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Abstract 
Purpose Roux-en-Y gastric bypasses (RYGB) are frequently accompanied by long-term gastrointestinal (GI) symptoms. 
Direct mechanistic insight into the causation of these symptoms is lacking, but changes in the intestinal microbiome have 
been proposed to play a role. With this study, we aimed to investigate whether a microbial predisposition exists before RYGB 
which is associated with GI symptoms during follow-up and to evaluate which microbial groups are involved.
Materials and Methods In total, 67 RYGB patients were included. Shotgun metagenomic sequencing was performed on fecal 
samples obtained just before and 1 year after surgery. To assess GI symptoms, patients filled out Gastrointestinal Quality of 
Life Index (GIQLI) questionnaires and were divided into groups based on their total GIQLI score and change in score (post-
surgery versus baseline). Extremely randomized tree predictor models were used to identify the most distinctive microbial 
species associated with postoperative GI symptoms.
Results Beta diversity differed significantly between baseline and 1-year post-surgery samples, with the post-surgery micro-
biome resembling a more dysbiotic profile. The most predictive species regarding total GIQLI (AUC 0.77) or delta GIQLI 
score (AUC 0.83) were identified. Many of these species are known butyrate producers or species known to support them 
and/or species with anti-inflammatory properties, including Coprococcus eutactus, Faecalibacterium prausnitzii, and Rumi-
nococcus callidus.
Conclusion Beneficial commensal gut microbiota related to a high GI score were associated to adequate intestinal fermenta-
tive capacity, suggesting these species might have protective properties against postoperative GI malfunctioning.

Keywords Roux-en-Y gastric bypass · Gastrointestinal Microbiome · Microbiota · Signs and symptoms · Digestive · Short-
chain fatty acids

Introduction

The use of the Roux-en-Y gastric bypass (RYGB) procedure 
has now increased to 113,000 cases per year worldwide [1]. 
However, with the increased number of surgeries being per-
formed, new problems are coming to light. An important 
problem is that RYGB is accompanied by long-term gastro-
intestinal (GI) symptoms, in nearly 50% of RYGB cases [2, 
3]. Gastrointestinal symptoms after RYGB include chronic 
diarrhea, cramps, bloating, and bowel urgency and com-
monly lead to a decreased quality of life, limited general 
daily functioning, and increased absenteeism [4].

Relatively little is known about the etiology underlying 
the development of chronic GI symptoms after RYGB sur-
gery. Given the lack of insight in regard to the underlying 
causes, doctors continue to experience difficulties in treating 
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Key Points  
• Post-RYGB gut microbiome is characterized by various oral 
Streptococcus species.
• Post-RYGB beneficial GI outcome is related to high intestinal 
fermenting capacity.
• Bacteria with anti-inflammatory properties protect against GI 
symptoms after RYGB.
• Post-RYGB GI symptoms link to high intestinal abundance of 
upper GI tract bacteria.
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GI symptoms in gastric bypass patients. It has been sug-
gested that the altered intestinal microbiota after RYGB 
could be a cause for these GI complaints as it undergoes 
significant changes after surgery [5, 6]. Various microbial 
changes are reported after RYGB; for instance, increases 
of various Fusobacteria and Streptococcus subspecies 
have been reported [7], whereas Bifidobacterium and Fir-
micutes are reported to decrease after surgery [8]. These 
changes result from an altered anatomy of the upper GI tract, 
increased stomach pH levels, altered carbohydrate, protein 
and bile acid metabolism, and an altered dietary pattern of 
the host [9]. Despite efforts, direct mechanistic insights into 
the causation of GI symptoms based on clinical data are 
mostly lacking. Westerink and colleagues unveiled certain 
inflammatory markers associated with GI symptoms after 
RYGB in a longitudinal bariatric cohort [10]. Microbiota 
data were, however, not reported in previous studies. A 
direct link between microbial compositional changes and 
GI symptoms has never been studied.

We therefore included 67 gastric bypass patients from a 
bariatric cohort (the BARIA study [11]) and applied various 
machine learning models to answer the question whether a 
relationship between microbiota changes and GI symptoms 
after surgery is present. Models were designed to predict the 
degree of GI complaints based on the intestinal microbiota 
composition. We hypothesized that increased GI symptoms 
after surgery are associated with the gut microbiota com-
position before surgery and that shifts in microbiota com-
position after surgery may also contribute to GI symptoms. 
We in particular predicted that oral microbiota strains, now 
more easily able to pass the gastric pouch alive and enter the 
lower intestinal system, would be increased in abundance 
after surgery and would be associated with GI symptoms. A 
connection between certain bacterial species and the severity 
of GI symptoms could potentially provide useful insights for 
postoperative treatment options of such symptoms, including 
dietary advice or pre- and probiotics.

Research Design and Methods

Study Design and Population

Included patients were participants from the BARIA cohort 
study [11]. In brief, the aim of this study is to identify novel 
pathways in the pathogenesis of obesity and obesity-related 
comorbidities through gut microbial, immunological, and 
metabolic markers in a large bariatric surgery cohort. All 
participants met the International Federation for the Surgery 
of Obesity and Metabolic guidelines of 2019: preoperative 
body mass index (BMI) ≥ 40 kg/m2 or BMI ≥ 35 kg/m2 
with at least one associated medical condition and age of 
18–65. All patients in this study underwent RYGB with a 

biliary limb length of 50 cm and alimentary limb of 150 cm. 
All steps of the study design including preoperative screen-
ing and procedural details of the operation are extensively 
reported in the published design of the BARIA Longitudinal 
Cohort Study [11]. Patients in the BARIA study undergo 
repetitive measurements within a follow-up of ten years. 
Two of the measurements consist of plasma and fecal sam-
ple collection, before surgery and one year after surgery. 
Furthermore, in the context of outpatient clinical care in 
the Spaarne Gasthuis Hoofddorp, all patients were asked to 
complete the Gastrointestinal Quality of Life Index (GIQLI) 
questionnaire before and annually after surgery. All subjects 
from the BARIA cohort who had completed their 2-year 
follow-up at time of screening and filled out the GIQLI ques-
tionnaires were approached for this study. In total, 67 par-
ticipants were included. Study protocols were approved by 
the Ethical Review Board of the Academic Medical Center, 
Amsterdam (approval code: NL55755.018.15), and all 
patients provided written informed consent. All study pro-
cedures were in accordance with the declaration of Helsinki.

Questionnaires

In order to measure GI symptoms in relation to RYGB, the 
commonly used and validated GIQLI Questionnaire was 
used [12]. This questionnaire consists of 36 questions from 
5 different domains: core symptoms, disease-specific items, 
physical items, psychological items, and social items. A par-
ticipant could score 0–4 points per question, and a total score 
of 0–144 points across the entire questionnaire. The lower 
the GIQLI score, the worse the GI quality of life. Based on 
previous research, the cutoff for a low GIQLI score in this 
study was 126 points [13, 14]. A total score of ≥ 126 was 
considered a high GIQLI score. Subsequently, the preop-
erative score was subtracted from the postoperative score 
to assess the delta in GIQLI score. A person with a delta of 
0 or higher was considered having less symptoms, whereas 
someone with a negative delta was considered having more 
symptoms after surgery. Finally, the assessment of diarrhea 
or obstipation was performed by specific questions from 
the GIQLI questionnaire (2 regarding diarrhea, 1 regard-
ing obstipation). The cut-off to consider a patient having 
diarrhea or obstipation was ≤ 4 and ≤ 2 points respectively.

In addition, all participants filled out an online nutritional 
diary (https:// mijn. voedi ngsce ntrum. nl) to monitor daily 
caloric intake during the 3 days prior to every study visit in 
order to calculate daily average amount of consumed carbo-
hydrates, fat, protein, and fiber.

Gut Microbiota Sampling Methods

Participants were instructed to collect a fecal sample on 
the day of surgery (baseline) and on the day of the 1-year 
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follow-up visit. The complete collection procedure is 
described elsewhere [15]. In brief, subjects were given a 
stool collection tube for transport and were asked to bring 
the sample to the study site within 6 hours after production 
and collection. If the sample was collected in the evening, 
subjects were instructed to keep the stool sample in their 
−20°C freezer overnight and to bring it on frozen icepacks 
to the research unit the next morning. Fecal samples were 
stored on site at −80°C.

Fecal total genomic DNA isolation was performed as pre-
viously described [16]. Genomic DNA was extracted from 
fecal samples by bead beating using a modified version of 
the IHMS DNA extraction protocol Q as described previ-
ously [17]. Fecal samples were dispersed in Lysing Matrix 
E tubes (MP Biomedicals) containing ASL buffer (Qiagen). 
Lysis was obtained after homogenization by vortexing for 
2 minutes, by two cycles of heating at 90°C for 10 min-
utes followed by 3 bursts of bead beating at 5.5 m  s−1 for 
60 seconds in a FastPrep-24 instrument (MP Biomedicals). 
After each bead-beating burst, samples were placed on ice 
for 5 minutes. The supernatant containing the fecal DNA 
was collected after each bead-beating cycle by centrifuging 
at 4°C. Supernatants from the two centrifugation steps were 
pooled, and a 600-μL aliquot from each sample was purified 
using the QIAamp DNA Mini kit (QIAGEN) in the QIAcube 
instrument (QIAGEN) using the procedure for human DNA 
analysis. Samples were eluted in 200 μL of AE buffer (10 
mM Tris-Cl, 0.5 mM EDTA, pH 9.0).

Gut Microbiota Sequencing Methods

Libraries for shotgun metagenomic sequencing were pre-
pared by a PCR-free method; library preparation and 
sequencing were performed at Novogene (Cambridge, UK) 
on a HiSeq instrument (Illumina) with 150-bp paired-end 
reads and 6 G data per sample.

Fecal Microbiome Composition Analysis

The sequence classification algorithm of the Kraken 
pipeline [18] was used for preprocessing of raw shotgun 
metagenomics sequence data. Kraken is an ultrafast and 
highly accurate program for assigning taxonomic labels to 
metagenomic DNA sequences, which maps reads to refer-
ence databases, combines output from several sequencing 
runs, and manipulates tables of read counts. Quality-filtered 
reads were mapped to a genome catalog and gene catalog. 
After sequencing, raw reads were quality filtered including 
the removal of human reads using the Kneaddata tool (v. 
0.10.0) with default settings (https:// bitbu cket. org/ bioba 
kery/ knead data). Taxonomy was assigned on pairs of high-
quality reads using Kraken2 with the paired option [19] and 
the UHGG database v. 2.0 [20]. Bracken v. 2.6.2 was used 

throughout for species level classification [21]. The resulting 
data from these pipelines were processed using R (v. 4.0.2) 
in the RStudio IDE (v. 1.3.1093). Alpha diversity indices 
were computed and visualized using the phyloseq (v. 1.34.0) 
[22], vegan (v. 2.5), and ggplot2 [23] packages, and beta 
diversity was computed using Bray Curtis dissimilarity dis-
tances between samples.

Statistical Analysis

This study concerns two primary outcomes. First, the rela-
tion between microbial composition (pre- and postsurgery) 
and postsurgery GIQLI score. Second, the relation between 
microbial composition and the change in GIQLI score upon 
surgery. As secondary outcome, a logistic regression was 
performed between the 10 most predictive species (based on 
machine learning) and dichotomized postoperative GIQLI 
score, corrected for baseline GIQLI score. Furthermore, 
linear regression was performed between the decrease in 
GIQLI score upon surgery in patients with a delta GIQLI of 
≤ −10 (N = 21) and the 10 species that were most predictive 
for a decrease in GIQLI score postsurgery.

Univariate Analyses

Unless stated otherwise, R Studio v. 4.0.3 was used to per-
form all statistical analyses described below. Differences in 
clinical variables were compared between the baseline and 
the 1-year follow-up visit. Furthermore, clinical character-
istics of participants’ 1-year postsurgery were compared 
between the “high” and the “low GIQLI score” group and 
the “more” versus the “less symptoms” group. Data were 
tested with paired or unpaired T-test or Mann-Whitney U 
test, depending on Gaussian distribution. Pearson’s chi-
square test was used to test for differences in sex and medi-
cation use between both groups. A p-value < 0.05 was con-
sidered significant.

Machine Learning

An extremely randomized tree machine learning algorithm 
was applied to predict the class of a subject based on their 
baseline and one year follow-up microbiome data. Machine 
learning was implemented in Python (v. 3.8.5) using numpy 
(v. 1.16.4), pandas (v. 0.25.1), and scikit-learn (v. 0.21.2) 
packages. Three separate classification models were run. 
The first model was used to differentiate between baseline 
and 1 year postsurgery microbiota composition. The sec-
ond model was applied to identify a panel of gut microbiota 
that best predicted the dichotomized postoperative GIQLI 
scores, thus indicating whether a subject belonged to the 
“high” or “low GIQLI score” group. A final third model was 
run to identify a panel of gut microbiota that best predicted 
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whether a subject belonged to the “more symptoms” or “less 
symptoms” group after surgery. Gut microbiota were filtered 
prior to each simulation to reduce dimensionality. To find 
the microbiota that play a potential larger role, an abundance 
filter was applied to select the top 200 most abundant spe-
cies among all patients. Hereafter, a univariate feature selec-
tion was applied (SelectPercentile) to select the 50 features 
that were subsequently used in each simulation. The models 
were used in a nested cross-validation structure to prevent 
overfitting and to ensure robustness of results. The LeaveO-
neOut Cross-Validation method was applied, meaning that 
all samples except for one were used in the training set, and 
the one sample left out was used for testing. For hyperpa-
rameter tuning, a three-fold stratified shuffle split was used 
in which 80% was trained and 20% was cross-validated. The 
optimized model was then tested on the examples in the test 
set. The permutation feature importance was extracted from 
the model.

Results

Clinical Characteristics and GIQLI Score

In total, 67 participants were included in this study. All 
included patients underwent RYGB. Clinical characteristics 

at baseline and at the 1-year follow-up are presented in 
Table 1. One year after the RYGB surgery, as expected, a 
significant decrease in body weight, BMI, fat percentage, 
and metabolic parameters was observed (p < 0.001). The 
median GIQLI score was 121 [105–132] points before sur-
gery and 122 [108–128] points after surgery. Pre- versus 
postoperative GIQLI scores are depicted in Fig. 1. Finally, 
the groups did not differ in baseline macronutrient intake 
based on the food diaries (data not shown). Similarly at 
1-year post-surgery no differences were found between the 
GIQLI groups in dietary intake.

Preoperative versus Postoperative Microbiota 
Composition

Changes in the gut microbiota after RYGB are pre-
sented in Fig. 2. No differences in alpha diversity were 
observed (Fig. 2a). However, the beta diversity (Bray Curtis) 
was significantly affected by surgery (PERMANOVA p = 
0.0001, R2 = 3.15%, explained variance by first 2 PCo 8.0% 
and 6.1%) (Fig. 2b).

RYGB surgery induced significant changes in the abun-
dancies of several microbial groups. The machine learning 
model used to distinguish between the microbiota composi-
tion before and after surgery had an AUC of 0.95, indicat-
ing a very good discriminative ability between the pre- and 

Table 1  Characteristics of study 
subjects (N = 67)

Baseline characteristics presurgery versus 1 year postsurgery, tested with paired T-test or Mann-Whitney 
U test, based on Gaussian distribution. Pearson’s chi-square test had been performed to test for differences 
in medication use between both groups. Numerical values are expressed as means ± standard deviations or 
median (IQR) depending on Gaussian distribution. Values in bold indicate significant difference between 
baseline and 1-year postsurgery visit, p-value < 0.05
BMI body mass index, bpm beats per minute, HDLc high-density lipoprotein cholesterol, LDLc low-density 
lipoprotein cholesterol, TG triglycerides

Baseline visit (presurgery) 1-year postsurgery p-value

Age 47.88 (8.92) 48.88 (8.92) <0.001
Female, n= (%) 51 (76.1%) 51 (76.1%) 1.000
BMI 39.92 (4.13) 30.61 (3.83) <0.001
Body weight 127.22 (16.75) 91.54 (12.92) <0.001
Body fat (%) 46.0 (4.98) 29.27 (6.77) <0.001
Systolic blood pressure (mmHg) 133.8 (14.2) 122.3 (13.4) <0.001
Diastolic blood pressure (mmHg) 82.0 (9.8) 81.0 (7.8) <0.001
Heart rate (bpm) 75.4 (12.0) 74.7 (13.7) 0.8507
Total cholesterol (mmol/L) 4.7 [4.1–5.6] 4.4 [3.8–4.7] <0.001
HDLc (mmol/L) 1.2 [1.0–1.395] 1.5 [1.3–1.7] <0.001
LDLc (mmol/L) 3.0 [2.4–3.8] 2.5 [1.9–2.9] <0.001
Triglyceride (mmol/L) 1.4 [1.1–1.7] 1.0 [0.7–1.3] <0.001
Medication use, n= (%) 46 (68.7%) 28 (41.8%) 0.0802
Metformin 13 (19.4%) 5 (7.5%) <0.001
Proton pump inhibitor 20 (29.9%) 23 (34.3%) 0.0058
Anti-hypertensives 16 (23.9%) 11 (16.4%) <0.001
Statins 12 (17.9%) 9 (13.4%) <0.001
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postsurgery microbiota composition. Several Streptococ-
cus (including Streptococcus salivarius and Streptococcus 
mutans) and various Enterobacteriaceae were significantly 
increased 1 year after surgery. See Fig. 3 for the depiction of 
top 10 most predictive species and supplementary Figure S1 
for the top 4 most predictive species abundance per timepoint.

Clinical Characteristics in Low versus High GIQLI 
Score Group

Table 2 shows clinical characteristics one year after the 
RYGB surgery in people with low versus high GIQLI 

scores (a score < 126 was considered low, ≥ 126 was con-
sidered high). No differences in clinical demographics were 
observed between the groups.

Microbiota Composition in Low versus High GIQLI 
Score Group

Lists of the top 20 most predictive microbial species which 
indicate whether a person belonged to the “low” or “high 
GIQLI score” group after surgery are depicted in Fig. 4a, 
and the abundances of the top 4 most predictive species are 
depicted in supplementary Figure S2. A high score appears 
to be associated with a higher preoperative relative abun-
dance of species such as Coprococcus eutactus, Faecali-
bacterium prausnitzii, and Bacteroides fragilis (Fig. 5a). 
Logistic regression revealed a significant fit between dichot-
omized postsurgery GIQLI score (corrected for baseline 
GIQLI score) and Ruminococcus callidus, Agathobaculum 
butyriproducens, Eubacterium ventriosum, and Blautia wex-
lerae abundance presurgery, all of which were more enriched 
in the “high GIQLI score” group.

In line, postoperatively increased abundance of Bac-
teroides cellulosilyticus and various Blautia subspecies, 
including Blautia massiliensis, appears to be associated to 
a high GIQLI score, meaning fewer GI symptoms (Fig. 4b). 
Again, the abundance of the top 4 most predictive species 
is depicted in supplementary Fig. S3. The pre- and post-
operative machine learning model yielded an AUC of 0.77 
and 0.69 respectively, indicating a moderate discriminative 
ability of the model in regards to the “low” and “high GIQLI 
score” group. Logistic regression revealed a significant fit 
between dichotomized post-surgery GIQLI score (corrected 

Fig. 1  Baseline versus 1-year postsurgery GIQLI score. Cut-off for a 
“high” versus “low GIQLI score” was 126 points. Green: people with 
less symptoms after surgery compared to baseline. Blue: people with 
more symptoms after surgery compared to baseline

Fig. 2  Alpha diversity pre- versus postsurgery. A Shannon index 
(blue: baseline samples, green: post-surgery samples). No differ-
ence in alpha diversity was observed. B Principal coordinate analysis 
(PCoA) on beta-diversity (Bray Curtis dissimilarity) between baseline 
and 1-year post-surgery fecal microbiota (PERMANOVA p = 0.0001, 

R2 = 3.15%, explained variance by first 2 PCo 8.0% and 6.1%). Each 
point represents one sample from one participant (blue: baseline sam-
ples, green: postsurgery samples). Closeness of points represents sim-
ilarity of microbial composition
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for baseline GIQLI score) and Blautia (resp. massiliensis, 
sp000285855, and sp000436615) and Gemmiger qucibialis 
abundance postsurgery, all of which were more enriched in 
the “high GIQLI score” group.

Clinical Characteristics in More versus Less 
Gastrointestinal Symptoms Group

Table 3 shows the clinical characteristics one year after the 
RYGB surgery in people with more versus less GI symp-
toms as determined by their GIQLI score (a difference in 
score below 0 was considered more symptoms; an equal or 

increased score was considered less symptoms). No differ-
ences in clinical demographics were found between both 
groups.

Microbiota Composition in More versus Less 
Gastrointestinal Symptoms Group

The top 20 most predictive species indicating whether a person 
belonged to the “more symptoms” or “less symptoms” group 
are depicted in Fig. 5, and the abundance of the top 4 is given 
in supplementary Figures S4 and S5. Less symptoms appear to 
be associated with higher preoperative abundances of species 

Fig. 3  Relative feature importance of top 10 predictor species from 
gut microbiota composition for fecal microbiota composition pre- 
versus postsurgery. Relative importance is determined with respect to 

the most important predictor of the model, which was set to 100%. 
Predictor species were identified applying an extremely randomized 
trees classification model

Table 2  Characteristics of 
subjects one year after surgery 
with low versus high GIQLI 
scores

Characteristics of BARIA study subjects postsurgery with high versus low GIQLI scores. A score < 
126 points was considered low; a score ≥ 126 points was considered a high score. Data were tested with 
unpaired T-test or Mann-Whitney U test, based on Gaussian distribution. Pearson’s chi-square test had been 
performed to test for differences in sex and medication use between both groups. Numerical values are 
expressed as means ± standard deviations or median (IQR) depending on Gaussian distribution. No differ-
ences in characteristics were found between the groups
HbA1c hemoglobin A1c (glycated hemoglobin)

Low GIQLI score (N = 46) High GIQLI score (N = 21) p-value

Age 48.85 (8.85) 48.95 (9.30) 0.965
Female, n= (%) 37 (80.43%) 14 (66.67%) 0.359
BMI 28.20 (4.65) 27.25 (3.27) 0.399
Body fat (%) 30.21 (6.81) 27.13 (6.35) 0.103
Total weight loss (%) 34.76 (6.27) 33.60 (7.27) 0.533
Systolic blood pressure (mmHg) 121.85 (13.73) 123.19 (12.91) 0.707
Diastolic blood pressure (mmHg) 75.17 (7.68) 77.33 (7.99) 0.296
Heart rate (bpm) 75.91 (12.71) 72.19 (15.79) 0.307
Total cholesterol (mmol/L) 4.2 [3.6–4.7] 4.4 [3.9–4.8] 0.201
HDL cholesterol (mmol/L) 1.14 [1.10–1.60] 1.52 [1.45–1.91] 0.152
LDL cholesterol (mmol/L) 2.49 [1.79–2.98] 2.44 [2.1–2.75] 0.811
Triglyceride (mmol/L) 1.0 [0.71–1.45] 0.91 [0.64–1.12] 0.380
HbA1c (%) 5.34 (0.33) 5.42 (0.43) 0.409
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such as Lachnospira eligens, Ruminococcus faecicola, and 
Bacteroides fragilis, whereas Bifidobacterium ruminantium 
was more enriched in the “more symptoms” group (Fig. 5a).

Postoperative increased abundances of Bifidobacterium bifi-
dum, Enterococcus faecalis, and Blautia massiliensis appear 
to be associated with less symptoms, whereas Bacteroides 
caccae and Paraprevotella clara were more enriched in the 
“more symptoms” group (Fig. 5b). The pre- and postoperative 
machine learning model rendered an AUC of 0.83 and 0.78 
respectively, indicative of a good distinctive ability between 
the “more” and “less symptoms” group.

Linear regression revealed no significant association 
between decrease in GIQLI score (in patients with a delta 
GIQLI of ≤ −10) and the abundance of any of the top predic-
tor species depicted in Fig. 5.

Discussion

In this trial, we studied the effects of changes in the gut 
microbiota composition on GI symptoms after RYGB. We 
related the pre- and postsurgery microbiota to postoperative 

Fig. 4  Relative feature importance of top 20 predictor species from 
gut microbiota composition for fecal microbiota composition predict-
ing dichotomized GIQLI score (“low” versus “high GIQLI score”). 
All top species depicted were more enriched in the “high GIQLI 
score” group. Relative importance is determined with respect to the 

most important predictor of the model, which was set to 100%. Pre-
dictor species were identified applying an extremely randomized trees 
classification model. A Based on baseline microbiota composition. B 
Based on 1-year postsurgery microbiota composition

Fig. 5  Relative feature importance of top 20 predictor species from 
gut microbiota composition for fecal microbiota composition predict-
ing dichotomized GIQLI score (“more” versus “less GI symptoms”). 
Blue species are more enriched in the “less GI symptoms” groups; 
red are more enriched in the “more GI symptoms” group. Relative 

importance is determined with respect to the most important predic-
tor of the model, which was set to 100%. Predictor species were iden-
tified applying an extremely randomized trees classification model. A 
Based on baseline microbiota composition. B Based on 1-year post-
surgery microbiota composition
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GIQLI scores and the differences in GI symptoms pre- ver-
sus postsurgery. Hereby, we identified several pre- and post-
surgery bacterial species of which the abundance predicted 
postoperative GIQLI score.

We observed a significant beta diversity difference when 
comparing pre- and postsurgery fecal microbiota compo-
sitions. Especially striking was the significant increase 
postsurgery of various Streptococcus species, including 
Streptococcus salivarius and Streptococcus mutans, which 
are generally mainly abundant in the oral cavity and upper 
GI tract [24, 25] and of oral Prevotella species. Further-
more, the postsurgery microbiome appeared to be fitting a 
more dysbiotic profile, characterized by more Enterobacte-
riaceae and a greater beta diversity within the postsurgery 
sample group. These findings suggest that RYGB induces 
a shift of the gut microbiota composition characterized by 
an increase in abundance of common upper GI tract bacte-
ria. This increase might be caused by shorter transit time of 
bacteria through the gastric pouch, as well as the increased 
pH levels compared to the normal acidic stomach, leading 
to higher introduction rates of upper GI bacteria into the 
lower intestines [26, 27]. Stefura et al. observed an increase 
in abundance of the Bacteroidetes phylum, including Bacte-
roides and Odoribacter, in both the oral cavity and the large 
intestine 6 months after surgery among patients undergo-
ing bariatric surgery [26]. In a previous publication report-
ing on a prospective cohort study, they found that specific 
compositions of the microbiota of the oral cavity and large 
intestine 6 months after bariatric surgery were associated 
with weight-loss [28]. However, to our knowledge, no study 
has established a direct relation between alterations in the 

intestinal microbiota composition and the oral cavity micro-
biota in RYGB patients.

Next, we examined which microbial species were most 
predictive for the postoperative GIQLI score. In the group 
classified as having a “high GIQLI score,” we character-
ized a distinct presurgery microbiota signature typified 
by a higher abundance of species such as Coprococcus 
eutactus and Faecalibacterium prausnitzii, suggesting that 
these commensal butyrate producing species might have 
protective properties against postoperative GI malfunc-
tioning, possibly by enhancing intestinal barrier function 
[29, 30]. Ruminococcus callidus was also more abundant 
in people with a high GIQLI score. This species has previ-
ously been suggested to possess anti-inflammatory proper-
ties as it was found to be less abundant in patients with 
Parkinson’s disease [31]. Additionally, this fiber degrader 
is part of the same set of bacteria, including F. prausnitzii, 
that was found to be decreased in prediabetic children [32]. 
Possibly, a symbiotic interaction between R. callidus and 
F. prausnitzii could explain why these bacteria both appear 
to be protective. These findings combined suggest that 
increased baseline levels of the above-mentioned bacterial 
species could be beneficial in averting GI complaints after 
surgery. Postsurgery, we observed that the gut microbiota 
of people with high GIQLI scores encompassed more Bac-
teroides cellulosilyticus, which is capable of degrading 
various types of cellulose and sugars, hereby producing 
short-chain fatty acids and succinate [33]. Furthermore, 
various Blautia strains were more abundant in people with 
high GIQLI scores. RYGB commonly induces a decrease 
in Blautia abundance [34]; therefore, the retention of these 

Table 3  Characteristics of 
subjects postsurgery with more 
versus less GI symptoms

Characteristics of BARIA study subjects postsurgery with more versus less GI symptoms. A delta GIQLI 
score of < 0 was considered “more symptoms”; a score of ≥ 0 was considered “less symptoms”. Tested 
with unpaired T-test or Mann-Whitney U test, based on Gaussian distribution. Pearson’s chi-square test had 
been performed to test for differences in sex and medication use between both groups. Numerical values 
are expressed as means ± standard deviations or median (IQR) depending on Gaussian distribution. No dif-
ferences in characteristics were found between the groups

More symptoms (N = 35) Less symptoms (N = 32) p-value

Age 46.80 (9.43) 49.06 (8.32) 0.303
Female, n= (%) 27 (77.14%) 24 (75.00%) 1.00
BMI 28.46 (4.87) 27.29 (3.45) 0.267
Body fat (%) 30.10 (7.28) 28.21 (6.03) 0.289
Total weight loss (%) 35.02 (6.37) 33.71 (6.81) 0.420
Systolic blood pressure (mmHg) 122.86 (14.82) 121.62 (11.84) 0.710
Diastolic blood pressure (mmHg) 76.34 (8.32) 75.31 (7.25) 0.592
Heart rate (bpm) 75.94 (13.60) 73.44 (13.99) 0.460
Total cholesterol (mmol/L) 4.20 (3.60-4.70) 4.40 (3.90-4.85) 0.097
HDL cholesterol (mmol/L) 1.45 (1.08-1.59) 1.5 (1.40-2.02) 0.647
LDL cholesterol (mmol/L) 2.49 (1.78-2.95) 2.44 (2.05-2.80) 0.576
Triglyceride (mmol/L) 0.88 (0.70-1.19) 1.1 (0.75-1.57) 0.124
HbA1c (%) 5.38 (0.44) 5.34 (0.27) 0.657
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commensals postoperatively may be associated with a bet-
ter GI outcome.

With respect to the within-subject change in GI symp-
toms (delta GIQLI score), we found that species such as 
Lachnospira eligens, Ruminococcus faecicola, and Bacte-
roides fragilis were preoperatively more enriched in the par-
ticipants in the “less symptoms” group. Of these species, L. 
eligens was suggested to have beneficial effects on intestinal 
health in an extensive clinical trial on the modulatory effects 
of the Mediterranean diet [35]. In this study, L. eligens was 
positively associated with several markers of lower frailty 
and increased short/branched chain fatty acid production, 
and correlated negatively with inflammatory markers such as 
IL-2 and C-reactive protein. Bifidobacterium ruminantium 
and Bifidobacterium adolescentis were more enriched in the 
“more symptoms” group.

In contrast, after surgery, an increase in Bacteroides 
caccae was observed in the “less symptoms” group. 
This is a so-called bidirectionally functional strain, able 
to metabolize both mucus polysaccharides and dietary 
fiber [36]. Certain Eisenbergiella, Gemmiger, and Strep-
tococcus subspecies were more enriched in the “more 
symptoms” group. Intestinal bacterial overgrowth with 
Streptococcus has previously been observed after bari-
atric surgery [26, 37] and has been linked to abdominal 
infections [38].

Altogether, differences in GIQLI score were mostly 
explained by species such as Ruminococcus callidus and 
Ruminococcus faecicola, which have been suggested to 
be protective against inflammation since they were less 
abundant in patients with inflammatory bowel disease 
(IBD) and Parkinson’s disease [31, 39]. Furthermore, 
species associated with the fermentation of dietary fiber, 
such as Coprococcus eutactus, Faecalibacterium praus-
nitzii, and Bacteroides cellulosilyticus, may be favorable 
with regard to GI symptoms after surgery. It has to be 
noted that F. prausnitzii is not a very prominent digest-
ing fiber by itself, but in the presence of R. callidus, the 
abundance of F. prausnitzii increases with the intake of 
dietary fiber [40]. Higher production rates of acetate, 
propionate, and butyrate, end products of anaerobic fer-
mentation, may be indicative of a diminished accumu-
lation of intermediate fermentation products associated 
with gas formation, specifically  H2 and methane [41]. 
Finally, this study highlights that a preoperative micro-
bial disposition may exist to develop more GI symptoms 
after RYGB.

Our current study comprised exploratory analyses 
of a pre- and postbariatric surgery population, regard-
ing GI symptoms in relation to microbial composition. 
Its findings may contribute to future studies aimed at 
alleviating postoperative gastrointestinal discomfort. 
Based on our findings, dietary advice should be aimed 

at increasing the abundancy of Ruminococcus and Fae-
calibacterium species. Furthermore, pre- or probiotic 
supplementation can be considered to increase intes-
tinal fermentative capacity [42], especially in patients 
with a presurgery microbiome composition associated 
with an increased risk of GI symptoms. Our findings 
suggest a predominant role of the microbiome in the 
development of GI symptoms after RYGB. However, no 
direct causal relationship can be established from this 
study. Furthermore, future studies with sufficient power 
should also look into possible alterations in bacterial 
metagenomic functional pathways and include antibiotic 
resistance as outcome measure. To our knowledge, this 
is the first study applying machine learning to assess 
which microbiota can be linked to GI symptoms after 
RYGB. This was done in a large and well-phenotyped 
bariatric surgery cohort, allowing the researchers to 
study the microbiome at multiple timepoints and exam-
ine the effect of the surgery. Finally, the microbiome 
data was analyzed using shotgun sequencing, providing 
a robust and reproducible method for bacterial composi-
tion analysis [43].

This study also has certain limitations. First, the micro-
biome composition is cumbersome to study after bariatric 
surgery, due to the altered ecosystem that is introduced, 
leading to more dysbiosis and a highly dispersed microbi-
ome. We therefore also utilized the baseline microbiota data 
to identify a predisposition for development of symptoms 
postoperatively. Both prediction models rendered areas 
under the curve of 0.69 or higher, but did not show a high 
predictive value. However, it does show that the microbi-
ota contributes to some extent to post-surgery symptoms, 
although it does not explain the entire variance of these 
symptoms. Furthermore, this study involved GI symptoms 
which can be considered multifactorial, therefore the exact 
contribution of the microbiome to the GIQLI score cannot 
be derived from this study and will always be relative to a 
multiplicity of underlying factors including diet, medication 
and lifestyle. Nevertheless, all these factors also affect the 
microbiome, and therefore, microbiome improvement can 
be considered a relevant component of perioperative treat-
ment in RYGB patients.

With this study, we looked at the 1-year postoperative 
alterations in the microbiota after RYGB; we identified 
the most predictive species for postoperative GI symptoms 
score and for the postoperative increase or decrease of 
GI symptoms. Here, we identified predictors of either a 
beneficial GI score or a negative GI score. This distinction 
may be attributed to certain fermentative capacities or the 
production of either anti- or proinflammatory metabolites 
by the intestinal microbiota. Larger prospective cohort 
studies should include postbariatric surgery metabolomics 
profiles to confirm this.
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