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Abstract
Despite standardized surgical technique and peri-operative care, metabolic outcomes of bariatric surgery are not uniform. 
Adaptive changes in brain function may play a crucial role in achieving optimal postbariatric weight loss. This review follows 
the anatomic-physiologic structure of the postbariatric nutrient-gut-brain communication chain through its key stations and 
provides a concise summary of recent findings in bariatric physiology, with a special focus on the composition of the intestinal 
milieu, intestinal nutrient sensing, vagal nerve-mediated gastrointestinal satiation signals, circulating hormones and nutri-
ents, as well as descending neural signals from the forebrain. The results of interventional studies using brain or vagal nerve 
stimulation to induce weight loss are also summarized. Ultimately, suggestions are made for future diagnostic and therapeutic 
research for the treatment of obesity.
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Introduction

While alterations in intestinal physiology, gut-brain com-
munication, and cerebral connectivity following bariatric 
surgery (BS) are increasingly recognized as important 
factors mediating long-term metabolic outcomes [1, 2], 
the clinical relevance and applicability of recent findings 
require further investigation. Despite standardized surgical 
technique and peri-operative care, patients do not evolve 
uniformly after BS. Excess weight loss (EWL) outcomes 
after Roux-en-Y gastric bypass (RYGB) or sleeve gastrec-
tomy (SG) vary widely (37.6–94.4%), and existing models 
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Key Points  
• Bariatric surgery enhances intestinal nutrient sensing by 
increased hormonal (between-meal satiety) and vagal (intra-meal 
satiation) signaling.
• Postbariatric changes in the intestinal milieu (especially 
microbiota and bile acids) stabilize the intestinal epithelial barrier 
and decrease systemic inflammation.
• Cytokine growth differentiation factor 15 (GDF15) has a 
potent food intake and body weight suppressive effect by acting 
on hindbrain centers of nausea, and its level is increased after 
bariatric surgery.
• Superior weight loss can be achieved in patients with obesity 
by stimulation of the vagal nerve compared to cortical electric 
manipulation of the homeostatic brain centers.
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of EWL prediction based on demographic data have been 
shown to be inaccurate [3].

The extent of postbariatric EWL may highly depend 
on factors that are not regularly assessed during peri-
operative clinical care, such as changes in brain con-
nectivity, as documented in studies using functional 
magnetic resonance imaging (fMRI) [4, 5]. The gastro-
intestinal (GI) tract senses the chemical, nutritive and 
volumetric properties of ingested food via a complex 
gut-brain communication system [6]. As a crucial link 
between the gut and the brain, the vagus nerve remains 
an important subject of research in gastrointestinal phys-
iology [1].

This review provides a concise summary of recent 
findings in bariatric physiology, with a focus on how 
gut-brain communication pathways are altered following 
BS and in the context of selected non-surgical experi-
mental weight-loss therapies. The review of specific 
changes in nutrient sensing in the context of various 
obesity therapy modalities has the potential to elucidate 
causes of variability in postbariatric outcomes. The dis-
cussion follows an anatomic-physiologic structure along 
the key stations of nutrient-gut-brain communication to 
identify potential diagnostic and therapeutic targets for 
optimizing obesity therapy in the setting of BS. We also 
explore how integrating biotechnology into BS could 
amplify the functional brain changes that appear to be 
crucial for successful weight loss.

Methods

We performed a narrative review to provide in-depth cov-
erage of nutrient sensing and gut-brain communication in 
surgical and experimental obesity therapy and to synthesize 
rationales for future research. Each subchapter has been 
drafted to provide novel insights into physiologic research 
from different angles. The selection of included articles 
from the literature aimed to include the most recent and the 
most relevant articles from preclinical and clinical research, 
without the application of a systematic bibliographic search 
strategy. The articles were critically evaluated based on key 
results, limitations, suitability of the methods used to test the 
initial hypothesis, and their impact in the field [7]. Subjectiv-
ity in study selection is an inherent limitation of narrative 
reviews, which may influence the interpretation, the trans-
lation and the application of published research [8]. Physi-
ologic changes in nutrient sensing and metabolism following 
BS are emphasized with italics and summarized in Table 1.

Intestinal Nutrient Sensing

Anatomical changes after BS (i.e., RYGB or SG) result in 
faster delivery of partially undigested nutrients to the jeju-
num. This, in turn, alters the nutrient-sensing mechanisms 
controlling gut hormone release (e.g., increased postpran-
dial GLP-1 and PYY release from enteroendocrine cells 

Table 1  Physiologic changes in nutrient sensing and metabolism after bariatric surgery discussed in this review

Anatomic station Physiological parameter Direction of postbariatric changes

Intraluminal milieu of the small bowel Postprandial caloric rate and density ↑ [10]
Gastro-jejunal transit time ↑ [11]
Bile acid concentration ↑ [149]
Fat digestion/absorption ↓ [150]
Intestinal epithelial barrier ↑ stability (↓ absorption of bacterial lipopoly-

saccharide toxin) [151, 152]
Glucose transport from the vasculature into the 

intestinal cells
↑ [153]

Mitochondrial glucose metabolism ↑ [154]
Microbiota ↓ obligatory anaerobic Gram-positive bacterial 

groups; ↑relative abundance of Proteobacteria 
[33]

Nutrient sensing in the intestinal wall Number of enteroendocrine cells ↑[9, 20]
Enteroendocrine cells’ postprandial activity: GLP-1, 

PYY secretion
↑ [9, 10]

Intestinal branches of the vagus nerve Transmission of postprandial satiety signals ↑ [1, 55]
Brain control of ingestion Striate nucleus (reward center) ↑ postprandial dopamine release [118]

Nucleus of the solitary tract and area postrema 
(energy status)

↑ stimulation by cytokine growth differentiation 
factor 15 [90, 93]

Dorsolateral prefrontal cortex (inhibits ingestion) ↑ stimulation by visual food cues [121]
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(EEC)) [9, 10]. A longitudinal study showed that after 
RYGB, patients decreased their meal size in part by lower-
ing the average size, but not the total number of within-
meal ingestive bursts [11]. This suggests that neural circuits 
responsible for within-meal intestinal nutrient sensing are 
crucial for postbariatric changes in ingestive behavior and 
demonstrates the rapidity of the gut-brain feedback loop.

A multitude of GI cell types participate in nutrient chemo-
sensing and produce signaling molecules to relay this informa-
tion to other organs. Their composition and distribution across 
the GI tract vary considerably, indicating that specific nutrient 
sensing occurs in a tissue-dependent fashion. EEC and tuft 
cells constitute the first line of hormonal, neuronal, and immu-
nogenic response to food intake [12–14]. Nutrient chemo-sens-
ing occurs in part through multiple G protein-coupled nutrient 
receptors (GPCRs) expressed on the apical membrane of EEC 
[15], whereas tuft cells participate in chemosensing thanks to 
their expression of specific taste receptors [16]. Moreover, tuft 
cells have been shown to regulate immune responses [17] and 
convey information to the enteric nervous system, eliciting 
direct neuromodulatory activities [18, 19].

Metabolic disorders such as obesity correlate with major 
changes in the number of these cells and their hormonal release 
[9, 20]. Following BS, profound alterations in the distribu-
tion and activity of EEC cells have been described [9, 20]. 
For example, in a comparison of lean control individuals to 
patients with obesity pre- and post-BS, an overall reduction 
in the number of duodenal EEC was observed in patients with 
obesity, which was partially restored following SG [9]. Inter-
estingly, individuals with obesity had more mucin-producing 
Goblet cells, underscoring the biased allocation of the intesti-
nal secretory lineage [21]. Gastrin receptors and the bile acid 
receptors FXR and TGR5 have been described to participate in 
this process by modulating EEC differentiation [22–24] as well 
as intestinal progenitor proliferation [18, 25–27]. Interestingly, 
these observations suggest that an evaluation of the distribution 
and activity of secretory cells may provide a valuable readout 
for proper nutrient chemo-sensing to test the effectiveness of 
surgical and pharmacological treatment of metabolic disorders.

Summary: Multiple cell populations actively participate 
in postprandial nutrient chemo-sensing. Their localization 
and function vary across the GI tract, reflecting an anatomi-
cal regionalization in nutrient sensing. Metabolic disorders 
can alter the representation and function of these cells, lead-
ing to improper chemo-sensing. BS appears to be effective in 
counter-balancing these obesity-related alterations.

Intestinal Milieu

The internal environment of the GI tract is shaped by 
numerous factors, including diet, digestive secretions, resi-
dent microbiota, and fungi [28–33]. Recent developments 

in ingestible, pH-sensitive sampling devices have revealed 
profound differences in these factors throughout the GI tract 
in healthy humans [34, 35], which are all liable to change 
following the anatomic alterations of BS. This may, in turn, 
contribute to postbariatric metabolic outcomes, such as 
EWL, or the weight loss-independent amelioration of liver 
steatosis and type 2 diabetes mellitus (T2DM).

Rodent models of BS have been instrumental in iden-
tifying post-surgical changes in the intestinal milieu, par-
ticularly in gut microbiota and bile acids, which are inter-
related and play emerging roles in metabolic health [36]. 
For example, a study on Zucker fatty rats found that RYGB 
causes major shifts in the microbiota across the small 
and large intestine [37]. Interestingly, transplanting ileal 
microbiota from RYGB-operated rats to germ-free mice 
worsened oral glucose tolerance [37], likely due to the gen-
eration of metabolites that disrupt the intestinal epithelial 
barrier and trigger systemic endotoxemia [38]. On the other 
hand, transplanting colonic microbiota of RYGB-operated 
rats to germ-free mice improved oral glucose tolerance, 
possibly by stabilizing the intestinal epithelial barrier 
through increased bile acid receptor FXR signaling via 
the generation of secondary bile acids [39]. These findings 
suggest that the changes in gut microbiota and their asso-
ciated metabolites after RYGB may have opposing effects 
on glycemic control, depending on the gut region [40]. For 
SG, cecal and fecal levels of the primary bile acid cholic 
acid-7 sulfate (CA7S) have been found to increase in mice 
and patients after surgery [41]. Moreover, oral adminis-
tration of CA7S improved glucose tolerance in mice in 
a TGR5-dependent manner [41]. These findings illustrate 
how understanding changes in the gut milieu after BS can 
guide the development of new pharmacological treatments 
for T2DM. There is also evidence that the gut microbiota 
plays a role in the reduced food intake [41] and protection 
from weight gain after RYGB in diet-induced obese rats 
[42]. In line with this, antibiotic-based depletion of the 
gut microbiota abrogates the effects of RYGB on energy 
balance, and fecal transplantation is effective in transfer-
ring the metabolic phenotype of RYGB-operated rats to 
diet-induced obese rats, again mediated by increased FXR 
signaling [42]. These findings appear to have limited trans-
lational value, since transferring human feces after RYGB 
fails to impact body weight in rodents and in humans 
[43–45]. Interestingly, this intervention does improve oral 
glucose tolerance in recipients through reduced glucose 
absorption and increased adipose tissue glucose utiliza-
tion [43, 44], suggesting that post-RYGB changes in gut 
microbiota mainly improve glycemic control. Clearly, the 
impact of RYGB on gut microbiota-host interactions is 
complex, and more research is needed before an efficient 
RYGB microbiota-based treatment can be developed for 
patients with metabolic syndrome.
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Beyond bile acids and microbiota, BS affects other factors 
in the intestinal milieu. In a study of women with T2DM 
and obesity, samples were collected by endoscopy from the 
stomach and throughout the small intestine two weeks before 
and three months after RYGB, providing insight into how 
glucose metabolites change in the intestinal milieu [46]. 
As revealed by mass spectrometry analysis, RYGB led to 
reduced levels of aromatic and branched-chain amino acids, 
while it increased the metabolism of phenylacetate and deg-
radation of trehalose in the duodenum and jejunum, and deg-
radation of lactose in the ileum [46].

Summary: Preclinical and clinical research is beginning to 
shed light on the complex changes in the intestinal milieu after 
BS [47]. Further work is needed to determine how this influ-
ences circulating signaling molecules that communicate with 
peripheral tissues and the brain to improve metabolic health.

Nutrient Sensing Via the Vagus Nerve

The vagus nerve provides parasympathetic innervation of the 
gastrointestinal tract from the esophagus to the splenic flex-
ure of the colon. It carries efferent signals from the dorsal 
vagal nucleus in the hindbrain, which are integrated by the 
enteric nervous system to control smooth muscle contrac-
tion and glandular secretion. However, afferent vagal fibers 
vastly outnumber efferent fibers [48]. Vagal afferent neurons, 
whose cell bodies reside in the inferior (nodose) ganglion of 
the vagus nerve in the jugular foramen, carry sensory infor-
mation from the gut to the nucleus of the solitary tract (NTS) 
of the hindbrain.

In the stomach, most vagal afferents terminate in intra-
muscular arrays within the circular and longitudinal muscle 
layers, as well as in the ganglia of the myenteric plexus. 
They are thus well-positioned to react to mechanical stretch 
and tension [49]. A smaller number of vagal afferent fib-
ers project to the gastric mucosa and respond to stroking 
[50]. In the intestine, most vagal fibers are chemosensitive 
and end in the mucosa, where they respond to nutrients and 
gastrointestinal hormones [51, 52]. Recently, new genetic 
tools – including monosynaptic neural tracing, optogenetics, 
and chemogenetics – allowed the characterization of vagal 
afferents in mice that rapidly communicate the presence of 
nutrients from the gut to the brain. In one study, a novel neu-
roendocrine cell that communicates the presence of sugars 
to vagal afferents via glutamate was identified. Because of 
the synaptic-like nature of this signaling, the authors termed 
this neuroepithelial unit a “neuropod” [53].

Signaling through the vagal nerve may mediate some of 
the benefits of BS [54, 55]. In RYGB, only the dorsal and 
ventral gastric vagal branches supplying the stomach are sev-
ered while forming the gastric pouch. However, the vagal 
branches traveling with the gastroduodenal and superior 

mesenteric arteries remain intact. Thus, vagal innervation 
of the intestine, liver, and pancreas can be mostly spared, 
except for some branches traveling along the lesser curvature 
of the stomach to reach the proximal duodenum and parts 
of the pancreas [56]. Evidence from the rat model indicates 
that preservation of the celiac branches of the vagal nerve 
enhances weight loss after RYGB [57–59].

While gastrointestinal hormones can reach the brain via 
the circulation to directly regulate feeding behavior, afferent 
vagal nerve endings contain receptors for many intestinal 
hormones, and signaling via the vagus nerve may partly 
account for their effects [60]. Cholecystokinin (CCK), which 
is released by enteroendocrine cells after ingestion of protein 
or fat, binds to CCK-A receptors on vagal afferents to sup-
press further food intake [61]. In rodent models, however, 
a complete transection of the abdominal vagus nerve has 
a negligible effect on body weight, although it leads to an 
increase in meal size, which is compensated by reduced meal 
frequency [62]. Thus, humoral regulation may be sufficient 
for long-term control of body weight, with the vagus nerve 
being more important in the short-term regulation of feed-
ing. However, if a complete transection of all vagal afferents 
and efferents is performed, it is impossible to identify the 
contributions of individual neuronal subpopulations, which 
may have different and opposing effects [63]. In obesity, 
the sensitivity of vagal afferents to CCK signaling, as well 
as to mechanical distension of the gut, is reduced [64, 65]. 
Therefore, targeting specific vagal populations to heighten 
the response to satiety signals remains a promising thera-
peutic approach.

Summary: The vagus nerve is instrumental in rapidly 
responding to satiety signals such as mechanical stretch, 
intraluminal nutrients and caloric concentration, as well as 
to paracrine gastrointestinal hormones. However, its role in 
long-term weight control remains less defined, necessitating 
a more detailed exploration of vagal signaling and plasticity 
in obesity and in post-BS conditions.

The role of the Hindbrain in the Hypophagic 
Effects of Bariatric Surgery

Historically, the mediobasal hypothalamus has been con-
sidered the main sensor of the metabolic state and the inte-
grator of effector actions aiming at an optimal body weight 
[66]. However, the hindbrain and the limbic system are 
other key brain areas implicated in body weight-regulating 
mechanisms that serve as alternative targets for weight loss 
therapies [66]. The NTS and the area postrema (AP) are 
two adjacent and highly interconnected hindbrain structures 
that process information on peripheral energy status from 
circulating signals and branches of the vagus nerve [67]. The 
presence of fenestrated capillaries and the lack of tight 
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junctions between endothelial cells allow neurons in the AP/
NTS to be reached by hormonal and nutrient signals that 
cannot cross the blood–brain barrier in other brain regions 
[68, 69]. AP/NTS neurons express a variety of receptors 
and directly respond to nutrients (e.g., glucose) and several 
peptides produced peripherally that play a direct role in the 
regulation of feeding and homeostasis, e.g., GLP-1, amylin, 
leptin, and ghrelin [70–73].

The AP/NTS is also a key hub for the integration of path-
ological modulators of energy balance. Increased neuronal 
activity in this area is associated not only with physiological 
satiation, but also with emesis and nausea [74, 75]. AP/NTS 
neurons project to a number of regions involved in the regu-
lation of feeding [76–80]. Among these connections, many 
studies highlight the importance of NTS lateral parabrachial 
nucleus (lPBN) projections [67, 81–84], where calcitonin 
gene-related peptide (CGRP) mediation of anorexia and 
malaise occurs.

Postprandial nausea and vomiting represent potential com-
plications of BS [85]. Although recent clinical neuroimag-
ing and animal studies have explored the effects of BS on 
forebrain function [86], relatively few studies have focused 
on the role of the caudal hindbrain and its contribution to 
BS outcomes. It has been shown in preclinical models that 
vagal afferent signaling is required for optimal weight loss 
and diminished fat preference following RYGB [58]. Relat-
edly, it was demonstrated that in RYGB mice, eating a vol-
untary meal induced exaggerated expression of the marker 
of neuronal activation c-Fos in the AP/NTS [87]. Interest-
ingly, a significant portion of the activated neurons in the 
lPBN expressed CGRP, suggesting the involvement of the 
hindbrain in the mediation of the food taste-visceral malaise 
association occurring after surgery [87]. SG also increases 
nutrient-induced c-Fos expression in the AP/NTS compared 
to control animals [88]. These results may provide a mecha-
nistic explanation for such post-surgical symptoms as nausea, 
vomiting, and visceral malaise, which most frequently occur 
after the consumption of large meals rich in fat or sugar [89].

The gut-generated signals responsible for the modified 
hindbrain response after RYGB are largely unknown. How-
ever, recent research has focussed on the stress-response 
cytokine growth differentiation factor 15 (GDF15) and its 
body weight-suppressive effects. GDF15 is an inflammatory 
biomarker released by various tissues [90–94], and elevated 
circulating levels of GDF15 are associated with anorexia, 
malaise, and cachexia in a variety of diseases and physi-
ological states [95–105]. GDF15 acts as a ligand on a highly 
localized hindbrain G-family α-like receptor [103, 106–109]. 
Exogenous administration of GDF15 induces nausea and 
emesis, suggesting malaise and conditioned food aversion 
as key components of GDF15-induced anorexia [110–113].

Interestingly, while circulating GDF15 levels increase 
only slightly in obesity, they are substantially elevated 

in patients following RYGB (and, to a lesser extent, SG) 
[90–94]. Importantly, there was a clear correlation between 
GDF15 levels and the magnitude of post-BS EWL [90, 93]. 
In mice treated with GDF15, there was a reduced prefer-
ence for a high-fat diet [114]. Notably, RYGB-operated rats 
have increased circulating and portal vein GDF15 levels, and 
this is negatively correlated with their food intake and body 
weight [40]. While a separate study also showed increased 
circulating GDF15 levels and GDF15 protein in the gastric 
pouch, jejunum, and ileum of RYGB-operated rats [115], 
more data is needed to establish a causal link between gut-
derived GDF15 and the beneficial effects of BS [116, 117].

Summary: Despite being a relatively new and rapidly 
evolving field, emerging evidence strongly suggests that 
GDF15 plays a crucial role in inducing hypophagia in vari-
ous medical conditions by primarily triggering feelings of 
malaise through signaling to the AP/NTS. However, further 
pre-clinical and clinical research is needed to fully under-
stand its role in the positive outcomes (e.g., weight loss) and 
negative effects (i.e., GI malaise) of bariatric surgery.

Weight Loss by Neurostimulation

Based on the strong relationship between BS and brain 
activity, several studies tried to induce weight loss by direct 
manipulation of the brain [118]. Cortical functions impli-
cated in the development of obesity include reward, atten-
tion, emotional regulation, impulsivity, and motivation. 
People with obesity show decreased inhibitory control (also 
known as response inhibition to environmental stimuli) and 
impaired memory systems [119]. Postbariatric weight loss 
correlates with functional changes in brain regions asso-
ciated with cognitive functions altered by obesity [120]. 
Food cue-based neuroimaging studies after BS have shown 
increased activation in the dorsolateral prefrontal cor-
tex (DLPFC), which is responsible for inhibitory control, 
while brain regions responsible for memory and reward 
processes, such as the hippocampus and insula, are less 
active [121–123]. In an attempt to stimulate weight loss, 
neuromodulation techniques, such as deep brain stimula-
tion (DBS), transcranial magnetic stimulation (TMS), tran-
scranial direct current stimulation (tDCS) of cortical and 
subcortical locations, neurofeedback and peripheral nerve 
stimulation/blockade have been applied. 

Invasive DBS treatment for weight loss has been limited 
to only a few patients. These studies aimed to stimulate the 
hypothalamus or the nucleus accumbens and achieved only 
clinically irrelevant EWL in humans [124–126]. It should be 
noted that the microlesions in the brain during DBS elec-
trode placement can also evoke metabolic changes [127], 
and thus, it is not clear whether the altered functionality is 
the consequence of the stimulation. In addition, the lack of 
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a standardized protocol for the DBS studies makes it hard to 
evaluate their efficacy [128]. Very recently, a DBS clinical 
pilot was conducted on two patients, where the electrophysi-
ological signatures of food craving were used to activate 
implanted DBS to enhance inhibitory control [129]. After 
six months, the BMI of both subjects decreased by 2–3 kg/
m2, which is clearly inferior to what can be achieved with 
BS [130].

High-frequency repeated TMS is a method used for selec-
tive and non-invasive excitatory stimulation of the cortex. 
A few studies have shown that TMS stimulation of the 
DLPFC is able to induce weight loss [131–133]. Although 
the results were statistically significant, the achieved weight 
loss (BMI change < 1 kg/m2 / weight-loss 2–3 kg) is mas-
sively smaller than the one observed post-BS. Non-invasive 
tDCS paradigms aim to interfere with cortical systems at the 
DLPFC to increase the inhibitory control of ingestion. Based 
on a meta-analysis, a consistent decrease in food craving 
and energy intake could be achieved [134, 135]; however, 
no EWL was seen [136, 137]. Besides external stimulation 
paradigms, patients can learn to effectively manipulate the 
activity of circumscribed brain areas with online neurofeed-
back. These treatments are based on the voluntary regulation 
of brain activity feedback via real-time EEG [138]. Studies 
using EEG [139] and fMRI paradigms [140] introduced the 
possibility of volitional regulation of frontal brain activity. 
However, research showing a relationship between success-
ful neurofeedback and weight loss is still lacking.

Directly targeting the vagal nerve appears to be more 
effective for weight loss than cortical manipulation of the 
gut-brain axis. Vagal nerve stimulation (VNS) involves the 
surgical implantation of electrodes in the neck and a genera-
tor under the skin below the clavicle to provide electrical 
stimulation to the vagus nerve. The treatment has achieved 
reduced food intake and EWL proportional to the initial BMI 
[141, 142]. The opposite approach – electrical vagal nerve 
blockade – is also established as a potential treatment for 
obesity. The ReCharge trial investigated a vagal blocking 
device, which employs electrodes placed on the anterior and 
posterior vagal trunks close to the oesophageal junction, 
through which an alternating current was applied to block 
vagal nerve signaling for 12 h per day. One-year EWL was 
significantly greater with vagal blocking compared to sham 
treatment (24.4% vs. 15.9%) [143], and this effect remained 
quite stable at 2-year follow-up [144], with associated meta-
bolic improvements.

Stimulation of intestinal sensory cells and vagal afferents 
by electrodes, hybrid or “bionic” tissues may offer a new 
therapeutic avenue for regulating satiety [145] and treating 
obesity. The mechanism of action of intestinal stimulation is 
not completely understood, but is likely manifold, including 
a) an accelerated intestinal transit which reduces fat absorp-
tion and enhances the nutrient-induced release of GLP-1 

and GIP in the distal ileum, and b) an increased expression 
of hypothalamic oxytocin-immunoreactive positive neurons, 
which may have a direct effect on adipocytes or an indirect 
effect in promoting lipolysis [146, 147]. Preclinical data are 
promising: intestinal electrical stimulation has been shown 
to reduce food intake in rats and pigs and to reduce intesti-
nal absorption and body weight, as well as to improve glu-
cose tolerance and insulin sensitivity in rats [146, 148]. The 
first human feasibility study included 9 participants, used 
laparoscopically implanted duodenal stimulation electrodes, 
and showed effectiveness in optimizing glycemic control and 
high-density lipoprotein levels [148].

Summary: Neurostimulation of cortical and subcortical 
areas may lead to weight loss, but the effect size remains 
relevantly below the observed weight loss achieved after 
BS. However, stimulation of the peripheral nervous system 
and hormone-producing cells of the small bowel or intermit-
tent blockade of the abdominal branches of the vagal nerve 
may open potential pathways to be explored in the quest for 
non-surgical or adjuvant metabolic therapies.

Future Outlook

The gut-brain hormonal and synaptic communications, 
together with GI microbiota, are among the key components 
for the treatment of obesity. The beneficial postbariatric 
shifts in the intestinal microbiota and their metabolites, of 
cellular changes in the GI mucosa, of hormonal, cytokine 
and vagal signal transmission have been demonstrated.

Future studies should focus on investigating how these 
different pathways interact and on the neurohormonal 
changes driven by the accelerated delivery of less digested 
food into the small bowel following BS. Longitudinal stud-
ies can track changes in brain activity and connectivity over 
time, helping to identify causal relationships between brain 
activity and postbariatric weight loss. Directed network 
models can identify key hubs in these systems that might be 
targeted for therapeutic interventions. Additionally, recent 
advances in tissue clearing and light-sheet microscopy may 
enable the study of the GI nervous system (e.g., the vagus 
nerve and enteric nervous system) in toto, allowing for fur-
ther elucidation of the role of vagal afferents in regulating 
food intake.

Together with drug-based treatments of obesity, the 
development of biomedical electronic implants, reaching 
the micro- and nanoscale, may also provide a therapeutic 
avenue for the treatment of metabolic disorders [145]. The 
development of obesity treatments that mimic BS, but are 
less invasive and are more easily scalable to the eligible 
patient population, is a high priority. Currently, bionic intes-
tinal stimulators are not available for human use and their 
potential clinical efficacy is merely hypothetical, and the 
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transferability of preclinical observations to human practice 
remains to be proven. Limitations and challenges of non-
surgical metabolic therapies stem from the chronic nature 
of obesity and related diseases. Non-surgical weight-loss 
treatments would ideally need to replicate the pleiotropic 
physiologic changes and the meal-triggered neurohormo-
nal responses observed after BS. These goals are mainly 
constrained by the cost of lifelong conservative therapy, by 
patient compliance, and by the long-term efficacy and side-
effect profile of any new treatment. Another limitation is 
related to the genetic and social factors that may increase 
the predisposition to obesity, which have not been addressed 
in this review.

The modified GI anatomy after BS provides a perfect 
model to study changes at each station of the ingestive signal 
transmission chain, from the intestinal milieu to the brain. 
There is a need for further novel and real-time diagnostic 
studies to better unravel the physiologic mechanisms of BS, 
with the ultimate goal of broadening preventive and thera-
peutic strategies for obesity.
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