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Abstract
Background Bariatric surgery is an effective treatment for morbid obesity and glycaemic dysfunction.
Objectives The aim of the work was to examine both the static and dynamic changes of glucose-insulin homeostasis and incretin
hormone response following sleeve gastrectomy (SG) in a sample of 55 participants preoperatively and 1 month and 6 months
postoperatively. The focus was on a sample of patients with impaired glucose tolerance and type 2 diabetes (T2D).
Setting Morriston Hospital, UK.
Methods Prospective study comprising of 55 participants with impaired glucose homeostasis and T2D undergoing SG (mean
body mass index [BMI] 50.4 kg/m2, mean glycated haemoglobin [A1C] 7.4%). Serial measurements of glucose, insulin, C-
peptide, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic hormone (GIP) were performed during oral
glucose tolerance testing preoperatively and 1 and 6 months postoperatively. Areas under the curve (AUC) were examined at
30, 60, and 120 min.
Results Weobserved significant improvements inmeasures of obesity, as well as static and dynamicmeasures of glucose, insulin,
C-peptide and HOMA. Furthermore, significant increases in GLP-1 response as early as 6months postoperatively were also seen.
Conclusions To our knowledge, no study has examined the detailed dynamic changes in glucose and insulin homeostasis in this
number of participants undergoing SG in relation to incretin hormones GIP and GLP-1. This current study supports the role of SG
for the treatment of obesity-related glucose dysregulation.
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Introduction

Obesity is associated with a number of co-morbidities in-
cluding diabetes, cardiovascular disease, hypertension and
osteoarthritis [1]. Increased rates of obesity contribute a
substantial financial burden, especially in the USA, where
obesity is associated with an additional annual medical

expenditure of $1900 per person. This equates to a national
excess healthcare expenditure of $150 billion for people
with obesity [2]. Bariatric surgery is an effective treatment
for morbid obesity and is associated with at least 80% re-
mission of impaired glucose tolerance (IGT) and type 2
diabetes (T2D) [3–7]. Bariatric procedures were tradition-
ally described as being restrictive, malabsorptive or a com-
bination of both. Sleeve gastrectomy (SG) has attracted con-
siderable surgical interest as it does not require intestinal
bypass or anastomosis and is considered less technically
challenging than other malabsorptive procedures.
Although SG is anatomically a restrictive procedure, its
mechanism of action is more complex. The SG procedure
requires the removal of gastric cells that produce orexigenic
hormones and may be associated with changes in incretin
hormones. These anatomical and physiological changes
may explain its superiority over other restrictive procedures
in the management of excess weight and impaired glucose
regulation [8, 9].
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Incretin hormones are associated with the metabolic out-
come of bariatric surgery [10, 11]. Of note, the incretin hor-
mones contribute between 50 and 70% of the total postpran-
dial insulin release, mainly through the actions of glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP) [12, 13]. SG, which involves removal of
the gastric fundus and body, results in an increased rate of
gastric emptying and subsequently more rapid contact of post-
prandial nutrients with the apical surface of the intestinal L
cells resulting in stimulation of GLP-1 release [14]. We have
previously published the findings of a small study examining
the postprandial temporal relationship of markers of glucose,
insulin and gut hormone homeostasis in 22 participants under-
going SG [15]. The study demonstrated significant early im-
provements in insulin sensitivity and incretin hormone re-
sponse, along with improvements in IGT/T2D [15].
Subsequently, other studies have reported on the association
between incretin hormones, glucose and insulin homeostasis;
however, patient numbers are small, and much of the focus
has been on other surgical techniques such as Roux-en-Y gas-
tric bypass (RYGB) [10, 16]. The specific aims of the current
study were to examine changes in glucose-insulin homeosta-
sis and incretin hormone response at 1 and 6months following
SG in an extended sample of 55 participants.

Methods

Recruitment

Approval for the study was obtained from the local research
ethics committee. Participants were identified and recruited
from those undergoing a planned bariatric surgical procedure.
This study was an extension of a previous study where 22
participants were recruited. The background details have been
previously been published [15]. Entry criteria at the outset
included the following: both genders, age 20–60 years, body
mass index (BMI) > 40 kg/m2 and physically fit for surgery.
Participants with pre-existing T2D treated with diet, oral
agents, GLP-1 analogues or insulin were included.
Participants with impaired glucose regulation were those with
either impaired fasting glycaemia (5.6–6.9 mmol/L) or im-
paired glucose tolerance (2-h glucose value between 7.8 and
11.0 mmol/L) were also included. All participants were re-
cruited within 1 month preoperatively and followed up post-
operatively at 1 and 6 months where they underwent a stan-
dardized 75-g oral glucose tolerance test (OGTT) (122-mL
Polycal 61.9 g/100-mL glucose, Nutricia Clinical Care,
Trowbridge, UK). All diabetes-related agents were omitted
for 24 h before the OGTT. There was no standardized meal
prescribed for the night before, and participants were asked to
fast from the midnight before the test. All participants with the
help of the research nurse completed a preoperative

questionnaire, and all clinical measurements were document-
ed during the visits. A total of 55 participants completed the
extension study.

Preoperative Clinical and Biochemical Information

As described previously [15], preoperative clinical measure-
ments consisted of weight, height, BMI, waist circumference
and systolic and diastolic blood pressure. Preoperative bio-
chemical measurements (total cholesterol, low-density lipo-
protein cholesterol [LDL-C], high-density lipoprotein choles-
terol [HDL-C] and triglycerides) were analysed within the
local hospital accredited laboratory. During the OGTT, plasma
and serum samples were collected for measurements of glu-
cose, insulin, C-peptide, GLP-1 and GIP at time 0, 15, 30, 45,
60 and 120 min. All samples were collected on ice, centri-
fuged and separated within 1 h of collection and subsequently
stored at − 80 °C until analysis.

Measurement of Glucose, Insulin, C-Peptide
and Estimation/Calculation of Insulin Sensitivity and β
Cell Function

Glucose was measured using a Randox Daytona-plus Clinical
Chemistry analyser, via a colorimetric glucose oxidase meth-
od, with an analytical sensitivity of 0.02 mmol/L and a dy-
namic range of 0.02-250 mmol/L. The inter-assay coefficient
of variation was ≤ 7.1%.

Insulin was measured using an Invitron Insulin ELISA kit,
with an analytical sensitivity of 0.02 mU/L and a dynamic
range of 0.02–250 mU/L. The inter-assay coefficient of vari-
ation was ≤ 7.1%. No high-dose hook effect was observed at
insulin concentrations up to 20,000 mU/L. Cross-reactivities
(CR) of related proteins were as follows: 1.2% with intact
proinsulin and 0% with C-peptide.

C-peptide was measured with an Invitron C-peptide kit,
with an analytical sensitivity of 5.0 pmol/L and a dynamic
range of 5.0–5000 pmol/L. No high-dose hook effect was
observed at C-peptide concentrations up to 30,000 pmol/L.
There is 2% cross-reactivity with intact proinsulin but no-
cross-reactivity with insulin.

Insulin sensitivity and β cell function were calculated using
the HOMA-2 calculator, utilizing measurements of fasting glu-
cose and insulin concentrations. These were calculated by using
the Oxford University online calculator (https://www.dtu.ox.ac.
uk/homacalculator/; accessed 01 June 2015). HOMA provides
three measures: HOMA-%B (estimated steady state β cell
function), HOMA-%S (insulin sensitivity) and HOMA-IR (insu-
lin resistance). Thesemeasures have been validated and shown to
correlate with clamp-derived studies [17].

For calculating early-phase (ΔI0–30/ΔG0–30) and late-
phase (ΔI60–120/ΔG60–120) insulin response, published
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formulas using insulin and glucose values obtained during
OGTT time points were used [18, 19].

Measurement of Total GLP-1 and Total GIP

Total GLP-1 was quantitatively measured using the EMD
Millipore Total GLP-1 ELISA Kit. The antibody pair used in
this assay measures GLP-1 (7–36) and (9–36) and has no
significant cross-reactivity with GLP-2, GIP, glucagon or
oxyntomodulin. The sensitivity of this assay is 1.5 pmol/L,
and the approximate range is 4.1–1000 pmol/L. The intra- and
inter-assay coefficients of variation were ≤ 2% and ≤ 12%,
respectively. Total GIP was measured using the EMD
Millipore Human GIP (total) ELISA Kit, which reacts fully
with intact GIP (1–42) and the NH2-terminally truncated me-
tabolite GIP (3–42). The assay does not significantly cross-
react with glucagon, oxyntomodulin, GLP-1 or GLP-2. The
sensitivity of this assay is 4.2 pg/mL, with an assay range of
4.2–2000 pg/mL. The intra- and inter-assay coefficients of
variation were ≤ 8.8% and ≤ 6.1%, respectively.

Statistical Analysis

Statistical analysis was performed using Statistical Package
for the Social Sciences (SPSS, Version 22). All results for
continuous variables are presented as median and interquartile
range (IQR) as none were normal distributed and in graphical
representation as mean and standard error. Differences be-
tween preoperative and postoperative measurements at 1 and
6 months were compared using a Wilcoxon signed-rank test.
Paired t tests were used to compare differences at individual
time points during the OGTT between preoperative and 1 and
6 months. Area under the curve (AUC) over 30 min (AUC0–

30), 60min (AUC0–60) and 120min (AUC0–120) were analysed

during the OGTT at preoperative, and 1 and 6 months using
the trapezoidal rule. In all cases, a P value below 0.05 was
considered statistically significant.

Results

Participant Characteristics

A total of 55 participants (31 females and 24 males) who
underwent SG completed the study, with a mean age of 46
± 8 years. The preoperative characteristics along with the
changes in anthropometric and clinical measures are summa-
rized in Table 1. Significant reductions were observed at 1 and
6 months following SG in relation to measures of obesity and
plasma triglyceride levels. There was also a significant in-
crease in HDL cholesterol.

Static and Dynamic Changes in Glucose-Insulin
Homeostasis Following SG

Tables 2 and 3 show the postoperative changes in the static
and dynamic measures relating to glucose, insulin, C-peptide
and HOMA. As seen in Table 2, at 1 and 6 months following
SG, significant reductions were observed in glycaemic mea-
surements (A1C, fasting and 2-h plasma glucose). Of partic-
ular note, A1C had improved markedly by 6 months falling
below the diagnostic cut-off. Consistent with a reduction in
insulin resistance, there were also significant improvements in
fasting insulin and fasting C-peptide levels. In line with these
observations, there were significant improvements of approx-
imately 50% in markers of insulin resistance (HOMA-IR) and
insulin sensitivity (HOMA-%S).

Table 1 Baseline preoperative and postoperative characteristics of the study sample

Measurement Preoperative 1 month P value* 6 months P value†

Weight (kg) 146.4 [129–171] 129.8 [107–144] < 0.001 114.2 [102–124] < 0.001

BMI (kg/m2) 50.5 [45.0–54.0] 44.4 [38.0–49.2] < 0.001 38.2 [34.1–41.9] < 0.001

Waist (cm) 140 [127–152] 124 [114–142] < 0.001 116 [107–128] < 0.001

Systolic BP (mmHg) 126 [115–134] 120 [111–133] 0.044 120 [112–136] 0.117

Diastolic BP (mmHg) 74 [68–83] 75 [67–79] 0.097 75 [65–79] 0.053

Cholesterol (mmol/L) 4.3 [3.5–5.0] 4.0 [3.3–4.9] 0.820 4.3 [3.8–5.2] 0.124

LDL (mmol/L) 2.2 [1.8–2.9] 2.2 [1.7–3.1] 0.237 2.6 [2.0–3.3] 0.027

HDL (mmol/L) 1.1 [0.9–1.3] 1.0 [0.9–1.2] 0.002 1.2 [1.0–1.4] < 0.001

Triglyceride (mmol/L) 1.5 [1.1–2.4] 1.4 [1.1–1.9] 0.102 1.2 [0.9–1.6] 0.002

Median and interquartile ranges shown
*P value comparing preoperative with 1 month

†P value comparing preoperative with 6 months

Significant values are in bold. BMI = body mass index. BP = blood pressure. LDL = low-density lipoproteins. HDL = high-density lipoproteins
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Significant changes were observed in both the early-
phase (ΔI0–30/ΔG0–30) and late-phase (ΔI60–120/ΔG60–

120) insulin release at 1 and 6 months postoperatively
(Table 3). Significant reductions were observed in the
AUC for glucose and C-peptide (Fig. 1a and c) and
an increase in the AUC for insulin. This effect was
observed at both AUC0–30 and AUC0–60, consistent with
an improved early-phase insulin release following SG at
1 month and 6 months (Fig. 1b).

Static and Dynamic Changes in Incretin Hormone
Response Following SG

As shown in Table 4, there were no significant differences in
the static levels of both GLP-1 and GIP measured at any of the
visits. As expected, no changes were observed in fasting GLP-
1 as this is an incretin hormone, which changes in relation to a
nutrient load. Of note, the static 2-h GLP-1 levels increased at
1 and 6 months (P values of 0.067 and 0.060 respectively).

Table 2 Preoperative and postoperative static changes in glycaemic measures

Measurement Preoperative 1 month P value* 6 months P value†

A1C (mmol/mol) 57.0 [46.0–89.3] 46.0 [38.5–56.0] < 0.001 40.0 [36.0–49.0] < 0.001

A1C (%) 7.4 [6.4–10.3] 6.3 [5.6–7.3] < 0.001 5.8 [5.4–6.6] < 0.001

Fasting glucose (mmol/L) 7.1 [5.9–11.7] 5.6 [4.6–6.8] < 0.001 5.2 [4.5–5.8] < 0.001

2-h glucose (mmol/L) 13.4 [9.2–18.4] 8.8 [5.2–12.7] < 0.001 5.8 [4.2–9.4] < 0.001

Fasting insulin (mU/L) 21.8 [13.7–29.5] 12.0 [8.9–19.3] < 0.001 9.0 [5.4–14.1] < 0.001

2-h insulin (mU/L) 52.8 [27.4–102.4] 47.1 [27.7–122.6] 0.210 29.7 [16.2–56.9] 0.010

Fasting C-peptide (pmol/mL) 4.0 [3.5–5.2] 3.6 [2.7–4.8] 0.002 2.8 [2.0–3.9] < 0.001

2-h C-peptide (pmol/mL) 8.7 [6.5–11.2] 10.0 [7.7–12.5] 0.058 8.7 [5.9–11.5] 0.868

HOMA-IR 3.1 [1.9–4.1] 1.6 [1.2–2.6] < 0.001 1.3 [0.8–1.9] < 0.001

HOMA-%B 90.1 [36.2–131.6] 110.0 [73.0–147.0] 0.343 99.5 [81.0–150.2] 0.288

HOMA-%S 32.4 [24.5–52.3] 62.3 [39.0–81.7] < 0.001 75.5 [52.3–121.0] < 0.001

Median and interquartile ranges shown
*P value comparing preoperative with 1 month
†P value comparing preoperative with 6 months

Significant values are in bold. A1C = glycated haemoglobin. HOMA-IR = homeostatic model assessment insulin resistance. HOMA-%S = homeostatic
model assessment insulin sensitivity. HOMA-%B = homeostatic model assessment β cell function

Table 3 Preoperative and postoperative dynamic changes in glycaemic measures

Preoperative 1 month P value* 6 months P value†

Early Phase (ΔI0–30/ΔG0–30) 5.3 [1.8–13.0] 10.0 [5.9–16.3] 0.172 11.9 [5.9–17.4] < 0.01

Late Phase (ΔI60–120/ΔG60–120) 3.6 [−0.5–12.4] 13.5 [5.0–21.3] 0.157 11.6 [4.8–21.3] < 0.01

AUC0–30

Glucose (mmol h L−1) 4.6 [3.7–7.0] 4.2 [3.6–5.1] 0.154 4.0 [3.4–4.4] < 0.001

Insulin (mU h L−1) 16.6 [10.0–25.4] 23.0 [13.7–33.7] 0.002 17.5 [14.4–30.1] 0.005

C-peptide (pmol h mL−1) 2.5 [1.9–3.1] 3.0 [2.5–3.7] < 0.001 2.4 [2.0–3.4] 0.020

AUC0–60

Glucose (mmol h L−1) 11.3 [9.1–17.0] 10.2 [8.7–12.6] 0.066 9.0 [7.7–11.8] < 0.001

Insulin (mU h L−1) 46.9 [27.8–74.3] 69.8 [42.8–92.5] 0.001 61.0 [37.6–90.7] 0.005

C-peptide (pmol h mL−1) 6.1 [4.6–7.8] 7.5 [6.6–9.6] < 0.001 6.5 [5.3–9.0] < 0.001

AUC0–120

Glucose (mmol h L−1) 24.3 [19.1–36.4] 19.8 [17.3–25.7] 0.002 17.3 [14.6–24.9] < 0.001

Insulin (mU h L−1) 99.6 [60.1–197.8] 154.9 [99.8–202.9] 0.029 117.6 [75.6–204.9] 0.129

C-peptide (pmol h mL−1) 13.9 [11.1–18.8] 18.5 [15.5–22.9] < 0.001 15.9 [12.2–20.6] 0.001

Median and interquartile ranges shown
*P value comparing preoperative with 1 month
†P value comparing preoperative with 6 months

Significant values are in bold. AUC = area under the curve
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However, as shown in Table 4 and Fig. 2 a, the AUC (AUC0–

30, AUC0–60 and AUC0–120) for GLP-1 was significantly
greater at 1 and 6 months postoperatively. Of interest early
changes in the AUC were observed for GIP, but these effects
were not maintained at 6 months (Table 4, Fig. 2b).

Discussion

This study conducted in 55 participants demonstrates that SG is
an effective procedure to improve glucose-insulin homeostasis in
patients with impaired glucose regulation and T2D. Significant
improvements were observed in measures of obesity, as well as
static and dynamic measures of glucose, insulin, C-peptide and
HOMA. Furthermore, significant increases in GLP-1 response as
early as 6 months postoperatively were also seen.

Previously published studies include samples with a small
number of participants and furthermore lack detailed analysis
of dynamic measures of insulin-glucose homeostasis and
incretin hormones conducted during an OGTT. This current
study has examined these effects in 55 participants with de-
tailed follow-up. In line with previous studies in smaller sam-
ples, we observed significant improvement in glucose

homeostasis, with decreases in A1C, fasting and 2-h glucose
[20–23]. In addition, we observed significant improvements
in measures of insulin resistance and insulin sensitivity as
measured by HOMA-IR and HOMA-%S at both 1 and
6 months postoperatively. This is also reflected in the dynamic
measures for glucose-insulin homeostasis, with significant
changes in the AUC analysis for glucose, insulin and C-pep-
tide. Gill et al. examined the effect of SG on participants with
T2D, reporting after a mean follow-up of 13.1 months, with
26.9% showing improvements in glycaemic control, and a
mean reduction of −1.7% (−18.0 mmol/mol) in A1C [24,
25]. The beneficial effects of SG on glucose homeostasis were
also reported in improvements of A1C across multiple studies
6 months postoperatively, with reductions in A1C by 2.5%
[26] and 1.6% [27]. However, a comparable A1C reduction
of 1.6% was seen in a cohort with T2D and a substantially
lower baseline BMI of 27.7 kg/m2 [28], indicating diabetes
remission is weight independent.

As expected, within this study, fasting GLP-1 levels
showed no change postoperatively. This is not surprising as
GLP-1 is an incretin hormone, with its release being nutrient
dependent. A significant increase in the postprandial GLP-1
response was observed postoperatively [15], a finding

Fig. 1 Changes in a glucose, b insulin and c C-peptide, during the 2-h oral glucose tolerance test (OGTT). Mean and standard error are shown. Mins =
minutes
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supported by a recent meta-analysis byMcCarty et al. looking
at 11 studies totalling n = 168 participants [29]. Sista et al.
report significant increase of 1.1 pg/mL in dynamic GLP-1
levels, 6 months postoperatively. Metabolic profiles also alter
post Roux-en-Y gastric bypass (RYGB), with increased GLP-
1 levels and an early exaggerated insulin response [30, 31].
Several studies have reported an association between gut hor-
mone levels, in particular GLP-1, and improvements in insulin
secretion. This relationship is shown to be independent of
weight loss and neurohormonal changes seen to also be ob-
served post-SG in association with early-phase insulin release
[32, 33]. Of interest, we observed decreases in GIP levels
(non-significant) postoperatively, which has previously been
observed by McCarty et al. during their meta-analysis of two
studies that totalling n = 30 participants that measured GIP

hormone levels before and after SG [29]. Previous publica-
tions have suggested that a primary role for GIP in the post-
prandial state may be to stimulate insulin secretion [34]. We
hypothesize that the glycaemic changes seen post-SG are due
to both GIP and GLP-1 s incretin action to normalize blood
glucose levels via increased insulin synthesis and improved
peripheral insulin sensitivity. Of interest, a recent publication
by Kim et al. suggested that even though there is a substan-
tially increase in intestinally derived GLP-1 following SG, it is
the pancreatic α cell-derived peptides that are necessary for
the surgery-induced improvements in glucose homeostasis
[35]. However, these studies were conducted in a murinemod-
el, so the paracrine action of GLP-1 could play a more impor-
tant role in mice than in humans but could be an alternative
avenue of investigation in human participants in the future.

Table 4 Preoperative and postoperative static and dynamic changes in incretin hormones

Measurement Preoperative 1 month P value* 6 months P value†

Fasting GLP-1 (pmol/L) 1.77 [1.1–4.2] 1.70 [0.4–5.2] 0.354 1.13 [0.6–4.5] 0.195

2-h GLP-1 (pmol/L) 1.49 [0.8–3.8] 3.91 [1.3–6.7] 0.067 2.48 [1.3–7.0] 0.060

Fasting GIP (pg/mL) 69.2 [48.0–123.3] 60.8 [40.9–86.8] 0.583 58.8 [35.1–87.0] 0.555

2-h GIP (pg/mL) 215.8 [156.7–348.7] 196.1 [127.2–276.6] 0.990 206.0 [125.6–281.4] 0.377

AUC0–30

GLP-1 (pmol h L−1) 1.5 [0.9–2.7] 4.2 [2.3–5.9] < 0.001 3.6 [2.1–7.0] < 0.001

GIP (pg h mL−1) 163.3 [105.5–245.3] 154.0 [126.2–250.5] 0.013 150.2 [118.8–237.5] 0.272

AUC0–60

GLP-1 (pmol h L−1) 3.2 [1.9–5.9] 9.6 [5.3–13.9] < 0.001 8.2 [4.2–13.6] < 0.001

GIP (pg h mL−1) 363.8 [252.4–550.3] 362.6 [282.7–610.4] 0.010 363.1 [273.5–582.2] 0.214

AUC0–120

GLP-1 (pmol h L−1) 5.1 [3.2–10.6] 14.8 [8.8–24.7] < 0.001 13.5 [6.4–22.3] < 0.001

GIP (pg h mL−1) 710.2 [499.5–1043.5] 685.5 [525.3–1092.1] 0.049 711.6 [508.3–998.0] 0.717

Median and interquartile ranges shown
*P value comparing preoperative with 1 month
†P value comparing preoperative with 6 months

Significant values are in bold. AUC = area under the curve. GLP-1 = glucagon-like peptide-1. GIP = glucose-dependent insulinotropic hormone

Fig. 2 Changes in a glucagon-like peptide-1 (GLP-1) and b glucose-dependent insulinotropic hormone (GIP) during the 2-h oral glucose tolerance test
(OGTT). Mean and standard error are shown. Mins =minutes
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Limitations

There are limitations to the current study. First was the study
design, which was a non-randomized prospective study and as
such had no control group. Additionally, we did not plan at the
outset to measure other gut hormones such as ghrelin or neu-
ropeptide Y.

Conclusion

To our knowledge, no study has examined the detailed dy-
namic changes in glucose and insulin homeostasis in this
number of participants undergoing SG in relation to incretin
hormones GIP and GLP-1. SG is becoming more popular as
the operation of choice in the field of bariatric surgery and is
associated with early postoperative discharge from hospital,
lower rates of associated complications and nutrient deficien-
cies. It is now clear that the early improvement in glycaemic
control is associated with early changes in GLP-1 physiology,
improved insulin-glucose homeostasis and improvements in
insulin sensitivity. The current study adds to the available
evidence supporting SG as a stand-alone procedure for the
management of obesity-related glucose dysregulation.
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