48 ± 6	33 ± 2
31	40 ± 4	19±3	28 ± 4	22 ± 5	15 ± 7	7 ± 1
3m	10 ± 5	6 ± 5	54 ± 3	29 ± 4	23 ± 2	22 ± 3
3n	13±3	10 ± 2	72 ± 4	54 ± 4	11 ± 2	1 ± 5
30	17±4	14 ± 1	60 ± 3	37 ± 1	13 ± 3	0 ± 4
3р	7 ± 4	5 ± 2	78 ± 5	45 ± 4	38 ± 5	12 ± 1
3q	48 ± 2	32 ± 7	18 ± 3	9 ± 3	15 ± 2	1 ± 3
3r	24 ± 1	22 ± 1	29 ± 3	19 ± 3	20 ± 4	15 ± 6
3s	9 ± 2	6 ± 2	50 ± 4	36 ± 3	36 ± 6	28 ± 1
3t	17 ± 3	12 ± 4	60 ± 1	33 ± 4	26 ± 1	23 ± 6
3u	29 ± 5	20 ± 3	16 ± 2	7 ± 1	32 ± 3	30 ± 5
3v	12 ± 2	5 ± 1	47 ± 4	27 ± 1	12 ± 2	1 ± 5
Thiodiazole-copper ^b	36 ± 3	26 ± 4	37 ± 4	26 ± 4	41 ± 4	24 ± 2

^aAverage of three replicates

^bThe commercial antibacterial agent *Thiodiazole-copper* was used as positive control

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.