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Abstract
An increasing problem in the field of health protection is the emergence of drug-resistant and multi-drug-resistant bacterial 
strains. They cause a number of infections, including hospital infections, which currently available antibiotics are unable 
to fight. Therefore, many studies are devoted to the search for new therapeutic agents with bactericidal and bacteriostatic 
properties. One of the latest concepts is to search for this type of substances among toxins produced by venomous animals. 
In this approach, however, special attention is paid to snake venom because it contains molecules with antibacterial proper-
ties. Thorough investigations have shown that the phospholipases A2 (PLA2) and l-amino acids oxidases (LAAO), as well 
as fragments of these enzymes, are mainly responsible for the bactericidal properties of snake venoms. Some preliminary 
research studies also suggest that fragments of three-finger toxins (3FTx) are bactericidal. It has also been proven that some 
snakes produce antibacterial peptides (AMP) homologous to human defensins and cathelicidins. The presence of these 
proteins and peptides means that snake venoms continue to be an interesting material for researchers and can be perceived 
as a promising source of antibacterial agents.
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Introduction

The most important clinical problem in the field of micro-
biology today is growing resistance to antibiotics in bac-
teria. According to the WHO, bacterial infections involv-
ing multi-drug-resistant (MDR) strains are one of the ten 
leading causes of death worldwide (Lopez et al. 2006). 
Moreover, antimicrobial resistance is considered to be one 
of the greatest threats to human health globally (Walker 
et al. 2009). Unfortunately, new examples of bacteria with 
antibiotic resistance appear every year. It is estimated that 
more than 90% of Staphylococcus aureus strains are resist-
ant to β-lactam antibiotics (Panlilio 1992). Such resistance 
is shown, for example, by already long-known strains like 
methicillin-resistant S. aureus (MRSA) and penicillin-
resistant Streptococcus pneumoniae (PRSP) (Al Ahmadi 
et al. 2010). Recent studies have also shown that excessive 
use of antibiotics, such as vancomycin, may lead to develop-
ing vancomycin-intermediate (VISA)/vancomycin-resistant 

(VRSA) strains, like, for example, in the case of entero-
cocci (Appelbaum 2006; Cázares-Domínguez et al. 2015). 
Other bacteria such as Pseudomonas, Klebsiella, Enterobac-
ter, Acinetobacter, Salmonella or Enterococcus have also 
developed several ways to resist antibiotics (Al Ahmadi et al. 
2010). It is estimated that 23,000 and 25,000 people die 
every year in the USA and Europe, respectively, from infec-
tions caused by multidrug-resistant bacteria (CDC 2013; 
Blair et al. 2015). Presently existing and still appearing mul-
tiple-resistant strains increase the risk of bacterial infections, 
which become more and more threatening, as currently, we 
lack proper tools and drugs to combat them. Recently, many 
antimicrobials are at various stages of development and 
phases of clinical trials. However, it is still very clear that 
the discovery of new, potent antibacterial agents capable 
of overcoming drug resistance as well as the development 
of antibacterials with a new mechanism of action remains 
of the highest priority (Guardabassi and Kruse 2003; Ang 
et al. 2004; Roos 2004; de Lima et al. 2005; Al Ahmadi et al. 
2010; Perumal Samy et al. 2017).
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The pharmacological potential of snake 
venom

The composition of snake venom depends mainly on the 
species, but also on age, sex or type of food consumed 
(Koh et al. 2006). However, it should be mentioned that 
some systematic groups do not contain venomous snakes, 
e.g., boa or pythons. In some other groups, however, all the 
species classified there are venomous. Venomous snakes 
belong to following families: Viperidae (viperids, includ-
ing vipers and rattlesnakes), Elapidae (elapids, including 
cobras, mambas and taipans), Hydrophiidae (sea snakes) 
and Colubridae (colubrids, although only some of them 
are venomous) (Gold et al. 2002; Warrell 2010; Burbrink 
and Crother 2011; Warrell 2019).

Snake venoms are complex mixtures of several fami-
lies of protein-origin components that can be divided into 
4 groups. The dominant are three-finger toxins (3FTx), 
phospholipases A2 (PLA2), snake venom metalloproteases 
(SVMP) and snake venom serine proteases (SVSP). The 
second group includes proteins commonly present in 
the venom, but in much smaller amounts: Kunitz pep-
tides (KUN), Cysteine-Rich Secretory Proteins (CRiSP), 
l-amino acid oxidases (LAAO), C-type lectins (CTL), dis-
integrins (DIS), natriuretic peptides (NP). The third group 
contains proteins that are less commonly observed in ven-
oms such as venom nerve growth factor (VNGF), vascular 
endothelial growth factor (VEGF), acetylcholinesterases, 
hyaluronidases, 5′-nucleotidases, phosphodiesterases 
(PDE), snake venom metalloprotease inhibitors and others. 
The last group contains rare proteins, among others: cobra 
venom factors (CVF), galactose-binding proteins, amin-
opeptidases or waprins. Of course, not all protein groups 
are found in all venomous snakes. For example, for elapids 
in general the most abundant proteins are phospholipases 
A2 and 3FTx, however, this is not true for example for 
mambas. Their venom consists mostly of Kunitz peptides. 
On the other hand for viperids in general the most abun-
dant groups are PLA2s and proteases with different propor-
tions of serine proteases and metalloproteases in different 
systematic groups (Tasoulis and Isbister 2017).

The toxins present in the venom exert a variety of bio-
logical effects such as neurotoxicity, myotoxicity, car-
diotoxicity, hemorrhage, pro- and anti-coagulation, etc. 
(Perumal Samy et al. 2014a; Munawar et al. 2018). How-
ever, snake venoms as a complex mixture of proteins and 
peptides can also exhibit a wide range of pharmacological 
activities and may be used to develop new drugs with high 
therapeutic value (Koh et al. 2006; Waheed et al. 2017). 
The classic example in this field are the bradykinin-poten-
tiating peptides (BPP), found in Bothrops jararaca venom, 
the inhibitors of the somatic angiotensin-converting 

enzyme (ACE) (Ferreira et al. 1970). On the basis of one 
of them, teprotide, the first active site-directed inhibitor 
of ACE was developed, which is currently used to treat 
human hypertension, namely captopril (Cushman and 
Ondetti 1991; Plosker and McTavish 1995). Past discov-
eries and developmental works proved that venom proteins 
can lead to production of drugs that are in clinical use and 
commercially generate billions of dollars. Besides the most 
famous example, captopril, there are others. For example 
eptifibatide is an antiplatelet drug with a cyclic hepta-
peptide structure based on the three amino acid sequence 
(Lys-Gly-Asp) found in barbourin, which is a disintegrin 
from Sistrurus miliarius barbouri venom (Fig. 1). Similar 
pharmacological profile can be seen in tirofiban, peptid-
omimetic agent based on the RGD sequence (Arg-Gly-
Asp) from echistatin, protein from Echis carinatus venom 
(Diz-Küçükkaya and López 2018). There are also some 
examples of anticoagulant drugs available on the mar-
ket namely: Reptilase (Batroxobin from Bothrops atrox), 
Defibrase (Moojenin from Bothrops moojeni) and Vivostat 
(serine protease from B. moojeni) (Waheed et al. 2017). 
Moreover, several venom-based compounds show prom-
ising pharmacological potential and currently undergo 
comprehensive investigation during clinical or preclinical 
studies. These are: cenderitide (Ichiki et al. 2019), Vipe-
gitide (Lazarovici et al. 2019), antifibatide (Masias and 
Cataland2017), vicrostatin (Swenson et al. 2018), DisBa-
01 (Danilucci et al. 2019), HCA—hemocoagulase agkis-
trodon (Li et al. 2018a), RPI-NM, and RPI-78M (Waheed 
et al. 2017). Also, the group of following compounds were 
currently withdrawn from the market: alfimeprase—potent 
fibrinolytic recombinant analog of metalloproteinase from 
Agkistrodon contortrix contortrix venom previously used 
for thrombolysis (Jones et al. 2001) and ancrod-serine pro-
tease from Calloselasma rhodostoma previously used as 
an anticoagulant agent (Nolan et al. 1976; Waheed et al. 
2017).

Snake venoms in drug design 
and development

Snake venoms are known to be a complicated mixture of 
proteins and peptides with great potential for drug design 
and development, which can ultimately lead to their clini-
cal use. Unfortunately, the therapeutic use of peptide-origin 
drugs is problematic, especially due to their low bioavail-
ability through the oral route, poor permeability, metabolic 
inactivation, the danger of proteolysis or enzymatic degrada-
tion, binding to plasma protein and finally, toxicity (Craik 
et al. 2013). Presently these limitations are being overcome 
through various approaches, for example, using antimicro-
bial peptides (AMP) externally in contact lenses coating 
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(Dutta et al. 2014), using biocompatible carriers which 
enhance bioavailability (Lax and Meenan 2012; Maia et al. 
2014) or encapsulation in biodegradable polymers (Anthony 
and Freda 2009). Snake venom toxins, from small peptides 
to large proteins, are very interesting, pharmacologically 
active compounds with wide chemical and functional vari-
ability, stability and specificity. They may inspire innova-
tive discoveries including development of research tools 
or invention of new drugs like antibacterial and antitumor 
compounds. Currently, it is believed that pharmaceutical and 
biomedical research should lead to routine use of venom 
toxins as structural templates for the design and synthesis 
of novel and efficient therapeutic agents (de Oliveira-Junior 
et al. 2013; Almeida et al. 2017, 2018).

Currently, hundreds of therapeutic peptides are under 
development and at different stages of clinical tests (Kaspar 
and Reichert 2013; Uhlig et al. 2014). Majority of them are 
involved in cancer: e.g., disintegrins with antiangiogenesis 
effect or LAAOs inducing apoptosis (Li et al. 2018b) and 
cardiovascular diseases treatment, besides the examples men-
tioned in the previous paragraph, also, e.g., natriuretic peptides 
and ion channel blockers (Koh and Kini 2012). However, there 
are also peptides tested for pain treatment (e.g., mambalgin 
from Dendroaspis polylepis venom) (Diochot et al. 2012) and 
infectious diseases, for example LAAOs from Trimeresurus 
stejnegeri venom inhibit infection and replication of HIV-1 
virus (Zhang et al. 2003) and LAAOs from Bothrops jararaca 

have antiviral (Dengue virus) and antiprotozoal (trypanocidal 
and leishmanicide) activities (Sant’Ana et al. 2008).

The use of venom components for drug discovery is 
rapidly increasing, though it is still mostly an unrealized 
prospect due to recurrent technical bottlenecks that repre-
sent venom exploration (Lewis and Garcia 2003). It is esti-
mated that although all animal venoms consist of over 40 
million proteins and peptides, only a very small fraction of 
them are known (Escoubas and King 2009). The advent and 
development of -omic techniques has led to discovery of 
an increasing number of toxins with known sequences and 
structures, which are available for biomedical and biotech-
nological exploitation (King 2011). The future direction of 
venom research with the use of modern ‘omics’ techniques 
such as genomics, transcriptomics and proteomics should 
lead to identification and characterization of new therapeutic 
molecules from animal venoms. According to the authorities 
in this field, the key for the search of novel antimicrobial 
molecules is the characterization of previously unexplored 
and rare animal venoms, as they may be the new source of 
antibacterial molecules (Perumal Samy et al. 2017).

The antibiotic potential of snake venom

Antimicrobial agents are used in medicine to treat infec-
tions caused by microbes from different classes of patho-
genic organisms, namely viruses, protozoa, fungi and 

Fig. 1   3D structures of eptifibatide (PDB: 2VDN; Chain: C) and bar-
bourin (PDB: 1Q7J; Model: 1). a Colored fragment of eptifibatide 
(in magenta) derive from (Lys-Gly-Asp) motif of barbourin and was 
introduced to the cyclic template to form functional heptapeptide. 

The side chain of lysine in eptifibatide was derivatized to improve 
the efficacy of the drug. b KGD sequence of barbourin (shown in 
magenta) was used as a template for several anti-platelet drug candi-
dates (Lazarovici et al. 2019), (Chimera software)
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bacteria, including among others, rickettsia, mycoplasma 
and chlamydia. Among them, bacteria are the largest and 
most diverse group of pathogenic microorganisms (Rouault 
2004). Antimicrobial agents normally used to treat bacte-
rial infections are divided into two groups: bacteriostatics 
and bactericidals. Bacteriostatic agents arrest the growth of 
bacteria (e.g., sulphonamides, tetracycline, chlorampheni-
col), bactericidal agents, on the other hand, kill bacterial 
cells through disruption of cell wall/membrane function 
(Chao et al. 2013). The effectiveness of both, existing drugs 
and venom components, depend on the type of bacteria. 
For example, the bactericidal activity of Bothrops alterna-
tus venom is higher against Escherichia coli and S. aureus 
versus Pseudomonas aeruginosa and Enterococcus faecalis 
(Bustillo et al. 2008).

Recent studies prove that many venoms and venom com-
ponents produced by different venomous animals show 
potential antibacterial activity. These include snake (Peru-
mal Samy et al. 2007; Al Ahmadi et al. 2010; Ferreira et al. 
2011; Perumal Samy et al. 2014b), spider (Haeberli et al. 
2000; Budnik et al. 2004; Kozlov et al. 2006; Benli and 
Yigit 2008), scorpion (Conde et al. 2000; Torres-Larios et al. 
2002), honeybee (EL-Feel et al. 2015; Leandro et al. 2015) 
and wasp venoms (Jalaei et al. 2014).

The antibiotic potency of snake venom is well known 
and documented and it is mainly dependent on the venom 
composition as well as on the specific bacterial types (de 
Oliveira Junior et al. 2013). The major clinical challenge 
in developing novel antibiotics is the design of new, less 
toxic molecules that effectively combat the recent emergence 
of MDR clinical pathogens such as S. aureus, E. coli and 
enterococci. Therefore, the majority of research is devoted 
to attempts to break through resistance of these bacteria. 
Examples of venom tested for antibacterial properties are 
summarized in Table 1. Both Viperidae and Elapidae ven-
oms have been tested on numerous occasions and much of 
the obtained data give very promising results indicating anti-
microbial activity in vitro that can rival currently used anti-
biotics. It has also been noted that viperid venoms exhibit a 
broader spectrum of antibacterial activity against different 
bacterial strains (Perumal Samy et al. 2007). However, based 
on the evidence, elapids venoms and their components may 
also represent valuable resource for future development of 
novel human therapeutics useful in fighting with bacterial 
infections (Birrell et al. 2007).

Snake venom components 
with antimicrobial properties

Generally, components of snake venoms can be divided 
into peptide-origin and non-peptide-origin. The first group 
is discussed in the second paragraph of the article and it may 

constitute more than 90% of venom’s dry weight, while the 
second group consists of low molecular weight organic com-
pounds such as carbohydrates, serotonin, histamine, citrate, 
and nucleosides; and inorganic ions such as calcium, cobalt, 
magnesium, copper, iron, and potassium. The toxic effect 
of venom, both in the context of victim bite and potential 
antibacterial effect, is caused by the components of the first 
group (Izidoro et al. 2014).

Phospholipases A2

One of the most common groups of enzymes present in both 
elapid and viperid venoms are phospholipases A2, which 
can be divided into basic and acidic PLA2s. Basic PLA2s 
are usually responsible for major toxic effects induced by 
snake venoms, while acidic PLA2s tend to have a lower tox-
icity (Doley et al. 2010). The svPLA2s (snake venom PLA2s) 
are very interesting enzymes due to their potential for being 
therapeutic lead molecules with antimicrobial properties 
against enveloped bacteria, viruses, fungi, parasites, and 
protozoa (Perumal Samy et al. 2007, 2012). Basic PLA2 
from Crotalus durissus terrificus has strong bactericidal 
effects against both Gram-positive and -negative bacteria 
(Toyama et al. 2003). An acidic PLA2 from Porthidium 
nasutum venom has bactericidal activity against S. aureus 
with MIC (minimal inhibitory concentration) value of 32 µg/
ml (Vargas et al. 2012). A myotoxic PLA2 (MjTX-II) from 
B. moojeni demonstrates antimicrobial activity against E. 
coli (Okubo et al. 2012). Phospholipase A2 from Crotalus 
adamanteus, called toxin-II (CaTx-II) has antibacterial prop-
erties against S. aureus and Burkholderia pseudomallei and 
also inhibits Enterobacter aerogenes growth causing disinte-
gration of cell wall, by the generation of pores in membrane. 
Moreover, it has been shown that this protein can promote 
wound healing (Perumal Samy et al. 2014b). Membrane 
permeabilization is also caused by basic myotoxin crota-
mine from C. durissus terrificus and, what is interesting, 
this effect is limited to prokaryotic cells because it acts 
without any haemolytic effects (Oguiura et al. 2011). New 
PLA2 from Walterinnesia aegyptia venom has antimicrobial 
properties against several human pathogenic strains (Ben 
Bacha et al. 2018) and PLA2 from Pseudonaja textilis is 
able to inhibit the growth of S. aureus (Perumal Samy et al. 
2007) and Burkholderia pseudomallei (Perumal Samy et al. 
2006). The mechanism of action in this case is associated 
with pore formation and membrane damaging effects on the 
bacterial cell wall without any cytotoxic effects on lung and 
skin fibroblast cells (Perumal Samy et al. 2014b).

What is also interesting, peptides formed from a svPLA2 
fragmentation are also able to interact with lipopolysaccha-
ride (LPS), particularly the lipid A component of S. aureus, 
causing membrane permeabilization, and exerting bacte-
ricidal effects (Perumal Samy et al. 2014b). Cysteine-rich 
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Table 1   Summary of previously 
tested venoms for antibacterial 
properties

Snake species Bacterial species References

Montivipera bornmuelleri Staphylococcus aureus
Morganella morganii

Accary et al. (2014)

Echis carinatus Staphylococcus aureus Al Ahmadi et al. (2010)
Walterinnesia aegyptia
Echis pyramidum
Echis coloratus
Cerastes gasperettii
Naja arabica

Staphylococcus aureus Al-Asmari et al. (2015)

Walterinnesia aegyptia
Echis pyramidum
Echis coloratus
Naja arabica

Enterococcus faecalis
Escherichia coli
Pseudomonas aeruginosa

Al-Asmari et al. (2015)

Bothrops alternatus Escherichia coli
Staphylococcus aureus

Bustillo et al. (2008)

Bothrops jararaca Staphylococcus aureus
Enterococcus faecalis

Ferreira et al. (2011)

Calloselasma rhodostoma
Bothrops atrox

Staphylococcus epidermidis
Staphylococcus aureus
Enterococcus faecalis

Ferreira et al. (2011)

Vipera ammodytes Proteus vulgaris
Staphylococcus aureus
Staphylococcus epidermidis
Enterococcus faecium

Iğci et al. (2016)

Montivipera bornmuelleri Salmonella enteritidis
Staphylococcus aureus

Jaoudeh et al. (2017)

Montivipera latifii Bacillus subtilis
Staphylococcus aureus

Moridikia et al. (2018)

Crotalus adamanteus
Daboia russelii russelii
Pseudechis australis
Pseudechis guttata
Agkistrodon halys
Bitis rhinoceros

Burkholderia pseudomallei Perumal Samy et al. (2006)

Daboia russelii russelii
Echis carinatus
Bitis rhinoceros
Bitis arietans
Pseudechis australis
Naja naja naja

Staphylococcus aureus Perumal Samy et al. (2007)

Ophiophagus hannah Staphylococcus aureus Rangsipanuratn et al. (2019)
Naja naja Escherichia coli

Pseudomonas aeruginosa
Vibrio cholerae
Staphylococcus aureus
Bacillus subtilis

Sachidananda et al. (2007)

Calloselasma rhodostoma
Ophiophagus hannah

Staphylococcus aureus San et al. (2010)

Bitis arietans
Pseudechis australis
Cerastes cerastes
Naja nigricollis
Naja naja naja
Vipera lebetina
Echis carinatus

Staphylococcus aureus Shebl et al. (2012)

Naja nigricollis
Naja naja naja

Pseudomonas aeruginosa Shebl et al. (2012)
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AMPs in particular may have a broad spectrum of antimi-
crobial properties. They are characterized by flexibility of 
structure and positive charge, which are essential for the 
enrichment of antibacterial activity caused by hydrophobic 
attraction to bacterial membrane with negatively charged 
components (Perumal Samy et al. 2017). Different cationic 
peptides derived from svPLA2s from Bothrops asper pre-
sent antimicrobial activity against Klebsiella pneumoniae, 
fight peritonitis induced by Salmonella enterica in mice and 
cause membrane permeabilization of S. aureus (Santamaria 
et al. 2005). But what is most important, these peptides, 
which are composed of 10- to 22-odd amino acids, derived 
from the carboxy terminus of the svPLA2s, are less toxic for 
eukaryotic cells and more bactericidal than the parent mol-
ecules. That is why this type of natural peptides and others 
may become a base for novel drugs design and lead to the 
production of new drugs with potential therapeutic value in 
the near future (White 2000; Koh et al. 2006).

Among PLA2 family, there is a subgroup which can 
induce tissue damage by mechanisms independent of cataly-
sis. These proteins have a single mutation, changing aspar-
tate residue at position 49 for a lysine residue, and are called 
Lys49 PLA2s. This substitution prevents the coordination of 
Ca2+ ions in the binding loop, leading to loss of enzymatic 
activity (Delatorre et al. 2011). Although they do not hydro-
lyze membrane phospholipids, they have antimicrobial activ-
ity against a variety of pathogenic microorganisms (Páramo 
et al. 1998; Stábeli et al. 2006). It is believed that not a cata-
lytic reaction but the distinctive primary structure consist-
ing of a combination of hydrophobic and cationic residues 
in the C-terminal region of the molecule is responsible for 
antimicrobial activity by the destabilization and perturbation 
of biological membranes (Díaz et al. 1991, 2001). Several 
synthetic peptides were designed, based on such C-termi-
nal sequence of 13 amino acids from B. asper myotoxin II, 
which is a homolog of Lys49 PLA2 (Fig. 2). In fact, one of 

Table 1   (continued) Snake species Bacterial species References

Pseudechis australis
Cerastes cerastes
Naja nigricollis
Naja naja naja
Vipera lebetina
Echis carinatus

Escherichia coli Shebl et al. (2012)

Pseudechis australis
Cerastes cerastes
Naja naja naja

Salmonella typhimurium Shebl et al. (2012)

Montivipera xanthina Staphylococcus aureus Yalcın et al. (2013)

Fig. 2   Different representations 
of the monomer of myotoxin 
II from B. asper (PDB: 1CLP; 
Chain: A). a Ribbon visualiza-
tion of secondary structures 
of MTX-II (Lys49—in green; 
C-terminal sequence with 
bactericidal activity—in red). b 
Surface visualization of MTX-II 
with Coulombic Surface Color-
ing (areas with high electron 
density, which therefore are 
more negative are blue; white 
surfaces is neutral, while red 
color indicates regions with 
a positive charge). The figure 
shows that 13 amino acids 
AMP from myotoxin II has 
visible cationic nature, which 
is perceived as important for 
its overall bactericidal activity 
(Chimera software)
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the derivatives exhibit very high bactericidal, fungicidal and 
even antitumor activity with low toxicity towards eukaryotic 
cells (Won and Ianoul 2009). Small peptides designed on 
the base of primary structure of Lys49 phospholipase A2, 
namely CoaTx-II, from Crotalus oreganus abyssus have 
antibacterial effect against drug-resistant clinical isolates. 
It was proven that presence of charged and aromatic amino 
acids plays an important role in interaction of peptides with 
bacterial cell membrane (Almeida et al. 2018). The antibac-
terial evaluation of LmutTX, Lys49 PLA2 from Lachesis 
muta muta snake venom and synthetic peptides designed on 
its base show promising activity against Gram-negative and 
Gram-positive bacteria (Diniz-Sousa et al. 2018). Also other 
C-terminal, cationic peptides derived from Lys49 PLA2s 
have been evaluated for their microbicidal and anti-tumor 
potential (Páramo et al. 1998; Murillo et al. 2007; Costa 
et al. 2008), presenting promising results. Furthermore, the 
synthetic peptides show high specificity, potent action at low 
dose, low immunogenicity, high diffusion to tissues, and rel-
atively easy chemical synthesis with the possibility of modi-
fications, such as the use of d-amino acids or cyclization. All 
these advantages make synthetic peptides, developed on the 
base of snake venom proteins, a very promising alternative 
to traditional drugs (Almeida et al. 2018).

l‑Amino acid oxidases

The second major group of venom enzymes responsible for 
antimicrobial properties is l-amino acid oxidases (LAAO). 
They are usually homodimeric proteins with covalently 
linked cofactors (FAD or FMN), however, their structures, 
molecular masses, and isoelectric points can be significantly 
different. Concentration of snake venom LAAOs varies 
between systematic groups and affects venom toxicity and 
its color. Those enzymes catalyze the oxidative deamination 
of hydrophobic and aromatic amino acids in a wide range 
of pHs and temperatures. In the first step of the reaction the 
amino acid substrate is oxidized to an imino acid, with a 
simultaneous reduction of the cofactor. In the second step 
the imino acid undergoes nonenzymatic hydrolysis, yield-
ing α-keto acid and ammonia. In order for the next reac-
tion to occur, it is necessary to close the catalytic cycle by 
regenerating the cofactor. Reoxidizing of cofactor takes 
place in the presence of molecular oxygen and thus gener-
ates hydrogen peroxide. It is believed that the production of 
hydrogen peroxide opens perspectives for new applications 
of these enzymes as bactericidal, antiviral, and antitumor 
agents, making them a promising biotechnological agent. In 
prey’s body they induce changes in platelet function, which 
cause local effects on plasma clotting disorders among other 
things. But in vitro, LAAOs also trigger apoptosis in various 
cell lines and show antimicrobial and antiparasitic activity 
(Izidoro et al. 2014).

Bactericidal effect of snake venom l-amino acid oxidases 
was reported in the case of several species of both viperids 
(e.g., Ciscotto et al. 2009; Costa Torres et al. 2010; Var-
gas et al. 2013) and elapids (e.g., Samel et al. 2008; Lee 
et al. 2011). Generally, snake venom LAAOs exhibit vari-
ous levels of antibacterial activity against different bacteria 
strains. l-Amino acid oxidase from P. australis venom is 
17.5 times more effective than tetracycline against Aero-
monas hydrophila on a molar basis (Stiles et al. 1999). The 
venom of Bothrops leucurus inhibits S. aureus growth in a 
dose-dependent manner, with a MIC of 25 µg/ml. LAAOs 
from C. adamanteus and B. asper exert antibacterial activity 
against S. aureus and Proteus mirabilis same as svLAAO 
from Bothrops venoms (Tempone et al. 2001; Izidoro et al. 
2006; Costa Torres et al. 2010). Another LAAO from Both-
rops pirajai controls the growth of Pseudomonas aeruginosa 
and Escherichia coli (Izidoro et al. 2006). And as in the case 
of PLA2s, also small fragments of LAAO show enhanced 
antimicrobial activity. These small peptides could be prom-
ising candidates in the new antibiotics design (Okubo et al. 
2012).

There are at least two hypotheses about antibacterial 
activity of LAAOs. The first is related to the oxidized form 
of the cofactor of the enzyme (FAD or FMN). This cofac-
tor interacts with l-amino acids which can then act on 
nucleic acids, proteins, and the plasma membrane (Izidoro 
et al. 2014). The second involves hydrogen peroxide which, 
after interaction with the bacterial membrane, can provoke 
lipoperoxidation (Toyama et al. 2006), DNA fragmentation 
(Braga et al. 2008), and in consequence cell death. It is also 
probable that LAAO can directly oxidize amino acids in 
proteins (Ande et al. 2008). Generally it is believed that the 
most probable mechanism of bactericidal activity of LAAOs 
involves oxidative stress in the bacteria cell, triggering dis-
organization and permeabilization of the plasma membrane 
and finally death of the cell, all caused by presence of hydro-
gen peroxide in the reaction medium (Izidoro et al. 2014).

Antimicrobial peptides

Staphylococcus aureus and the coagulase-negative S. epider-
midis, colonizing the nose and skin, are the most common 
commensal bacteria causing infections in humans and other 
mammals. The infection develops only when the protective 
layer of the human epithelium is breached and mechanisms 
of host immunity fail. These mechanisms include antimicro-
bial peptides (AMP) present on the skin and in the sweat. 
They are the first line of innate immune defenses on the 
human skin and also form part of the mechanisms by which 
bacteria are eliminated in the neutrophil phagosome after 
phagocytosis. AMPs in humans belong to two major groups: 
defensins and cathelicidins and many of them are active 
against staphylococci (Joo and Otto 2015).
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Similarly to humans, other animals including snakes, 
produce small cationic antimicrobial peptides (cAMP) 
called cathelicidins. These peptides have a broad-spectrum 
of antimicrobial activity against a wide variety of bacteria, 
enveloped viruses, and fungi (Perumal Samy et al. 2017). 
Transcriptomic analyses of venom glands of several species 
(Naja atra, Bungarus fasciatus and Ophiophagus hannah) 
reveal that snakes’ cathelicidins are highly homologous with 
AMPs found in lysosomes of cells in the immune system and 
have strong antibacterial properties (Wang et al. 2008, 2011; 
Zhao et al. 2008). BF-30, cathelicidin-type peptide derived 
from B. fasciatus is very effective against diverse antibi-
otic-resistant bacteria, including those that cause wounds 
(MRSA) (Chen et al. 2011a). It was shown that it reduces 
number of bacteria at the wound, but also prevents inflam-
mation and accelerates wound healing (Zhou et al. 2011; Du 
et al. 2015). Cathelicidin (OH-CATH) from Ophiophagus 
hannah and its analogs exert strong antibacterial and weak 
hemolytic activity. They are very effective against Acine-
tobacter spp., including multi-drug-resistant Acinetobacter 
baumannii (MRAB) and methicillin-resistant Staphylococ-
cus aureus (MRSA) and their effectiveness is higher than 
that of the 9 routinely used antibiotics (Zhao et al. 2018). 
The myotoxin from Crotalus durissus venom called cro-
tamine is on the other hand structurally related to beta-
defensin antimicrobial peptides (AMP) found in vertebrate 
animals (Oguiura et al. 2011). Whole crotamine-myotoxin 
family shows high degree of homology (60–80%) with beta-
defensin (Mancin et al. 1998; Nicastro et al. 2003) which 
makes them a very interesting subject for future research.

Other proteins

PLA2s, LAAOs and AMP are the most widely described 
groups of proteins with antibacterial properties. But there 
are also single descriptions of peptides and proteins from 
other groups, which are very promising and open the way to 
completely new discoveries. Most of antibacterial peptides 
act by binding, interacting and finally disrupting the lipid 
plasma membrane. For example, toxin gamma from cobra 
Naja nigricollis, belonging to three-finger toxin (3FTx) 
family, increases membrane permeability of S. aureus 
(Gram-positive) and E. coli (Gram-negative) bacteria which 
leads to the bactericidal effects of this protein. The direct 
molecular activity of this protein is binding to the major 
membrane constituents for Gram-negative and positive bac-
teria, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), 
respectively. Destabilization of LPS layer and inhibition of 
LTA biosynthesis causes bactericidal effects (Chen et al. 
2011c). Another 3FTx example—cardiotoxin 3 from Naja 
naja atra—has the same mechanism of action, but its activ-
ity is greater against S. aureus than against E. coli (Chen 
et al. 2011b). Different venom peptides and proteins interact 

with bacteria membrane components by electrostatic and 
ionic interaction. It was observed that most of these toxins 
have positive molecular net charge and are able to bind with 
anionic and zwitterionic phospholipid particles. This mecha-
nism of action is distinctive for other 3FTxs, namely cardio-
toxins from N. naja atra venom (Kao et al. 2009). On the 
basis of N. naja atra cardiotoxin 1 (CTX-1), also belonging 
to the three-finger toxins family, a series of small peptides 
was designed. The developed peptides consist of sequences 
that normally build the tip and subsequent β-strand of the 
first “finger” of this toxin. Thanks to that, new peptides had 
microbicidal activity towards strains of Gram-positive and 
Gram-negative bacteria of original protein with the lack of 
general toxicity (Fig. 3) (Sala et al. 2018).

Another example of an interesting protein is omwaprin 
originating from Oxyuranus microlepidotus venom. It is an 
acidic protein belonging to the waprin family (whey acidic 
proteins) and it has selective antibacterial properties against 
Gram-positive bacteria. Its action is based on damaging of 
the cell membrane of bacteria, which in consequence leads 
to the leakage of cell contents and cell death. Interestingly, 

Fig. 3   The structure of cardiotoxin 1 from N. atra (PDB: 2CDX; 
Model: 1). Individual fingers of 3FTx are labeled in the figure. The 
sequence (KLIPIASKTCPAGKNLCYKM) that was used to design 
several AMPs is shown in cyan. (Chimera software)
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this protein does not damage human cells, which has been 
proven in tests on erythrocytes (Nair et al. 2007).

Similar to 3FTxs and waprins, C-type lectin-like proteins 
are an example of venom components without enzymatic 
activity. Representatives of this group often show contradic-
tory actions: some induce platelet aggregation and aggluti-
nation, while others inhibit this effect. Both purified lectins, 
such as the one from Bothrops leucurus venom, namely 
BlL, and lectin homologs, have antimicrobial properties. 
Mentioned BlL protein from B. leucurus is effective against 
Staphylococcus aureus, Enterococcus faecalis and Bacillus 
subtilis (Nunes Edos et al. 2011) and the protein from Both-
rops jararacussu acts against Staphylococcus aureus (Klein 
et al. 2015) whereas homologs of convulxin from Crotalus 
durissus terrificus decrease the growth of Xanthomonas 
axonopodis and Clavibacter michiganensis michiganensis 
(Rádis-Baptista et al. 2006).

A final example of a venom component with antibacterial 
properties is enzyme AHM from Agkistrodon halys belong-
ing to metalloproteinase family. This protein is very effective 
against Proteus vulgaris, Proteus mirabilis, Staphylococcus 
aureus and multi-drug resistant Burkholderia pseudomal-
lei. The mechanism of action is associated with damage to 
the membranes, wrinkling of cell surfaces, leakage of cell 
contents and formation of vesicles on cell surfaces, with the 
consequence that the membrane and wall lose their integrity 
(Perumal Samy et al. 2008).

Conclusions

In the era of great threat posed by antibiotic-resistant strains 
of bacteria, we face a great challenge which is to develop 
modern methods of antibacterial therapies. One of the prom-
ising trends is the search for compounds with antibacterial 
potential among venom components. It has been repeatedly 
proven that both whole snake venom and its individual com-
ponents, or even their fragments, have the desired properties 
and are therefore a potential source of new antibiotics. This 
approach is all the more promising as there are known exam-
ples of the development of effective drugs based on proteins 
and peptides derived from snake venom.

Moreover, much attention should be devoted to under-
standing the different mechanisms responsible for the anti-
bacterial activity of venom-based drugs. This will certainly 
enable finding new promising drug templates as well as opti-
mizing existing structures. Therefore, the identification of 
new venom-origin agents, combined with alternative routes 
of administration, developed in recent years, make them 
a very promising line of research with great potential for 
the future. With increased approval of peptide-based drugs 
and advances in peptide-associated technologies, they are 
becoming more and more medically significant.
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