Skip to main content

Advertisement

Log in

LC–ESI–MS/MS analysis, biological effects of phenolic compounds extracted by microwave method from Algerian Zizyphus lotus fruits

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Jujube fruit is a considerable source of antioxidants that could be used as ingredients against several diseases. The optimization of microwave-assisted extraction (MAE) of bioactive compounds from Z. lotus pulp and peel (Zlp) was achieved using response surface methodology. The effect of the extraction parameters (microwave power “MW”, extraction time, ethanol/water solvent and liquid–solid ratio) on the total phenolic compounds (TPC) was well described by second-degree regression model. The liquid chromatography-high resolution tandem mass spectrometry (LC–MS–MS) was done. Best results were obtained at 600 W MW power, 180 s irradiation time, 51% ethanol concentration and 47:1 mL/g solvent-to solid ratio obtaining 7473.38 ± 740.55 mg GAE/100 g of TPC, 1019.96 ± 75.03 mg CE/100 g of TFC, 14,253.11 ± 2453.86 mg CE/100 g of TTC. LC–MS–MS determined that from all phytochemicals, 44.51% of the extract was flavonoids which represent 80.75% of all secondary metabolites from which 5-hydroxy-7-O-nerylflavanone is found to be the most abundant one. The extracts revealed the presence of 34 bioactive compounds, from which 10 phenolic compounds have never been previously identified from Zizyphus plant. The Zlp extract exhibited a greatest antioxidant effects by PAOT, DPPH, and FRAP activity; as well as, a lowest cytotoxic effects against both HepG2 and MCF-7 cells. In a concentration of 1 mg/mL, Zlp produced a strong AChE inhibition. This research revealed that MAE is more rapid and an effective method to extract TPC recovery which can be used in food matrixes and/or in nutraceutical formulations for its good biological effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Ksouri, W.M. Ksouri, I. Jallali, A. Debez, C. Magné, I. Hiroko, C. Abdelly, Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 32(4), 289–326 (2012)

    Article  PubMed  CAS  Google Scholar 

  2. K. Das, A. Roychoudhury, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53 (2014)

    Article  Google Scholar 

  3. F. Berkani, M.L. Serralheiro, F. Dahmoune, A. Ressaissi, N. Kadri, H. Remini, Ultrasound assisted extraction of phenolic compounds from a Jujube by-product with valuable bioactivities. Processes 8(11), 1441 (2020)

    Article  CAS  Google Scholar 

  4. F. Berkani, F. Dahmoune, M.L. Serralheiro, A. Ressaissi, S. Dairi, N. Kadri, H. Remini, A. Abbou, K. Madani, New bioactive constituents characterized by LC–MS/MS in optimized microwave extract of jujube seeds (Zizyphus lotus L.). J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-00903-z

    Article  Google Scholar 

  5. Y. Li, B. Guo, W. Wang, L. Li, L. Cao, C. Yang, J. Liu, Q. Liang, J. Chen, S. Wu, Characterization of phenolic compounds from Phyllanthus emblica fruits using HPLC-ESI-TOF-MS as affected by an optimized microwave-assisted extraction. Int. J. Food Prop. 22(1), 330–342 (2019)

    Article  CAS  Google Scholar 

  6. F. Biglari, A.F. AlKarkhi, A.M. Easa, Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107(4), 1636–1641 (2008)

    Article  CAS  Google Scholar 

  7. C. Caleja, L. Barros, A.L. Antonio, M.B.P. Oliveira, I.C. Ferreira, A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem. 216, 342–346 (2017)

    Article  PubMed  CAS  Google Scholar 

  8. F. Dahmoune, B. Nayak, K. Moussi, H. Remini, K. Madani, Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 166, 585–595 (2015)

    Article  PubMed  CAS  Google Scholar 

  9. T. Garrido, M. Gizdavic-Nikolaidis, I. Leceta, M. Urdanpilleta, P. Guerrero, K. de la Caba, P.A. Kilmartin, Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 88, 110–117 (2019)

    Article  PubMed  CAS  Google Scholar 

  10. W. Borgi, N. Chouchane, Anti-spasmodic effects of Zizyphus lotus (L.) Desf. extracts on isolated rat duodenum. J. Ethnopharmacol. 126(3), 571–573 (2009)

    Article  PubMed  Google Scholar 

  11. F. Berkani, M.L. Serralheiro, F. Dahmoune, M. Mahdjoub, N. Kadri, S. Dairi, S. Achat, H. Remini, A. Abbou, K. Adel, Ziziphus lotus (L.) Lam. plant treatment by ultrasounds and microwaves to improve antioxidants yield and quality: an overview. N. Afr. J. Food Nutr. Res. 5(12), 53–68 (2021)

    Article  CAS  Google Scholar 

  12. A.H. Al-Saeedi, M.T.H. Al-Ghafri, M.A. Hossain, Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pac. Sci. Rev. A: Nat. Sci. Eng. 18(1), 78–83 (2016)

    Google Scholar 

  13. M. Škerget, P. Kotnik, M. Hadolin, A.R. Hraš, M. Simonič, Ž Knez, Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 89(2), 191–198 (2005)

    Article  CAS  Google Scholar 

  14. K. Aya, T. M’hamed, Chemical compounds, antioxidant activity, and in vitro and in silico litholytic effects of Zizyphus lotus extracts. J. Basic Clin. Physiol. Pharmacol. (2020). https://doi.org/10.1515/jbcpp-2019-0091

    Article  PubMed  Google Scholar 

  15. W. Rached, L. Barros, B.E. Ziani, M. Bennaceur, R.C. Calhelha, S.A. Heleno, M.J. Alves, A. Marouf, I.C. Ferreira, HPLC-DAD-ESI-MS/MS screening of phytochemical compounds and the bioactive properties of different plant parts of Zizyphus lotus (L.) Desf. Food Funct. 10(9), 5898–5909 (2019)

    Article  PubMed  CAS  Google Scholar 

  16. R. Nuerxiati, A. Abuduwaili, P. Mutailifu, A. Wubulikasimu, N. Rustamova, C. Jingxue, H.A. Aisa, A. Yili, Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep). Int. J. Biol. macromol. 141, 431–443 (2019)

    Article  PubMed  CAS  Google Scholar 

  17. I. Sarakatsianos, K. Adamopoulos, V. Samanidou, A. Goula, E. Ninou, Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Medicinal and Aromatic Plants: Sideritis raeseri, Sideritis scardica and Origanum vulgare. Curr. Anal. Chem. 16(2), 106–111 (2020)

    Article  CAS  Google Scholar 

  18. F. Berkani, F. Dahmoune, S. Achat, S. Dairi, N. Kadri, S. Zeghichi-Hamri, A. Abbou, I. Benzitoune, K. Adel, H. Remini, Response surface methodology optimization of microwave-assisted polysaccharide extraction from Algerian Jujube (Zizyphus lotus L.) pulp and peel. J. Pharm. Innov. (2020). https://doi.org/10.1016/j.ultsonch.2016.04.017

    Article  Google Scholar 

  19. I. Alzorqi, S. Sudheer, T.-J. Lu, S. Manickam, Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrason. Sonochem. 35, 531–540 (2017)

    Article  PubMed  CAS  Google Scholar 

  20. E. Wei, R. Yang, H. Zhao, P. Wang, S. Zhao, W. Zhai, Y. Zhang, H. Zhou, Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int. J. Biol. Macromol. 123, 280–290 (2019)

    Article  PubMed  CAS  Google Scholar 

  21. M. Marić, A.N. Grassino, Z. Zhu, F.J. Barba, M. Brnčić, S.R. Brnčić, An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 76, 28–37 (2018)

    Article  CAS  Google Scholar 

  22. F. Chemat, M. Abert-Vian, A.S. Fabiano-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, G. Cravotto, Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 118, 248–263 (2019)

    Article  CAS  Google Scholar 

  23. K.M. Hammi, A. Jdey, C. Abdelly, H. Majdoub, R. Ksouri, Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chem. 184, 80–89 (2015)

    Article  PubMed  CAS  Google Scholar 

  24. M.F. Ghafar, K.N. Prasad, K.K. Weng, A. Ismail, Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. A. J. Biotechnol. 9(3), 326–330 (2010)

    Google Scholar 

  25. L. Guedes, P.B. Reis, M. Machuqueiro, A. Ressaissi, R. Pacheco, M.L. Serralheiro, Bioactivities of Centaurium erythraea (Gentianaceae) decoctions: antioxidant activity. Enzyme Inhib. Docking Stud. Mol. 24(20), 3795 (2019)

    CAS  Google Scholar 

  26. M. Kaci, A. Belhaffef, S. Meziane, G. Dostert, P. Menu, E. Velot, S. Desobry, E. Arab-Tehrany, Nanoemulsions and topical creams for the safe and effective delivery of lipophilic antioxidant coenzyme Q10. Colloids Surf. B 167, 165–175 (2018)

    Article  CAS  Google Scholar 

  27. P. Joël, K. Mouna-Messaouda, C.-B. Jean-Paul, D. Jean-Olivier, M. Smail, Electrochemical methodology for evaluating skin oxidative stress status (SOSS). Diseases 7(2), 40 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  28. S. Achat, V. Tomao, K. Madani, M. Chibane, M. Elmaataoui, O. Dangles, F. Chemat, Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason. Sonochem. 19(4), 777–786 (2012)

    Article  PubMed  CAS  Google Scholar 

  29. K.M. Hammi, M. Hammami, C. Rihouey, D. Le Cerf, R. Ksouri, H. Majdoub, Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: composition and antioxidant activity. Food Chem. 212, 476–484 (2016)

    Article  CAS  Google Scholar 

  30. G. Zhang, M. Hu, L. He, P. Fu, L. Wang, J. Zhou, Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod. Process. 91(2), 158–168 (2013)

    Article  CAS  Google Scholar 

  31. J.P. Maran, S. Manikandan, Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes Pigm. 95(3), 465–472 (2012)

    Article  CAS  Google Scholar 

  32. K. Rewatkar, D.Z. Shende, K.L. Wasewar, Modeling and optimization of reactive extraction of gallic acid using RSM. Chem. Eng. Commun. 204(4), 522–528 (2017)

    Article  CAS  Google Scholar 

  33. K. Hayat, S. Hussain, S. Abbas, U. Farooq, B. Ding, S. Xia, C. Jia, X. Zhang, W. Xia, Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep. Purif. Technol. 70(1), 63–70 (2009)

    Article  CAS  Google Scholar 

  34. J. Song, D. Li, C. Liu, Y. Zhang, Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov. Food Sci. Emerg. Technol. 12(3), 282–287 (2011)

    Article  CAS  Google Scholar 

  35. I.T. Stanisavljević, D.T. Veličković, Z.B. Todorović, M.L. Lazić, V.B. Veljković, Comparison of techniques for the extraction of tobacco seed oil. Eur. J. Lipid Sci. Technol. 111(5), 513–518 (2009)

    Article  CAS  Google Scholar 

  36. A. Wojdyło, Á.A. Carbonell-Barrachina, P. Legua, F. Hernández, Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube Mill.) fruits. Food Chem. 201, 307–314 (2016)

    Article  PubMed  CAS  Google Scholar 

  37. S. Cosmulescu, I. Trandafir, N. Violeta, G. Achim, B. Mihai, O. Iordanescu, Variation of bioactive compounds and antioxidant activity of jujube (Ziziphus jujuba) fruits at different stages of ripening. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(1), 134–137 (2018)

    Article  CAS  Google Scholar 

  38. T.K. Koley, C. Kaur, S. Nagal, S. Walia, S. Jaggi, Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana Lamk.). Arab. J. Chem. 9, S1044–S1052 (2016)

    Article  CAS  Google Scholar 

  39. Q.H. Gao, C.S. Wu, J.G. Yu, M. Wang, Y.J. Ma, C.L. Li, Textural characteristic, antioxidant activity, sugar, organic acid, and phenolic profiles of 10 promising jujube (Ziziphus jujuba Mill.) selections. J. Food Sci. 77(11), C1218–C1225 (2012)

    Article  PubMed  CAS  Google Scholar 

  40. O.R. Alara, N.H. Abdurahman, Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: kinetic modelling and process intensification. Ind. Crops Prod. 137, 528–535 (2019)

    Article  CAS  Google Scholar 

  41. H.-x Zhao, H.-s Zhang, S.-f Yang, Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness 3(3–4), 183–190 (2014)

    Article  Google Scholar 

  42. M.A. Benabderrahim, W. Elfalleh, C. Sarikurkcu, R.B. Sarikurkcu, Biological activities and phytochemical composition of organs from Loranthus europaeus. Ind. Crops Prod. 141, 111772 (2019)

    Article  CAS  Google Scholar 

  43. W. Ma, P. Waffo-Téguo, M. Jourdes, H. Li, P.-L. Teissedre, First evidence of epicatechin vanillate in grape seed and red wine. Food Chem. 259, 304–310 (2018)

    Article  PubMed  CAS  Google Scholar 

  44. D. Šuković, B. Knežević, U. Gašić, M. Sredojević, I. Ćirić, S. Todić, J. Mutić, Ž Tešić, Phenolic profiles of leaves, grapes and wine of grapevine variety Vranac (Vitis vinifera L.) from Montenegro. Foods 9(2), 138 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  45. G. Aldini, L. Regazzoni, A. Pedretti, M. Carini, S.-M. Cho, K.-M. Park, K.-J. Yeum, An integrated high resolution mass spectrometric and informatics approach for the rapid identification of phenolics in plant extract. J. Chromatogr. A 1218(20), 2856–2864 (2011)

    Article  PubMed  CAS  Google Scholar 

  46. W.T. Yang, K.M. Cho, J.H. Lee, Comparative analysis of isoflavone aglycones using microwave-assisted acid hydrolysis from soybean organs at different growth times and screening for their digestive enzyme inhibition and antioxidant properties. Food Chem. 305, 125462 (2020)

    Article  PubMed  CAS  Google Scholar 

  47. W. Xu, M. Huang, H. Li, X. Chen, Y. Zhang, J. Liu, W. Xu, K. Chu, L. Chen, Chemical profiling and quantification of Gua-Lou-Gui-Zhi decoction by high performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and ultra-performance liquid chromatography/triple quadrupole mass spectrometry. J. Chromatogr. B 986, 69–84 (2015)

    Article  CAS  Google Scholar 

  48. A. Guzel, H. Aksit, M. Elmastas, R. Erenler, Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) manden and scheng. Pharmacog. Mag. 13(50), 316 (2017)

    Article  Google Scholar 

  49. M.N. Khan, F.U. Haq, S. Rahman, A. Ali, S.G. Musharraf, Metabolite distribution and correlation studies of Ziziphus jujuba and Ziziphus nummularia using LC-ESI-MS/MS. J. Pharm. Biomed. Anal. 178, 112918 (2020)

    Article  PubMed  CAS  Google Scholar 

  50. Y. Lamotte, P. Martres, N. Faucher, A. Laroze, D. Grillot, N. Ancellin, Y. Saintillan, V. Beneton, R.T. Gampe Jr., Synthesis and biological activities of novel indole derivatives as potent and selective PPARγ modulators. Bioorg. Med. Chem. Lett. 20(4), 1399–1404 (2010)

    Article  PubMed  CAS  Google Scholar 

  51. H. Amat-ur-Rasool, F. Symes, D. Tooth, L.-N. Schaffert, E. Elmorsy, M. Ahmed, S. Hasnain, W.G. Carter, Potential nutraceutical properties of leaves from several commonly cultivated plants. Biomolecules 10(11), 1556 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  52. N.P. Thao, B.H. Tai, B.T.T. Luyen, S. Kim, J.E. Koo, Y.S. Koh, N.T. Cuong, N. Van Thanh, N.X. Cuong, N.H. Nam, Chemical constituents from Kandelia candel with their inhibitory effects on pro-inflammatory cytokines production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs). Bioorg. Med. Chem. Lett. 25(7), 1412–1416 (2015)

    Article  PubMed  CAS  Google Scholar 

  53. M. Muchuweti, G. Zenda, A.R. Ndhlala, A. Kasiyamhuru, Sugars, organic acid and phenolic compounds of Ziziphus mauritiana fruit. Eur. Food Res. Technol. 221(3–4), 570–574 (2005)

    Article  CAS  Google Scholar 

  54. M. Memarpoor-Yazdi, H. Mahaki, H. Zare-Zardini, Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. J. Funct. Foods 5(1), 62–70 (2013)

    Article  CAS  Google Scholar 

  55. C. Benammar, C. Baghdad, M. Belarbi, S. Subramaniam, A. Hichami, N. Khan, Antidiabetic and antioxidant activities of Zizyphus lotus L. aqueous extracts in Wistar rats. J. Nutr. Food Sci. 2014, 2–6 (2014)

    Google Scholar 

  56. A. Freitas, J. Andrade, F. Silva, T. Rocha-Santos, A. Duarte, A. Gomes, Antioxidative peptides: trends and perspectives for future research. Curr. Med. Chem. 20(36), 4575–4594 (2013)

    Article  PubMed  CAS  Google Scholar 

  57. S. Choonpicharn, S. Tateing, S. Jaturasitha, N. Rakariyatham, N. Suree, H. Niamsup, Identification of bioactive peptide from Oreochromis niloticus skin gelatin. J. Food Sci. Technol. 53(2), 1222–1229 (2016)

    Article  PubMed  CAS  Google Scholar 

  58. H. Zare-Zardini, B. Tolueinia, A. Hashemi, L. Ebrahimi, F. Fesahat, Antioxidant and cholinesterase inhibitory activity of a new peptide from Ziziphus jujuba fruits. Am. J. Alzheimer’s Dis. Demen. 28(7), 702–709 (2013)

    Article  Google Scholar 

  59. C. Dang, T. Bannan, P. Shelley, M. Priestley, S.D. Worrall, J. Waters, H. Coe, C.J. Percival, D. Topping, The effect of structure and isomerism on the vapor pressures of organic molecules and its potential atmospheric relevance. Aerosol Sci. Technol. 53(9), 1040–1055 (2019)

    Article  CAS  Google Scholar 

  60. R. Kaur, P. Yadav, A.K. Thukral, A. Sharma, R. Bhardwaj, M.N. Alyemeni, L. Wijaya, P. Ahmad, Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. J. Plant Growth Regul. 37(1), 286–299 (2018)

    Article  CAS  Google Scholar 

  61. H. Ghazghazi, C. Aouadhi, L. Riahi, A. Maaroufi, B. Hasnaoui, Fatty acids composition of Tunisian Ziziphus lotus L. (Desf.) fruits and variation in biological activities between leaf and fruit extracts. Nat. Prod. Res 28(14), 1106–1110 (2014)

    Article  PubMed  CAS  Google Scholar 

  62. C. Wang, D. Cheng, J. Cao, W. Jiang, Antioxidant capacity and chemical constituents of Chinese jujube (Ziziphus jujuba Mill.) at different ripening stages. Food Sci. Biotechnol. 22(3), 639–644 (2013)

    Article  CAS  Google Scholar 

  63. P. Joël, K. Mouna-Messaouda, K. Claire, T. Jessica, E.E. Raymond, M. Smail, PAOT-Liquid® technology: An easy electrochemical method for evaluating antioxidant capacity of wines. Diseases 7(1), 10 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  64. J.M. Smail Meziane, Michel Mathé, Stephania Raimond, Jean-Luc. Yvon, Messaouda-Mouna. Kaci, Bioavailability of natural and synthetic vitamins: a significant difference on oxidative stress status (OSS). Oat J. (2021). https://doi.org/10.15761/IFNM.1000301

    Article  Google Scholar 

  65. J. Wang, J. Zhang, B. Zhao, X. Wang, Y. Wu, J. Yao, A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: molecule weight and antioxidant activities evaluation. Carbohydr. Polym. 80(1), 84–93 (2010)

    Article  CAS  Google Scholar 

  66. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999)

    Article  PubMed  CAS  Google Scholar 

  67. G. Zengin, B. Atasagun, M.Z. Aumeeruddy, H. Saleem, A. Mollica, M.B. Bahadori, M.F. Mahomoodally, Phenolic profiling and in vitro biological properties of two Lamiaceae species (Salvia modesta and Thymus argaeus): a comprehensive evaluation. Ind. Crops Prod. 128, 308–314 (2019)

    Article  CAS  Google Scholar 

  68. P.K. Yılmaz, A. Ertaş, M. Akdeniz, M.K. Avcı, U. Kolak, Chemical compositions by LC-MS/MS and GC-MS and biological activities of Chenopodium album subsp album var. microphyllum. Ind. Crops Prod. 141, 111755 (2019)

    Article  CAS  Google Scholar 

  69. Y. Jiang, H. Gao, G. Turdu, Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: a review. Bioorg. Chem. 75, 50–61 (2017)

    Article  PubMed  CAS  Google Scholar 

  70. A. Ressaissi, N. Attia, P.L. Falé, R. Pacheco, B.L. Victor, M. Machuqueiro, M.L.M. Serralheiro, Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies. Arch. Pharmacal. Res. 40(11), 1278–1286 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the ministry of the higher education and scientific research and the faculty of Natural Sciences, Life and Earth Sciences, University of Bouira, Algeria; the Portuguese Foundation for Science and Technology, FCT, through the Research Unit grant UID/MULTI/04046/2019 to BioISI; FCT project PTDC/BIA-BQM/28355/2017; BioISI MassSPEC Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Berkani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkani, F., Dahmoune, F., Kadri, N. et al. LC–ESI–MS/MS analysis, biological effects of phenolic compounds extracted by microwave method from Algerian Zizyphus lotus fruits. Food Measure 16, 3354–3371 (2022). https://doi.org/10.1007/s11694-022-01437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01437-8

Keywords

Navigation