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Abstract
The volatile and olfactory profiles of three Portuguese olive oils with protected designations of origin (PDO) were studied: 
“Azeite do Alentejo Interior”, “Azeites da Beira Interior”, and “Azeite de Trás-os-Montes”. Seven classes of volatiles were 
identified, with aldehydes, followed by hydrocarbons and alcohols, the most prevalent (5.63, 2.92, and 2.79 mg/kg olive 
oil, respectively). The “Azeites da Beira Interior” oils exhibited the highest amount of volatiles (18.2 ± 4.6 mg/kg olive oil) 
compared to the oils from the other two PDOs. Ten positive olfactory sensations were detected, and a significant effect of 
the PDO on the intensities of fruity, apple, cabbage, tomato, dry and fresh herbs was observed. Specifically, “Azeite do 
Alentejo Interior” PDO oils were characterized as fruity-ripe, while “Azeite de Trás-os-Montes” PDO oils were labelled as 
fruity-green. Conversely, “Azeites da Beira Interior” PDO oils encompassed both fruity-ripe and fruity-green oils. Unique 
volatile and olfactory fingerprints were established for each PDO, allowing the linear discrimination of the oils according to 
the PDO, with a predictive sensitivity of 98.0 ± 4.2% (repeated K-fold-CV). Furthermore, a lab-made electronic nose success-
fully discriminated the studied oils based on the PDO, with a predictive accuracy of 99.7 ± 2.0% (repeated K-fold-CV). This 
device also allowed predicting the concentrations of the three main volatile classes found in the oils through multiple linear 
regression models (R2 ≥ 0.923 ± 0.101 and RMSE ≤ 1.32 ± 0.72 mg/kg oil; repeated K-fold-CV). These findings underscore 
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the potential of the electronic nose as a reliable traceability tool to authenticate the PDO declaration of Portuguese olive oils, 
and broaden its use beyond non-PDO oils from a specific geographical area to encompass a national scale.

Graphical abstract
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Introduction

Consumer awareness of quality and health consciousness 
is pushing the olive oil industry toward a market that meets 
consumers’ preferences. This trend has led to the adoption 
of assurance schemes, such as the Protected Designation 
of Origin (PDO) certification, as effective tools for distin-
guishing extra-virgin olive oils (EVOOs) originating from 
the Euro-Mediterranean region [1]. In today’s context, 
ensuring the accuracy of the PDO label is crucial for the 
olive oil market and its associated economic activities [2]. 
However, the registration of PDOs often hinges more on 
defined geographic boundaries determined by administrative 
aspects rather than objective chemical and sensory data [3]. 
Consequently, validating the authenticity of PDO oils poses 
a significant challenge for both producers and certification 
bodies, with misidentification arisen due to variations within 
the PDO category. This variability arises because oils bear-
ing the same PDO designation can be extracted from olives 
of different cultivars and in varying relative proportions [4].

The challenge in clearly delineating specific boundaries 
for PDO makes  the use of physico-chemical data of the 
target olive oils essential for both the administration and 
PDO councils to support their justifications for approving or 
rejecting new PDOs [3]. Several analytical techniques (e.g., 
high resolution melting analysis, evaporative ionization 

mass spectrometry, laser induced breakdown spectroscopy, 
LC–MS and GC–MS multi-class methods, and NMR) have 
been proposed to verify the authenticity of olive oil PDO 
labels, namely PDO versus non-PDO oils [2, 4–8]. Despite 
the effectiveness of the techniques mentioned earlier and 
their successful application in analysing PDO olive oils, 
some of them have drawbacks. They can be invasive or 
destructive, requiring pre-treatment of samples and the use 
of non-environmentally friendly solvents. Additionally, these 
techniques tend to be not portable, expensive and require 
skilled technicians to operate, making them challenging for 
in-situ implementation.

As a result, there has been an effort to develop eco-
friendly, cost-efficient, user-friendly, and non-destructive 
alternatives like, for example, the use of sensor devices, 
particularly electronic noses (E-noses), for analysing olive 
oil. E-noses, combined with other E-senses devices, have 
been applied to assess the physico-chemical-sensory qual-
ity of olive oil and evaluate their shelf life [9, 10]. They 
have proven effective in discriminating the geographical 
provenance of EVOO [11–13]. Furthermore, E-noses have 
been successful in monitoring the oxidation of olive oils 
by tracking the concentration of oxidative volatile markers 
and assessing the influence of filtration systems on the vola-
tile profiles of olive oils [14]. On a sensory level, E-noses 
have been used to predict fruity aroma intensity [15, 16], 
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detect olfactory defects [15], and differentiate flavoured and 
unflavoured olive oils [17]. Regarding PDO olive oils, to 
the best of the authors’ knowledge, only one study [18] has 
mentioned the use of an artificial nose, either independently 
or in conjunction with NIR and UV–Vis spectroscopy, to 
characterize PDO Chianti Classico olive oil and distinguish 
it from olive oils originating from other Italian PDO regions.

In this context, the primary objective was to establish, for 
the first time, the specific volatile chemical classes present 
in olive oils from three distinct Portuguese PDO regions: 
“Azeite do Alentejo Interior”, “Azeites da Beira Interior”, 
and “Azeite de Trás-os-Montes”. Additionally, the study 
aimed to assess the intensity of major olfactory sensations. 
The broader goal encompassed investigating whether data 
on volatile compounds and olfactory attributes could serve 
as potential markers for PDO classification, considering the 
acknowledged within-region variation in PDO olive oils due 
to the different olive cultivars and their relative proportions 
used for producing oils eligible for the same PDO certifi-
cation. Lastly, the study set out to assess the feasibility of 
employing a custom-designed E-nose, comprising metal 
oxide semiconductor (MOS) sensors, to effectively identify 
oils based on their PDO classification as well as to quantify 
the volatiles’ concentrations of the oils.

Materials and methods

Olive oil samples

Commercial olive oils with PDO declarations of “Azeite do 
Alentejo Interior”, “Azeites da Beira Interior”, and “Azeite 
de Trás-os-Montes” were obtained from certified olive oil 
producers within each of the referred geographical regions. 
During the sample selection process, the aim was to ensure 
the representativeness of the sampled olive oils with regard 
to the country’s overall production area. This considera-
tion went beyond merely accounting for the volume of oil 
produced, extending to encompass certified PDO brands 
prevalent in the market. Portugal’s olive oil production is 
predominantly clustered in three distinct regions, ranked 
in decreasing order of significance as Alentejo, Trás-os-
Montes and lastly Beira Interior. To capture this diversity, 
one PDO from each of these regions was chosen for the 
study. Specifically, for Alentejo, emphasis was placed on 
selecting the PDO that is linked to the largest production 
area, boasting a substantial volume of both oil produc-
tion and certification—namely, “Azeite do Alentejo Inte-
rior.” In the case of the other two regions, where only one 
PDO exists per region, the representatives were “Azeite de 
Trás-os-Montes” and “Azeites da Beira Interior”. Accord-
ing to the producers, all selected samples were extracted 
in the 2021 campaign. After acquisition, the samples were 

coded, stored at room temperature, and protected from light 
exposure until analysis. From each region, 10 independent 
oils were studied, being acquired three 500 mL bottles for 
each one. Taking into account the legal regulation [19], 
the “Azeite do Alentejo Interior” PDO olive oils must be 
extracted from olives of cvs. Galega Vulgar (≥ 60%), Cor-
dovil de Serpa and/or Cobrançosa (≤ 40%), although olives 
from other cultivars may be included (≤ 5%). The “Azeites 
da Beira Interior” PDO olive oils must be obtained from cvs. 
Galega, Verdeal Transmontana, Cobrançosa and Cordovil 
[20]. Finally, the “Azeite de Trás-os-Montes” PDO olive 
oils can be extracted from olives of cvs. Verdeal Transmon-
tana, Cobrançosa, Madural, Cordovil, Santulhana, Borreira, 
Redondil, Negrinha, Carrasquenha, Bical, Lentisca and other 
varieties in smaller percentages [21]. In all the Portuguese 
PDO’s olive oils, foreign olive cultivars are not permitted.

Volatile characterization by HS–SPME–GC–MS

The volatile fraction of the olive oils was analysed using 
headspace solid-phase microextraction (HS-SPME) coupled 
with gas-chromatography-mass spectrometry (GC-MS). A 
fiber made of divinylbenzene/carbonex/polydimethylsilox-
ane (DVB/CAR/PDMS, 50/30 µm) from Supelco (Belle-
fonte, USA), was used. The GC-MS analysis was performed 
using a Shimadzu GC-2010 Plus chromatographer equipped 
with a Shimadzu GC-MS-QP2010 SE detector [22]. In 
50 mL vials, 3 g of olive oil were spiked with 5 µL of an 
internal standard solution (4-methyl-2-pentanol, 98% from 
Sigma Aldrich) with a concentration of 0.127 mg/mL, being 
allowed the volatiles to be adsorbed onto the SPME fiber. 
The vials were conditioned at 40 °C for 5 min to effectively 
release the volatile compounds. Following this, the SPME 
fiber was exposed for 30 min at 50 °C, allowing for the 
adsorption of volatile compounds present in the headspace, 
while the samples were kept under agitation (350 rpm). 
A total of 60 chromatographic assays were conducted 
(3 PDOs × 10 bottles × 2 extractions × 1 injection). The 
peaks’ separation was achieved using a TRB-5MS column 
(30 m × 0.25 mm × 0.25 µm) from Teknokroma (Spain). The 
injector temperature was set at 220 °C, and manual injec-
tions were performed in splitless mode. Helium (Alphagaz 
from Air Liquide, Portugal) was used as the mobile phase at 
a linear velocity of 30 cm/s and a total flow of 24.4 mL/min. 
The oven temperature gradient was as follows: 40 °C/1 min; 
2 °C/min until 220 °C (30 min). The ionization source was 
maintained at 250 °C with an ionization energy of 70 elec-
tronvolts and an ionization current of 0.1 kilovolts. All mass 
spectra were acquired by electron ionization, and the spectral 
fragments were identified by comparison with the NIST 11 
Library (National Institute of Standards and Technology, 
Gaithersburg, MD, USA) and commercial standards. The 
chromatographic peak areas were determined by integrating 
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the re-constructed chromatogram from the full scan chro-
matogram using the ion base (m/z intensity 100%) for each 
compound. For identification purposes, the minimum simi-
larity percentage was set equal to 85%. For semi-quantifica-
tion, the amounts of the identified volatiles were calculated 
by the ratio of each base ion peak area to the area of the 
internal standard base ion peak area, without considering the 
response factors, and converted to mass equivalents based 
on the mass of the internal standard used.

Olive oil olfactory analysis

The evaluation of olive oil’s olfactory sensations was per-
formed by eight trained panellists (comprising 3 men and 5 
women), along with the panel leader, within the age range 
of 30–58. The sensory panel followed the methodologies 
outlined in the European Union standard methods [23–25]. 
The perceived intensity of olfactory sensations was graded 
using an unstructured continuous scale ranging from 0 (no 
perceived sensory sensation) to 10 (maximum perceived 
intensity). While gustatory sensations were also evaluated, 
the related data were not exploited in the present study.

E‑nose analysis

The E-nose used in this study was the same previously cus-
tom-designed and assembled within the research group’s 
laboratory, and described in detail by Teixeira et al. [16, 
26]. In brief, the device comprises a heated sampling unit 
(28 °C) and a heated multi-sensor detection array placed in 
a chamber with controlled temperature (35 °C). The head-
space gas phase from the sampling unit was delivered to 
the detection chamber using a diaphragm vacuum air pump 
(model SC3502PM, SKOOCOM, China). To ensure cleanli-
ness of the system and sensors, ambient air was continuously 
flowed until a stable baseline was achieved. The in-house 
E-nose apparatus incorporated nine commercial metal oxide 
semiconductor (MOS) sensors (Table 1), whose electrical 
characteristics were sensitive to adsorption phenomena tak-
ing place on the sensors’ surface when exposed to volatile 
compounds.

The sensor responses, measured in electrical resistance 
(ohms, Ω), were recorded using an Agilent data acquisition 

unit (model 34970A), controlled through Agilent BenchLink 
Data Logger software.

For the analysis, 0.5 mL of each olive oil sample were 
pipetted into a 25 mL glass vial, which was then placed 
inside the sampling chamber at 28 °C (temperature recom-
mended by the International Olive Council for sensory anal-
ysis of olive oils) during 13-min, allowing generate a volatile 
fraction representative of the sample. Simultaneously, the 
E-nose system underwent a 13-min cleaning process using 
an air flow, which allowed achieving a stable signal base-
line. Subsequently, the gas headspace from each sample 
was directed into the detection chamber, where it interacted 
with the MOS sensors for 2.5 min. The resistance signals 
of each of the nine MOS sensors were recorded by a data 
logger at 4-s intervals. For each olive oil analysis, a total of 
37 resistance values were gathered from each sensor during 
the volatile-sensor interaction time-period. Thus, for each 
independent olive oil under study, an initial matrix of order 
(37 × 9) was generated and recorded by the software and 
then exported as an Excel file (37 lines corresponding to the 
resistance values recorded by each sensor during the 2.5 min 
at a 4-s interval; and, 9 columns corresponding to the sig-
nals generated by the 9 MOS sensors included in the E-nose 
device). Seven distinct feature-extraction methods were 
applied [27] to the initial data matrix: the last response point 
(LP), the integral of the response curve (INT, calculated 
using the 1/3 composed Simpson’s numerical integration 
rule), the maximum response point (MAX), the minimum 
response point (MIN), the sum of the response curve (SUM), 
the mean of the response curve (MEAN), and the standard 
deviation of the response curve (SD). Each feature-extrac-
tion method was applied to the initial data matrix (resistance 
response curve generated during the volatile-sensor inter-
action period), allowing obtaining a single pre-processed 
output signal per applied method and sensor for each one of 
the 30 independent PDO olive oils. So, a new data matrix of 
order (30 × 63) was obtained with 30 lines corresponding to 
the 30 independent PDO olive oils analysed and 63 columns 
(9 sensors × 7 feature extraction methods) corresponding to 
the average of the feature-extracted outputs of duplicate 
E-nose assays. This latter matrix was then used as the input 
data matrix for the statistical qualitative and quantitative 
analysis of the E-nose data.

Table 1  Target gases of the 
commercial MOS sensors 
integrated into the lab-
manufactured E-nose

Target gases Commercial sensor code (sensor code)

General air contaminants TGS 2600 B00 (S1) and TGS 2602 (S2)
Butane, liquid petroleum gases TGS 2610 C00 (S3) and TGS 2610 D00 (S5)
Methane, natural gas TGS 2611 C00 (S4) and TGS 2611 E00 (S6)
Methane, propane, iso-butane TGS 2612 (S7)
Ammonia TGS 826 A00 (S8)
Organic solvent vapours TGS 823 C12N (S9)
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Statistical analysis

The study employed a One-way Analysis of Variance 
(ANOVA) and, when appropriate, followed by Tukey’s post-
hoc multi-comparison test, to assess statistical significant 
differences in the main volatile classes and olfactory sensa-
tions among the studied olive oils of the three studied PDOs. 
In cases where a volatile/olfactory sensation was detected/
perceived in only two of the three PDOs, the t Student test 
was applied. Patter recognition multivariate techniques, 
both unsupervised (principal component analysis, PCA) and 
supervised (linear discriminant analysis, LDA), were applied 
based on volatile-olfactory data (matrix of order (30 × 17), 
corresponding the number of lines to the 30 independent 
PDO olive oils and the columns to the 17 volatile-olfac-
tory parameters) and on the pre-processed signal profiles 
obtained from the lab-made E-nose-MOS device (matrix 
of order (30 × 63), corresponding to the 30 oils and the 63 
pre-processed signals per oil). As previously mentioned, in 
the latter case, the dataset resulted from the application of 
seven feature-extraction methods to the initial resistance 
dataset recorded during the volatile-sensor interaction time-
period, totalling 63 pre-processed signals for each sample 
(9 MOS × 7 different feature extractions) [28]. LDA was 
implemented with the simulated annealing (SA) algorithm 
to select optimum subsets of non-redundant variables (vol-
atile-olfactory data) or pre-processed signals (E-nose) that 
provided the best classification performance. This evaluation 
was conducted using two internal cross-validation (CV) vari-
ants: leave-one-out CV (LOO–CV) and repeated K-fold-CV 
(4 folds × 10 repeats), allowing this latter variant to use 25% 
of the dataset for validation (i.e., 2–3 olive oils from each 
of the three regions considered), being used at each itera-
tion the other 75% of the data for training purposes. The 
classification performances were assessed through the sen-
sitivity (i.e., the percentage of correctly classified samples), 
2D plots for the first two primary discriminant functions 
(DFs), and respective class membership ellipses computed 
by Bayes’ theorem [29]. The SA algorithm is a local search 
meta-heuristic optimization technique with inherent proba-
bilistic and stochastic characteristics. It employs a random 
search engine, namely the Markov chain, to navigate away 
from local optima. Embracing suboptimal solutions, the 
algorithm facilitates the identification of the best solution 
or global minimum within a predetermined random search 
region. This is achieved through Monte Carlo simulations 
guided by a predefined probability schedule. In the context 
of the LDA-SA approach, the algorithm effectively selects 
the minimum number of non-redundant variables from either 
the 17 volatile-olfactory parameters or the 63 pre-processed 
E-nose signals. These variables enabled the construction of 
multivariate classification models. Various subsets of vari-
ables were systematically tested, encompassing 2 to 16 or 2 

to 25 selected independent variables, depending on the data-
set. For the former dataset, the maximum number of vari-
ables included in the classification models was constrained 
by the availability of only 17 independent volatile-olfactory 
parameters. In the latter case involving E-nose signals, the 
maximum number was constrained by the degrees of free-
dom, calculated based on the total number of independent 
olive oils (30) and the number of groups (3 PDOs). A total 
of 15 classification models were established using the vol-
atile-olfactory dataset, while 24 classification models were 
developed based on the E-nose pre-processed signals. In 
each case, the model exhibiting the highest classification 
performance (i.e., greater sensitivity) and with the minimum 
number of variables was selected. Finally, the use of the 
E-nose to quantitatively estimate the concentration of the 
main volatile classes detected on the olive oils was evaluated 
by implementing multiple linear regression models (MLRM) 
based on subsets comprising 2 to 25 feature extracted vari-
ables (i.e., pre-processed E-nose signals), selected by the 
SA algorithm. The predictive performance of the developed 
models was assessed from the determination coefficients 
 (R2) and the root mean square errors (RMSE). The open-
source statistical program R (version 3.6.2) was used for 
the analysis, at a 5% significance level. For the LDA-SA 
approach, the function ldaHmat() was used to compute total 
and between-group matrices of sums of squares and cross-
product deviations, generating matrices that were used as 
input to the anneal() variable selection search routine. These 
functions are available within the subselect package. The 
MLRM-SA procedure was computed by implementing the 
lmHmat() function that computes, in linear regression, total 
effect matrices of sums of squares and cross-product devia-
tions, divided by a normalizing constant. As for the previous 
classification approach, the generated matrices can be used 
as input to the anneal() variable selection search routine.

Results and discussion

Volatiles and olfactory sensations of the studied 
PDO olive oils

The olive oil samples collected for this study comprised 
10 distinct independent oils belonging to three (“Azeite do 
Alentejo Interior”, “Azeites da Beira Interior” and “Azeite de 
Trás-os-Montes”) of the six Portuguese PDO oils, sourced 
from various certified producers. The physicochemical qual-
ity of the oils was assessed to verify the compliance with 
the EU regulations for EVOO classification [30], as well 
as the specific requirements outlined by each PDO declara-
tion, namely “Azeite do Alentejo Interior” [19], “Azeites 
da Beira Interior” [20], and “Azeite de Trás-os-Montes” 
[21]. The assessment included the evaluation of the free 
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acidity, peroxide value, and extinction coefficients at 232 
and 268 nm. The findings revealed that all oils under inves-
tigation met both the PDO stipulations and the legal thresh-
olds established by EU regulations for EVOOs (data not 
presented). Moreover, the sensory panel noted no negative 
sensory perceptions, and all oils exhibited a fruity sensation 
with an intensity greater than zero.

In the PDO oils under study, different volatile com-
pounds, totalling 28 distinct compounds, were identified by 
HS-SPME-GC-MS. Particularly, considerable variability 
was observed in both the number and relative abundance 
of the identified compounds across different oils within 
each region and among the three regions investigated. This 
intra- and inter-region variability may be attributed to sev-
eral factors. Firstly, adherence to legal specifications allows 
for the production of each PDO oil using olives from vari-
ous cultivars and at differing proportions. Secondly, varia-
tions could arise from the distinct origins of the olive oils 
within each demarcated geographical region, originating 
from different producers, extracted from different batches 
of olives at varying ripening stages, and utilizing different 
malaxation conditions (e.g., time and temperature). Overall, 

the identified volatiles could be grouped into seven chemi-
cal classes, namely, alcohols, aldehydes, carboxylic acids, 
esters, hydrocarbons, ketones, and terpenes. On the other 
hand, ten different olfactory sensations were perceived 
by the trained panellists, in the studied oils (fruity green, 
fruity ripe, apple, banana, cabbage, dry fruits, dry herbs, 
fresh herbs, tomato, tomato branches), at different intensi-
ties, showing both intra- and inter-region variabilities, being 
only five of them perceived in oils from the three demarcated 
regions. The high intra-region variability for each PDO oil 
can be tentatively explained by the same reasons previously 
discussed. The mean contents (± standard deviation) of the 
seven volatile chemical classes of the identified volatiles 
are presented in Table 2. Additionally, the mean intensities 
(± standard deviation) of the ten different olfactory sensa-
tions perceived in the olive oils studied are listed according 
to each type of PDO oil.

The analysis (Table 2) reveals that the specific geo-
graphic region under study significantly impacted the 
intensities of the perceived olfactory sensations, as indi-
cated by the statistical significance (P-value < 0.05), more 
so than the contents of the volatile chemical classes. In 

Table 2  Concentrations of 
the volatile chemical classes 
(mean ± standard deviation, 
mg of compound/kg of olive 
oil, as internal standard 
equivalents) and intensities 
of the perceived olfactory 
sensations (mean ± standard 
deviation, using an unstructured 
continuous scale from 0 to 10)

n.d. not detected/perceived in the analysis
* Different lowercase letters in the same row mean a statistical significant effect (P-value < 0.05) of the PDO 
on the olive oil content of a specific volatile class or on the intensity of the olfactory sensation perceived 
by the sensory panel (when olive oils from two PDO are compared the t-Student test is applied; when olive 
oils from three PDO are compared the one-way ANOVA followed by the Tukey’s test is performed)

Parameter PDO olive oils P-value*

“Azeite do 
Alentejo Inte-
rior”

“Azeites da Beira Interior” “Azeite de Trás-
os-Montes”

Volatile chemical classes
 Alcohols 2.70 ± 2.32a 3.58 ± 0.88a 2.10 ± 0.42a 0.0922
 Aldehydes 6.15 ± 2.96a 5.19 ± 2.38a 5.56 ± 1.74a 0.6710
 Carboxylic acids 0.010 ± 0.012a 0.021 ± 0.012a 0.013 ± 0.011a 0.1360
 Esters 0.10 ± 0.07a 3.07 ± 5.53a 1.09 ± 0.70a 0.1300
 Hydrocarbons 2.64 ± 1.12b 4.49 ± 1.80a 1.64 ± 1.27b 0.0005
 Ketones 0.54 ± 0.25a 0.84 ± 0.41a 0.58 ± 0.25a 0.0891
 Terpenes 1.13 ± 0.44a 1.05 ± 0.56a 0.87 ± 0.27a 0.4170
 Total 13.3 ± 4.8b 18.2 ± 4.6a 11.9 ± 1.9b 0.0034

Olfactory sensations
 Fruity ripe 7.55 ± 0.41a 2.05 ± 2.85b n.d  < 0.0001
 Fruity green n.d 1.23 ± 1.18b 4.27 ± 1.32a  < 0.0001
 Apple 4.76 ± 0.59a 4.01 ± 0.72b 4.08 ± 0.58ab 0.0229
 Banana 0.49 ± 1.56a 2.07 ± 2.09a 1.28 ± 1.70a 0.1670
 Cabbage n.d 0.38 ± 0.65b 4.27 ± 1.64a  < 0.0001
 Dry fruits 3.81 ± 0.80a 3.01 ± 0.68a 3.23 ± 0.71a 0.0569
 Dry herbs 4.27 ± 0.84a 1.10 ± 1.47b n.d  < 0.0001
 Fresh herbs n.d 1.73 ± 1.59b 3.16 ± 1.57a 0.0294
 Tomato 1.37 ± 2.25b 2.27 ± 1.68ab 3.51 ± 0.93a 0.0317
 Tomato branches n.d 1.48 ± 2.06a 1.84 ± 1.37a 0.6465
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fact, the results indicate that each PDO oil has a charac-
teristic olfactory fingerprint that may be used as an origin 
marker. It is important to note, however, that the consid-
erable variability observed within each PDO regarding 
volatile compounds might have hinder the region signifi-
cant effect. Recently, Rodrigues et al. [13] highlighted the 
significant influence of geographical origin on the content 
of volatiles and on the intensities of positive olfactory sen-
sations perceived in non-PDO olive oils from two neigh-
bouring Portuguese regions, namely the Côa and Douro 
Valleys, located in the northeast part of Portugal.

In terms of volatile compounds, the most abundant 
chemical classes were aldehydes, followed by hydrocar-
bons and alcohols (with total mean contents for all oils 
at 5.63, 2.92, and 2.79 mg/kg of olive oil, respectively). 
Rodrigues et al. [13] also found that aldehydes and alco-
hols were the predominant chemical classes in non-PDO 
Portuguese olive oils from the Côa and Douro Valleys. In 
the present study, carboxylic acids constituted the least 
abundant volatile chemical class (with total mean content 
for all oils at 0.015 mg/kg of olive oil). Only for terpe-
nes a significant statistical effect of the PDO was found 
(P-value < 0.05), with “Azeites da Beira Interior” oils 
being richer in terpenes compared to oils from “Azeite 
do Alentejo Interior” or “Azeite de Trás-os-Montes.” 
Also, “Azeites da Beira Interior” oils had a significantly 
greater concentration (P-value < 0.05) of total volatiles 
(18.2 ± 4.6 mg/kg olive oil) than oils from the other two 
PDOs.

Concerning the olfactory profile (Table 2), it is worth 
highlighting that only oils from “Azeite do Alentejo Inte-
rior” were classified as “fruity ripe,” while the other oils 
were categorized as “fruity green”, with the “Azeite de 
Trás-os-Montes” oils exhibiting the highest intensities for 
this latter sensation. Specifically, “Azeite do Alentejo Inte-
rior” oils displayed significantly higher intensities of apple 
and dry herb sensations. “Azeite de Trás-os-Montes” oils 
exhibited greater intensities of apple, cabbage, fresh herb, 
and tomato sensations.

The literature has established that several chemical 
compounds are responsible for specific sensory descriptors 
perceived in olive oils [31–36]. For instance, the percep-
tion of “green” is linked to alcohols, aldehydes, esters, and 
terpenes, while the “apple” sensation is associated with 
aldehyde and ester contents. Additionally, the “banana” 
sensation is correlated with several alcohols and esters. In 
this study, a significant correlation was observed between 
the total mean contents of “alcohols and esters” and the 
perceived intensities of the banana sensation (R-Pear-
son =  + 0.9095). Nonetheless, it is important to emphasize 
that non-volatile compounds, such as phenolic compounds, 
also play a role in influencing the aroma descriptors of 
olive oils [37].

Unsupervised and supervised differentiation of PDO 
olive oils according to the demarcated geographical 
region based on the volatile‑olfactory profiles

Taking into account that the contents of the seven volatile 
chemical classes quantified by HS-SPME-GC-MS and, in 
particular, the intensities of the ten positive olfactory sensa-
tions perceived by the sensory panel in the studied olives 
oils differed according to the type of PDO, a PCA was 
implemented in order to assess if the volatile-olfactory data 
could be used as possible markers for geographical origin. 
A similar strategy, showed that olfactory profiles could be 
successfully applied for distinguishing non-PDO Portuguese 
olives oils [13].

The 2D-PCA plots demonstrate that the volatile-olfactory 
data (comprising 7 volatile chemical classes and 10 olfac-
tory sensations, as outlined in Table 2) effectively distin-
guished among the three PDO oil types (Fig. 1). The oils 
from the “Azeite do Alentejo Interior” and “Azeite de Trás-
os-Montes” regions exhibited distinct olfactory profiles, 
with the oils from “Azeites da Beira Interior” being overall 
richer in total volatile compounds. However, it is notewor-
thy that oils within each PDO exhibited noticeable disper-
sion, particularly pronounced in “Azeites da Beira Interior” 
oils, resulting in some overlap with the other two PDO oil 
types. The higher variability observed in the oils from the 
“Azeites da Beira Interior” region can be ascribed to the 
larger geographical coverage of Beira Interior compared to 
the other two regions being investigated, which can be even 
divided into two distinct sub-regions. Notably, no overlaps 
were observed between the oils from “Azeite do Alentejo 
Interior” and “Azeite de Trás-os-Montes”, which are also 
the two geographically more distant regions.

In order to better evaluate the classification performance, a 
LDA-SA technique was applied. The SA algorithm allowed to 
identify the 12 most discriminant variables among the 17 used 
in the unsupervised analysis. The selected variables included 
four volatile chemical classes (carboxylic acids, alcohols, alde-
hydes, and hydrocarbons) and eight positive olfactory sensa-
tions (fruity ripe, apple, banana, tomato, dry fruits, cabbage, 
fresh herbs, and tomato branches). A linear discriminant model 
with two DFs (explaining, respectively, 90.2 and 9.8% of the 
data variance) was established, allowing the correct classi-
fication of all the oils according to the respective PDO for 
the training (Fig. 2) and the LOO-CV procedure (100% of 
sensitivity and specificity). The repeated K-fold-CV internal 
validation variant, with 4 folds and 10 repeats, was applied 
to further evaluate the predictive classification performance. 
In this approach, 25% of the dataset, randomly selected, was 
left for validation during each repeat. This included 2–3 oils 
from each PDO, totalling 7–8 oils out of the 30 oils from the 
three regions under study. The results showcased an overall 
sensitivity of 98.0 ± 4.8%. Across the 300 validation runs (10 
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repeats × 30 oils), only four “Azeites da Beira Interior” oils 
were misclassified as “Azeite do Alentejo Interior” oils, along 
with one “Azeite de Trás-os-Montes” oil misclassified as a 
“Azeites da Beira Interior” oil. These findings confirm the 
viability of utilizing volatile and olfactory data as biomarkers 
to determine the geographic origin of EVOOs, aligning with 
previous literature [38–42]. Moreover, this study extends the 
applicability of the volatile-olfactory approach to PDO oils, 
specifically from Portugal. The results also highlighted dis-
tinct volatile-olfactory profiles of the studied PDO oils, despite 
the occasional administrative emphasis on registering PDOs 
mainly linked to demarcations of geographic areas, often over-
looking the importance of an objective chemical-sensory basis 
[3].

However, it should be remarked that the successful dis-
crimination achieved require resource-intensive and costly 
techniques, performed by well-trained technicians or expert 
panellists. Implementing these methodologies in real-time 
or on-site settings is challenging. Hence, investigating rapid 
and cost-effective analytical alternatives for non-invasive 
and direct analysis is imperative to ensure the accurate label-
ling of PDO oils.

Discrimination of PDO olive oils according 
to the demarcated geographical region using 
a lab‑made E‑nose

Numerous research studies have documented the effec-
tive utilization of E-noses in evaluating the quality grade, 

Fig. 1  PCA analysis (biplot) differentiation of PDO olive oils accord-
ing to the demarcated geographical origin: “Azeite do Alentejo Inte-
rior” (Green filled dot); “Azeites da Beira Interior” (Brown filled tri-

angle); or, “Azeite de Trás-os-Montes” (Blue filled square). A PC1 
versus PC2; B PC1 versus PC3 (Color figure online)
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Fig. 2  Supervised discrimination of EVOOs according to the PDO, 
based on a LDA-SA model established using 12 selected volatile-
olfactory variables (volatile contents of carboxylic acids, alcohols, 
aldehydes, and hydrocarbons classes and intensities of fruity ripe, 
apple, banana, tomato, dry fruits, cabbage, fresh herbs, and tomato 
branches olfactory sensations): “Azeite do Alentejo Interior” (Green 
filled dot); “Azeites da Beira Interior” (Brown filled triangle); or, 
“Azeite de Trás-os-Montes” (Blue filled square) (Color figure online)
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detecting adulteration, identifying geographical origins, or 
authenticating Italian PDO olive oil [11, 13, 16, 18, 43–45]. 
This research endeavoured, for the first time, to employ a 
custom-made E-nose in distinguishing three Portuguese 
PDO olive oils: “Azeite do Alentejo Interior”, “Azeites da 
Beira Interior”, and “Azeite de Trás-os-Montes”. The raw 
resistance signals from the nine MOS sensors were recorded 
by the device. Subsequently, these profiles underwent pre-
processing using seven feature extraction methods, namely, 
LP, INT, MAX, MIN, SUM, MEAN, and SD resulting in a 
total of 63 processed signals for each independent oil sample 
(9 MOS sensors × 7 feature extraction techniques).

The LDA coupled with the SA algorithm allowed estab-
lishing a supervised classification model based on 16 treated 
signals from eight MOS sensors (S1_LP, S8_LP, S1_INT, 
S2_INT, S3_INT, S3_MAX, S6_MAX, S8_MAX, S1_MIN, 
S5_MIN, S8_MIN, S8_SUM, S9_SUM, S2_MEAN, S9_
MEAN and S4_SD), with two DFs that explained 100% 
of the data variability. The MOS sensors S1 and S2 (TGS 
2600 and TGS 2602 commercial sensors, respectively) were 
previously been reported for assessing the quality grade or 
geographical origin of EVOOs [46]. The model allowed 
the correct discrimination of all studied olive oils’ samples 
(100% sensitivity and specificity) for both original grouped 
data (Fig. 3) and LOO-CV variant.

The findings underscore an enhanced recognition accu-
racy of the three studied Portuguese PDO olive oils in com-
parison to the discrimination capabilities of the same E-nose 
apparatus, previously documented by Rodrigues et al. [13] 
for non-PDO olive oils originating from two neighbouring 
Portuguese regions (achieving a sensitivity and specificity 
of 98.5% and 98.4%, respectively, for the LOO-CV vari-
ant). Given the potential for overoptimistic results with the 
LOO-CV variant, a more robust internal validation approach 
was considered. This differed from the prior approach taken 
by the research team in analysing non-PDO Portuguese 
oils [13]. Specifically, the repeated K-fold-CV variant was 
applied (4 folds × 10 repeats), where a greater number of 
independent samples were reserved for validation in each 
run compared to the single sample in LOO-CV. This ranged 
from 7 to 8 independent samples, each validation set con-
sisting of at least 2 distinct oils, for each of the three PDOs 
under investigation. For this CV variant, a mean sensitivity 
of 99.7 ± 2.0% (varying from 87.5 to 100%) was obtained, 
corresponding to only one PDO olive oil of “Azeites da 
Beira Interior” misclassified as “Azeite de Trás-os-Montes” 
oil. Lastly, it should be mentioned that the predictive classifi-
cation performance is slightly better than that achieved with 
the volatile-olfactory approach, showing that the E-nose 
device could be used as a complementary or even alternative 
method to verify the three Portuguese PDO claims. It should 
also be mentioned that the PDO’s discrimination predic-
tive performances achieved with the proposed multivariate 

classification model (based on the 16 selected E-nose pre-
processed signals) are comparable to those previously 
reported by Forina et al. [18]. These researchers used a lab-
made artificial nose (headspace mass spectrometer), being 
able to establish classification LDA models (based on 8 to 20 
parameters selected using the heuristic stepwise algorithm) 
that correctly classified 92.3 to 100% of the samples when 
discriminating between two Italian PDO olive oils. Addi-
tionally, the predictive classification performances achieved 
with the E-nose-LDA-SA approach proposed in the present 
study (LOO-CV: 100%; repeated K-fold-CV: 99.7 ± 2.0%) 
are similar or slightly superior to those reported in literature 
when using, for example, rapid evaporative ionization mass 
spectrometry (failure percentage greater than 5%) [4], or 
GC–MS sesquiterpene hydrocarbon fingerprints (average 
sensitivity of 93.6%) [8].

The study also assessed the potential application of the 
E-nose as a tool for quantifying concentrations of total vola-
tiles and the three predominant chemical classes (alcohols, 
aldehydes, and hydrocarbons). A recent study demonstrated 
the ability to quantify volatiles in non-PDO Portuguese 
olive oils using MLRMs based on E-nose signal profiles 
[13]. However, in that study, the multivariate models were 
only validated using the LOO-CV method and required 
splitting oils by geographical origin, posing a limitation for 
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Fig. 3  E-nose-MOS-LDA-SA model performance regarding the 
supervised discrimination (original grouped data) of EVOOs accord-
ing to the PDO: “Azeite do Alentejo Interior” (Green filled dot); 
“Azeites da Beira Interior” (Brown filled triangle); or, “Azeite de 
Trás-os-Montes” (Blue filled square) (Color figure online)
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practical use. In this study, the repeated K-fold-CV vari-
ant was employed to evaluate the predictive quantification 
potential of E-nose-based models. A single model was con-
structed for each volatile chemical class and for the total 
volatiles using data from all oils, irrespective of PDO dec-
laration. Details regarding the established MLRMs and two 
common statistical regression metrics, i.e., the determination 
coefficients and the root mean square errors, are presented 
in Table 3.

The findings indicate that the E-nose-MLRMs developed 
can reliably estimate concentrations of the three main vola-
tile chemical classes (alcohols, aldehydes, and hydrocar-
bons) identified in the studied PDO olive oils, along with 
the total volatile contents (0.923 ± 0.101 ≤ R2 ≤ 0.981 ± 0.0
18 and 0.29 ± 014 ≤ RMSE ≤ 1.32 ± 0.72 mg/kg oil, for the 
repeated K-fold-CV). Figure 4 corroborates the overall sat-
isfactory predictive accuracy achieved (repeated K-fold-CV 
variant), underscoring the viability of the proposed E-nose-
chemometric approach not only as a qualitative but also a 
quantitative tool for analysing Portuguese PDO olive oils. 
Indeed, individual regression lines were established to cor-
relate predicted concentrations for each volatile class or the 
overall volatiles using E-nose-MLRMs, with concentrations 
determined by HS–SPME–GC–MS technique. These regres-
sion lines showed satisfactory fitting, as evidenced by R2 val-
ues ranging from 0.900 to 0.971. The slope values, closely 
approximating one (ranging from 0.946 to 1.032), indicated 

a nearly perfect fitting. Moreover, the intercept values were 
statistically equal to zero (ranging from -0.121 to 0.510), 
aligning with the theoretical intercept value for a perfect fit.

Conclusions

The study revealed distinct volatile (in terms of the amount 
of the five main chemical classes) and olfactory profiles 
in the three Portuguese PDO olive oils studied, namely 
“Azeite do Alentejo Interior”, “Azeites da Beira Interior,” 
and “Azeite de Trás-os-Montes”. These profiles allowed the 
accurate linear discrimination of the oils according to the 
correct PDO, underscoring the potential of volatiles (carbox-
ylic acids, alcohols, aldehydes, and hydrocarbons) and olfac-
tory sensations (such as fruity ripe, apple, banana, tomato, 
dry fruits, cabbage, fresh herbs, and tomato branches) to 
serve as reliable regional markers. Furthermore, the study 
demonstrated the practicality of employing an electronic 
nose as a fast, environmentally friendly, cost-effective, and 
non-invasive tool to verify the PDO designation of the three 
investigated Portuguese PDO olive oils. Also, it was con-
firmed that the E-nose can serve as a precise quantitative 
instrument for evaluating the concentration of key volatile 
compounds emitted by the studied PDO olive oils, namely 
alcohols, aldehydes, hydrocarbons and total volatiles. These 
findings extended the E-nose application beyond a particular 

Table 3  Quantification of the contents of alcohols, aldehydes and 
hydrocarbons released by olive oils from the three Portuguese 
PSO (30 oils), and of the content of total volatiles (alcohols + alde-
hydes + carboxylic acids + esters + hydrocarbons + ketones + terpe-

nes): predictive performance of the MLRMs developed based on 
selected sub-sets (SA algorithm) of the feature variables extracted 
from the electrical resistance profiles of the nine-MOS sensors of the 
lab-made E-nose

a Concentration (in mg of compound expressed as internal standard equivalents/kg of oil) determined by HS–SPME–GC–MS
b Number of feature variables included in the MLRMs
c Repeated K-fold-CV: cross-validation variant used for validation of the established MLRMs (4 folds × 10 repeats), which uses 25% of the data-
set for internal validation
d Feature variables included in the MLRM: S2_LP, S4_LP, S8_LP, S8_INT, S9_INT, S1_MAX, S2_MAX, S4_MAX, S1_SUM, S9_SUM, S1_
MEAN, S3_MEAN, S6_MEAN, S9_MEAN, S2_SD
e Feature variables included in the MLRM: S2_LP, S4_LP, S8_LP, S3_INT, S4_INT, S5_INT, S6_INT, S2_MAX, S3_MAX, S8_MAX, S9_
MAX, S3_MIN, S4_MEAN, S5_MEAN, S8_MEAN, S1_SD
f Feature variables included in the MLRM: S2_LP, S3_LP, S4_LP, S8_LP, S1_INT, S3_INT, S8_MAX, S9_MAX, S1_MIN, S2_MIN, S3_MIN, 
S5_MIN, S2_SUM, S8_SUM, S9_SUM, S4_MEAN, S5_SD, S9_SD
g Feature variables included in the MLRM: S2_LP, S3_LP, S6_LP, S1_INT, S3_INT, S4_INT, S9_INT, S3_MAX, S8_MAX, S1_MIN, S2_
MIN, S4_MIN, S5_MIN, S6_MIN, S8_MIN, S6_SUM, S1_MEAN, S8_MEAN, S2_SD, S8_SD

Volatiles chemical class Concentration range (mg/
kg oil)a

No. of feature 
 variablesb

E-nose-MOS-SA models (repeated K-fold-CV)c

Determination coefficient 
(R2)

Root mean square 
errors (RMSE, mg/
kg oil)

Alcohols [0.00, 6.83] 15d 0.932 ± 0.086 0.40 ± 0.18
Aldehydes [1.83, 12.6] 16e 0.923 ± 0.101 0.60 ± 0.27
Hydrocarbons [0.00, 7.02] 18f 0.981 ± 0.018 0.29 ± 0.14
Total volatiles [8.56, 25.2] 20 g 0.926 ± 0.118 1.32 ± 0.72
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geographical region (north of Portugal) and non-PDO oils to 
encompass PDO oils at a national level. Finally, this sensor-
based device, could be easily used for in-situ assays with the 
possibility of being portable.
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