
METHODOLOGY ARTICLE

Systems biology via redescription and ontologies (I): finding phase
changes with applications to malaria temporal data

Samantha Kleinberg Æ Kevin Casey Æ
Bud Mishra

Received: 19 October 2007 / Revised: 8 April 2008 / Accepted: 10 April 2008 / Published online: 8 May 2008

� The Author(s) 2008

Abstract Biological systems are complex and often

composed of many subtly interacting components. Fur-

thermore, such systems evolve through time and, as the

underlying biology executes its genetic program, the rela-

tionships between components change and undergo

dynamic reorganization. Characterizing these relationships

precisely is a challenging task, but one that must be

undertaken if we are to understand these systems in suffi-

cient detail. One set of tools that may prove useful are the

formal principles of model building and checking, which

could allow the biologist to frame these inherently tem-

poral questions in a sufficiently rigorous framework. In

response to these challenges, GOALIE (Gene ontology

algorithmic logic and information extractor) was developed

and has been successfully employed in the analysis of high

throughput biological data (e.g. time-course gene-expres-

sion microarray data and neural spike train recordings).

The method has applications to a wide variety of temporal

data, indeed any data for which there exist ontological

descriptions. This paper describes the algorithms behind

GOALIE and its use in the study of the Intraerythrocytic

Developmental Cycle (IDC) of Plasmodium falciparum,

the parasite responsible for a deadly form of chloroquine

resistant malaria. We focus in particular on the problem of

finding phase changes, times of reorganization of tran-

scriptional control.
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Abbreviations

CTL Computation tree logic

FFT Fast fourier transform

GOALIE Gene ontology algorithmic logic and

invariant extractor

GO Gene ontology

HKM Hidden Kripke model

IDC Intraerythrocytic developmental cycle

LTL Linear temporal logic

MEA Multi-neuronal electrode array

MPI Message passing interface

ORF Open reading frame

P. falciparum Plasmodium falciparum

S. cerevisiae Saccharomyces cerevisiae

SEB Staphylococcus enterotoxin B

STEM Short time-series expression miner

rRNA Ribosomal RNA

tRNA Transfer RNA

Introduction

‘‘If we describe a game of chess, but do not mention the

existence or role of the pawns, one may say we have provided

an incomplete description of the game. However, it can also be

said that what we have done is given a complete description of

a simpler game’’ (see Wittgenstein 1934). This is essentially

the problem we face in the analysis of large biological systems,

where we may not have a complete description of either the

players or their roles. One way to mitigate this difficulty in the
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context of systems-biological data analysis is by combining

our knowledge of gene expression patterns and biological

processes so that information about one may shed light on the

other.

This paper shows that, by inferring biological rules from

studying the visible interactions, one can provide a

description of the dynamics of the system with no prior

knowledge of the system’s underlying structure, aside from

the functional annotations of individual genes. Thus, the

paper makes contributions to several fields: (1) to infor-

mation theory, e.g. rate distortion theory, by defining

parsimonious phenomenological models in biology, (2) to

systems biology, e.g. model checking of biochemical sys-

tems, by devising hidden Kripke models in terms of

successive temporal states that are indiscernible in standard

clustering methods, and (3) to philosophy of discourse, e.g.

redescription and ontology, by showing how to automati-

cally translate static ontologies to dynamic ones.

Motivating example

Up to half a billion new cases of malaria are reported

annually. The parasite Plasmodium falciparum, a strain of

Plasmodium, is responsible for a deadly form of drug-

resistant malaria in humans, resulting in as many as two

million deaths each year, and leading to many of the

hundreds of millions of malaria episodes worldwide. While

great gains have been made in the fight against malaria via

drugs, vector control and public health, a long-term solu-

tion to the disease remains yet to be found. With no present

malaria vaccine, the disease continues to affect the lives

and economies of many nations, taking a particularly

devastating toll in many developing countries. The geno-

mic information of P. falciparum, recently sequenced, is

hoped to provide insight into the function and regulation of

P. falciparum’s over 5,400 genes and should bolster the

search for future treatments as well as a possible vaccine.

Transmitted by mosquitoes, the protozoan Plasmodium

falciparum exhibits a complex life cycle involving a mosquito

vector and a human host. Once the infection is initiated via

sporozoites injected with the saliva of a feeding mosquito,

P. falciparum’s major life cycle phases commence. These

phases are: liver stage, blood stage, sexual stage, and sporog-

ony. The blood stage is characterized by a number of distinct

and carefully programmed substages which include the ring,

trophozoite and schizont; these are referred to collectively as

the intraerythrocytic developmental cycle (IDC).

This study presents our results of the analysis of the IDC of

P. falciparum as previously described by Bozdech et al.

(2003). P. falciparum is a strain of the human malaria parasite

that was recently sequenced. This new information allows one

the opportunity to gain further insight into the role of P. fal-

ciparum’s approximately 5,400 genes, the majority of whose

functions remain unknown. It has been shown that a large

percentage of the genome is active during the IDC and that the

regulation pattern is such that as one set of genes is deactivated,

another is being turned on, causing what the authors of

Bozdech et al. (2003) refer to as a continuous cascade of

activity, in which transcriptional regulation is controlled in a

tightly timed choreography. The malaria parasite was chosen

for this study due to the simplicity of its regulation pattern,

making it a good candidate for determining whether we are

able to replicate known results. Yet, traditional approaches to

understand the structure of the temporal relations among these

key processes have been difficult, and required tedious manual

intervention. In this paper, we demonstrate GOALIE’s ability

to automatically reconstruct the main features of the system,

including the cascade of gene expression, as well as the stages

of the IDC and their associated processes. Figure 1 depicts the

IDC stages as found by GOALIE: We find that in most cases,

genes remain in the same clusters throughout the time course,

further supporting the results of Bozdech et al. (2003)

(Table 1).

Bozdech et al. conducted their investigation with the

help of Fourier analysis, using the frequency and phase of

the gene profiles to filter and categorize the expression

data. They used the FFT (Fast fourier transform) data to

eliminate noisy genes and those that lacked differential

expression. Most of the profiles registered a single low

frequency peak in the power spectrum, which the authors

used to classify the expression profiles. Classified in this

way, the cascading behavior of the genes involved in the

IDC was clear. Our method reproduced this cascade of

expression in an automated manner and without relying on

the implicit assumptions of the frequency based methods.

To recover the underlying structure of the system, we

employed an approach that combined information theoretic

techniques developed by engineers with the redescription

theoretic techniques of philosophers.

Related work

Many prior methods for analyzing microarray data have

focused on clustering, that is, on breaking the data up into

similarly behaving groups (Bar-Joseph 2004). For tempo-

rally ordered data, this step has often required clustering

the entire time course experiment into sets of genes

(forcing genes to remain in the same cluster throughout the

evolution of the system) or clustering by function, using an

ontology such as the Gene ontology (GO) (Ashburner et al.

2000) (grouping genes responsible for similar functions

together). These methods are limited by their failure to

account for the fact that correlations in expression activity

between genes are dynamic and that coexpression changes

with time. As conditions change, genes may be expressed

similarly for a brief period before diverging. Thus, what is
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necessary is a system for finding critical time points at

which transcriptional control is reorganized. These may

then be used to describe the biological events under study,

taking into account both expression levels and functional

descriptions. This approach focuses biologists’ attention on

smaller sets of genes and processes that are likely to be

interesting and that may warrant further exploration.

Related tools tend to be focused on a specific problem,

such as STEM (Ernst and Bar-Joseph 2006), which was

developed for the study of short time series, and GoMiner

(Zeeberg et al. 2003, 2005) which has recently expanded to

include time course and multiple microarray experiments.

The dominant paradigm of our tool differs significantly

from these, namely, by utilizing information theory and

temporal logic we are able to create a compact represen-

tation of the data that is easily visualized and manipulated

and that summarizes the key elements in the data from a

biological, rather than purely numerical perspective.

Materials and methods

Temporal redescription approach

To address these problems, we developed GOALIE (Gene

ontology algorithmic logic and information extraction),

which combines ideas from information theory, model

checking and logic to provide a temporal redescription of

large scale time course experiments. This method is based

on the translation of genes into a controlled vocabulary,

such as the Gene ontology (GO) (Ashburner et al. 2000),

and then a stitching together of these translations to form a

picture of the biological system as it evolves over time.

We begin our analysis by partitioning the entire time

course dataset into (possibly non-uniform) windows in

time. These windows are defined by [Ts,Te], their start and

end times. Each window contains all of the genes in the

dataset for a continuous subset of the time points. We use a

clustering approach based on rate distortion theory (Casa-

grande et al. 2007) to find the start and end points of these

windows. Based on this clustering, we track biological

processes as they move across windows throughout the

experiment.

We connect the clusters to form a graphical represen-

tation of the temporal formulae found to be true within the

system. This hidden Kripke model (HKM), which results

from connecting the clusters across neighboring windows,

provides a structure for generating and testing temporal

logic formulae. We may discover simple properties of the

system such as those that hold throughout (e.g. a gene is

continuously expressed), and temporal relationships

between genes (e.g. A is expressed and then B is expres-

sed). These can also be combined to form testable

hypotheses such as ‘‘Once A is true, is it possible to get to a

state where C is true without going through B?’’ All such

rules are implicit in the HKM, and are not explicitly

returned as the number of generated formulae may be so

large as to obscure their meaning.1

We have used this core methodology to successfully

reconstruct the yeast (S. cerevisiae) cell cycle (Spellman

End Merozoite
Early Ring stage

Late Ring stage
Early Trophozoite

Trophozoite

Late Trophozoite
Schizont

Late Schizont
Merozoite

Fig. 1 Summary of IDC as

recovered by GOALIE: A more

detailed graphic with

annotations can be found at:

http://bioinformatics.nyu.edu/

Projects/GOALIE/malaria/

index.shtml

Table 1 Correspondence of windows to IDC stages

Window Time period (h) Stage

1 1–7 End of merozoite invasion and early ring

2 7–16 Late ring stage and early trophozoite

3 16–28 Trophozoite

4 28–43 Late trophozoite and schizont

5 43–48 Late schizont and merozoite

1 Future work includes support for directly querying the HKM using

syntax similar to that of database queries.
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et al. 1998; Kleinberg et al. 2006), for the study of a host-

pathogen interaction dataset of Staphylococcus enterotoxin

B (SEB) infection of human kidney cells, and more

recently, in the analysis of synthetic multi-neuronal elec-

trode array (MEA) data (Kleinberg et al. 2008).

Methods in detail

The main features of our approach are model building

through lossy compression and redescription and sub-

sequent model checking. We first use information theory to

derive a compressed representation (clustering) of the

expression data, we then ‘‘redescribe’’ the data using the

vocabulary provided by the Gene ontology. Redescription

is accomplished by labeling the clusters with their func-

tional enrichments (a common practice in microarray

analysis). This condensed representation summarizes each

cluster by the statistically most relevant processes con-

trolled by its genes.

Rate distortion theory

We are interested in deriving a redescription that captures

the dynamics of the data set with respect to some ontolog-

ical labeling. We would like a concise description of the

data that minimizes some measure of the distortion or dis-

agreement between our description and the gene expression

profiles, and that highlights the points in time during which

significant process level reorganization occurs. We desire a

formalism that we can use to represent such distortions

precisely, allowing us to specify an objective function that

we can minimize, thus obtaining an optimal partition of our

data. We call the problem of finding this compressed rep-

resentation, as well as the ‘‘interesting’’ time points, the

‘‘time course segmentation problem’’.

In rate distortion theory (Cover and Thomas 1991;

Cilibrasi and Vitányi 2005), one desires a compressed

representation Z of a random variable X that minimizes

some measure of distortion between the data elements x

[ X and their prototypes z [ Z. Taking I(Z;X), the mutual

information between Z and X, to be a measure of the

compactness or degree of compression of the new repre-

sentation, and defining a distortion measure d(x,z) that

measures ‘‘distance’’ between clusters and data elements,

one can frame the clustering problem as a trade-off

between compression and average distortion. One balances

the desire to achieve a compressed description of the data

with the precision of the clustering, as measured by the

average distortion, and finds the appropriate balance that

maintains enough information while eliminating noise and

inessential details.

This trade-off is characterized mathematically as an

optimization problem:

Fmin ¼ IðZ; XÞ þ bhdðx; zÞi ð1Þ

where mutual information and average distortion are

defined to be:

IðZ; XÞ ¼
X

x;z

pðzjxÞpðxÞ log
pðzjxÞ
pðzÞ ð2Þ

hdðx; zÞi ¼
X

x;z

pðxÞpðzjxÞdðx; zÞ ð3Þ

and

dðx; zÞ ¼
X

x1

pðx1jzÞdðx1; xÞ ð4Þ

This is simply the weighted sum of the distortions

between the data elements and their prototypes. The

problem is characterized in terms of minimization as we

are attempting to use as few possible clusters, while also

minimizing the distortion. That is, if we put all elements in

one cluster, then the number of clusters will be minimized,

but the distortion will be very high. This is why we must

minimize the function as a whole.

More recently, Slonim et al. (2005) have discussed a

modification to rate distortion clustering for which only

relations between data elements are used in the distortion

function, rather than an explicit mention of cluster pro-

totypes. We have used a similar approach in our graph

search based approach to the time course segmentation

problem.

We focus on the problem of compressing a given time-

course data set into a series of clustered windows. The

functional above captures the compression/ precision

trade-off inherent in the clustering problem and when

combined with a shortest path graph search algorithm (as

described in section ‘‘Time series segmentation’’), it

allows one to use an iterative method, to find a numerical

solution to our time course segmentation problem. The

trade-off is controlled by the Lagrange parameter b that

sets the balance between compression and preservation of

relevant information, as b becomes large we focus on

precision, as b tends to zero we focus more on com-

pression. Setting the segmentation problem up in this way

allows us to find both an optimal windowing of our data,

as well as optimal clusters of genes within the windows.

From this compressed representation, we can create an

optimal redescription. These functions are computed on

the raw data, with no noise correction or discretization.

Evaluation of the quality of clustering can be done

visually, by creating rate distortion curves that depict the

trade-off between compression and distortion, or by

measuring the coherence of clusters, how they relate to

qualitative groups such as by GO annotations. Addition-

ally, when the correct clustering is known, as in the case

of synthetically generated examples or well studied
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systems, we may measure how well the clusterings agree

by using a distance measure based on conditional entropy.

Hidden Kripke models

One of the components of this methodology is the use of

temporal logic in the form of hidden Kripke models

(HKMs). A Kripke structure is defined by (S,S0, L,R):

• S, a finite set of states;

• S0 � S; the set of initial states;

• L: S? 2AP, a labeling of the states with the set of

atomic propositions true within that state; and

• R � S� S; a transition function between states.

Kripke structures (Clarke et al. 1999) are models for

modal logic for which vertex-labeled directed graphs are

defined by their vertices (V) (i.e. the reachable states of the

system), edges ðE � V � VÞ (i.e. the transitions between

the states) and properties (P) (i.e., the labels affixed to the

states indicating the properties that hold true within them).

In our case, the vertices correspond to clusters, edges to

connections between clusters and the properties correspond

to the ontological categories from GO. We introduce the

terminology ‘‘hidden’’ Kripke models by analogy to Hid-

den Markov Models, in that the states described by our

Kripke structures are not known a priori.

Using this framework, we can ask questions about

pathways through time, using propositional temporal logic.

Computation tree logic (CTL), is comprised of proposi-

tions, Boolean connectives and modal operators (Emerson

1997). The main feature of CTL that differs from other

propositional temporal logics (e.g., LTL) is the provision

for branching time. That is, an event does not have to hold

for every possible traversal of the system. We have the

modal operators A; which means ‘‘for all paths’’ and E;

which means ‘‘exists a path.’’ For example, we may ask

‘‘starting when q is true, is it possible to reach r without

going through p?’’ In the case of the P. falciparum data, we

can make queries to test hypotheses such as ‘‘A transcrip-

tion U translation.’’ This logical formula, which uses the

always and until operators, means that there is no path in

the HKM in which translation occurs and is not preceded

by transcription. If we replaced the A with E in the pre-

ceding formula, this modified query would inquire whether

there is at least one path in which the formula is true. More

detailed examples may be found in Antoniotti et al. (2003).

Computation steps

Time series segmentation

Generally, we would like to cluster our data in both the

genes and in time. In other words, we would like a

procedure that yields windows in time that capture inter-

vals of concerted gene activity, in which the genes are

clustered into a number of groups of co-expressed ele-

ments. From such a compressed representation, we can

produce a redescription that has a number of locations

equal to the number of time windows, and for which the

dynamics are less complex because we derive them from

the clustered data rather than from individual genes.

Let T = {T1,T2,…,Tn} be a sequence of time points at

which a given system is sampled, and lmin and lmax be the

minimum and maximum window lengths respectively. For

each time point Ta [ T, we define a candidate set of win-

dows starting from Ta as STa
¼ fWTb

Ta
jlmin� Tb �Ta� lmaxg;

where WTb
Ta

is the window containing the time points

Ta,Ta+1, …, Tb. Each of these windows may then be clus-

tered and labeled with a score based on its length and the

cost associated with the clustering functional defined in

Eq. 1. Following scoring, we formulate the problem of

finding the lowest cost windowing of our time series in

terms of a graph search problem and use a shortest path

algorithm to generate the final set of (non-overlapping)

time windows that fully cover the original series.

To score the windows, we use a variant of rate distortion

clustering and a pairwise distortion function based on

Pearson correlation. We aim to maximize compression (by

minimizing the mutual information between the clusters

and data elements), while at the same time forcing our

clusters to have minimal distortion (as described in Slonim

et al. 2005).

We perform model selection by iterating over the

number of clusters while optimizing (line search) over b.

This procedure results in a fairly complete sampling of the

rate-distortion curves. We trace the various solutions for

different model sizes while tuning b and choose the sim-

plest model that achieves minimal cost in the target

functional. In this way, we obtain a score for each window

that is the minimum cost in terms of the trade-off between

compression and precision. This method is computationally

expensive and run times can be substantial, O(N5� Nc),

where N is the number of time points in the window and Nc

is the number of clusters. For this reason we have devel-

oped a parallel implementation that uses the Message

passing interface (MPI) (Forum 1994) to execute on a

cluster of nodes, and used that implementation in this

study.

Once the scores are generated, we pose the problem of

finding the lowest cost windowing of the time series as a

graph search problem. We consider a graph G = (V,E) for

which the vertices are time points V = {T1,T2,…,Tn}, and

the edges represent windows with associated scores. Each

edge eab [ E represents the corresponding window WTb
Ta

from time point Ta to time point Tb, and has an initially

infinite positive cost. The edges are labeled with the costs
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for the windows they represent, each edge eab gets assigned

a cost ðF ab � lengthÞ where F ab is the minimum cost found

by the clustering procedure and length is the length of the

window (b-a). Our original problem of segmenting the

time series into an optimal sequence of windows can now

be formulated as finding the minimal cost path from the

vertex T1 to the vertex Tn. The vertices on the path with

minimal cost represent the points at which our optimal

windows begin and end. We use a shortest path algorithm

and generate a windowing that segments our original time

series data into a sequence of optimal windows which

perform maximal compression in terms of the clustering

cost functional.

Connecting clusters across windows

After computing the clusters, we use ontology relationships

between clusters to connect those in neighboring windows.

For each cluster in each window, we use the Fisher-Exact

test with Benjamini–Hochberg correction to determine the

GO terms enriching the cluster. Then, for two clusters in

neighboring windows, we compute the Jaccard coefficient

to determine whether they should be connected. The Jac-

card coefficient is the ratio of the intersection of the sets

divided by their union. Two clusters, Ci and Cj, are then

h-equivalent if their computed coefficient between the sets

of GO ids labeling each cluster is Ch. Then, when con-

structing the cluster graph, we place an edge between Ci

and Cj if they reside in neighboring slices of time and are

h-equivalent for some h. In the case of h = 1, the clusters

are described by identical processes from one window to

the next, while at the other extreme, h = 0, the clusters

have no common labels.

Results

Software

The GOALIE software is divided into two sequential parts,

an initial clustering application that employs rate distortion

theory to provide a segmentation of the data set and a

second application that performs redescription and visual-

ization. The clustering software performs the segmentation

of the time course data and outputs the cluster files for each

time window. The redescription and visualization software

has two main parts: the experiment information displays,

and the graph view of the generated HKM. Using the graph

view one may select GO terms and genes of interest. The

graph is organized such that each vertical grouping of

clusters represents a temporal window, with each vertex

displayed as a cluster and connections between vertices

representing ontology terms persisting between clusters

(i.e., across critical time points). Also included are tools to

facilitate visualization of clusters and cluster–cluster con-

nections. These include: scaled Venn diagrams that depict

the intersection of genes in pairs of clusters, plots of

expression activity for each gene in each cluster, integra-

tion with the GO database to view the GO terms associated

with each gene and the ability to browse the ontology.

In this study we analyzed the overview dataset provided

by Bozdech et al. (2003). There were 3,719 oligonucleo-

tides (represented by 2,714 unique open reading frames

(ORFs)) for which 1878 (approximately 50%) had a total

of 6,943 associated GO terms. While the ontological

descriptions are a large component of our tool, it is possible

to reconstruct the system with sparsely annotated data.

Further, the use of GOALIE for redescription and visuali-

zation facilitates hypothesis generation with respect to the

function of unlabeled genes (i.e. genes for which there are

no associated ontological labels).

Cluster graph

The main output display of GOALIE is the cluster graph.

This is the visual display of the HKM and all of its asso-

ciated information. For the dataset studied here, there are

4–5 clusters per window, and five windows. By studying

the cluster centroid graphs (mean profiles for the expres-

sion patterns of the genes in each cluster), we can visually

verify the cascade of genes as described in Bozdech et al.

(2003). In Fig. 2, the thickness of the red edges (cluster

connections) denotes that many of the terms selected (those

related to biosynthesis, glycolysis, translation, and tran-

scription), traveled along the same paths through time (i.e.

they were in the connections between the clusters con-

nected by the edges). This inference is consistent with the

earlier semi-manual data analysis presented in Bozdech

et al. (2003).

Windows

The windowing of the data, discovered using our rate

distortion theory based segmentation method, corresponds

well to the main stages of the P. falciparum IDC as

described in Bozdech et al. 2003). When the segmentation

is run on the overview dataset, critical time points 7, 16, 28

and 43 drop out of the method as points at which the

amount of compression that can be accomplished on the

data changes significantly. These critical points signal

times at which major functional reorganization of gene

expression is likely to be taking place. Bozdech et al. note

that the 17th and 29th hour time points correspond to the

ring-to-trophozoite and trophozoite-to-schizont stages of

the IDC, which agrees well with our automated method. As

one may verify visually from the plotted data, notches in
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the aggregate profile of the expression data occur at

roughly these locations, which are also the locations found

via frequency analysis (Bozdech et al. 2003) to be transi-

tions between major functional stages (i.e., ring/trophozoite

and trophozoite/schizont). The first critical time point

produced by our clustering, at hour 7, corresponds to the

end of the previous merozoite invasion. The last critical

time point produced by our clustering, at hour 43, corre-

sponds to the final portion of the schizont stage overlapping

with the early portion of the next period.

Below we use the notation W : C to denote the Cth

cluster in the Wth window (see Fig. 2).

1:1 This cluster is about to enter the ring stage. It

comprised 631 ORFs and is labeled by ontology terms

related to biosynthesis, glycolysis, and transcription.

1:2 This cluster is about to enter the ring stage. In this

cluster there are 835 ORFs, which are primarily involved in

translation and tRNA and rRNA processing.

1:0 and 1:3 are at the end of the last cycle.

2:3 and 2:1 These clusters followed from 1:1 and 1:2,

and have expression in a ‘‘hump’’ shape, corresponding to

the ring stage.

2:0 This cluster shows the overlap from one stage to the

next, forming the cascade of genetic activity. It is in the

Early Trophozoite stage. This transition comprised 957

ORFs, which agrees quite closely with 950 ORFs found by

Bozdech et al.

3:3 This cluster contains 1,400 genes, those that were

involved in the ring stage, which is now winding down.

3:0 This cluster contains Trophozoite ORFs (379), while

3:2 contains 1,400 genes expressed later in this stage.

4:3 and 4:0 These clusters contain ORFs which were

involved in the late Trophozoite stage.

4:2 This cluster contains ORFs expressed in the late

trophozoite stage and 4:1 contains 669 ORFs that are

beginning the schizont stage. These clusters have a total of

1,161 ORFs (as compared to 1,050 as found by Bozdech

et al.).

5:3 This cluster comprised solely ORFs from 4:2 and 4:1

which are completing the schizont stage.

5:1 This cluster contains 524 ORFs that are highly

expressed in the late schizont stage and which have early-

ring stage annotations. This is consistent with prior findings

of ‘‘approximately 550 such genes’’ (Bozdech et al. 2003).

Fig. 2 GOALIE’s output of the

HKM of P. falciparum IDC as a

graph of clusters
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Gantt chart view

A second way one may interpret the results is by using

Gantt Charts (Clark 1952), bar graphs for visualizing data

with a temporal component. In GOALIE; these graphs are

available for each ontology term within the dataset. They

contain one bar per window, color coded to show the

processes’ overall expression level in that window. This

expression (i.e., up, down, normal, inactive—colored red,

green, yellow and black respectively) is computed using

the cluster centroids for each cluster in which the ontology

term and its descendants appear. These charts facilitate

summarization of the data, as users may choose to view the

graphs for all terms or a selected subset of terms. Note that

there is some information loss in this process, but the charts

are intended to help make sense of the cluster graph.

Allowing users to get an overall sense for how a process is

regulated is helpful to that end. For example, in the case of

the IDC (a chart depicting a small subset of its GO terms is

shown in Fig. 3), we see that ‘‘DNA replication initiation’’

is up-regulated in windows 3 and 4. This is consistent with

our identification of those windows as the Trophozoite and

Schizont stages, as replication was identified as a process

active during these stages in Bozdech et al. (2003).

Discussion

We had developed GOALIE (Gene-ontology for algorith-

mic logic and invariant extraction), a systems biology

application, with the aim of extracting global and dynamic

perspectives (e.g., invariants) that could be inferred col-

lectively over a temporal gene-expression dataset. Such

perspectives are important in order to obtain a process-

level understanding of the underlying cellular machinery;

especially how cells respond to environmental cues.

GOALIE uncovers formal temporal logic models of bio-

logical processes by redescribing time course microarray

data into the vocabulary of biological processes and then

piecing these redescriptions together into a Kripke struc-

ture. In such a model, possible worlds encode

transcriptional states and are connected to future possible

worlds by state transitions. An HKM (hidden Kripke

model) constructed in this manner then supports various

query, inference, and comparative assessment tasks,

besides providing descriptive process-level summaries.

The formal basis for GOALIE is a multi-attribute infor-

mation bottleneck (IB) formulation, where only the most

relevant information is retained about states and their

transitions while at the same time compressing the number

of syntactic signatures used for representing the data.

Because its input data is purely syntactic, without any

explicit signal about why a gene would respond coordi-

nately with other genes and why it must do so at a

particular instant after sensing an external event, it may

appear surprising that a phenomenological model recov-

ered by GOALIE would even possess any functional

semantics. The ontologies, even though nonspecific,

incomplete and rudimentary, are able to bestow a skeletal

labeling to the possible worlds in the dynamic model and

thus, focus our attention to the set of tasks that must be

orchestrated precisely to perform a biological function.

Because of this attractive feature, GOALIE is expected to

be an ideal tool for additional annotation of other unknown

genes and consequent expansion of our biological knowl-

edge. Similarly, GOALIE could also seek to augment the

underlying phenomenological model with causal rules and

thus, shift from its focus on the proximate questions of

‘‘how’’ to ultimate questions of ‘‘why’’ (Friedman et al.

2000; Kleinberg and Mishra 2008).

We also suspect that what is true of the biological

examples presented here may also hold for many other

domains: e.g., financial domains with syntactic variables:

prices and volumes of stocks, and information retrieval

domains with syntactic variables: click streams or hyper-

links. The GOALIE system is designed to be highly

Fig. 3 Gantt chart view of

selected GO terms. Each bar

represents a window of time,

with up-regulated terms labeled

in red, down regulated terms in

green and terms not enriching

any cluster in the window

labeled with black
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inter-operable in a domain-agnostic manner and will seek

to extract meanings in many natural and artificial uni-

verses, such as these and others.

More narrowly, this paper demonstrated that using

GOALIE, one is able to successfully recover the main

structure of the IDC of Malaria parasite P. falciparum in a

completely automated manner. As highlighted earlier,

GOALIE accomplished this feat with only prior knowledge

of the underlying biology limited to ontological descrip-

tions and without the use of frequency based methods.

Even in the case of data that is not fully described by GO

terms, it is shown that one is still able to discover its

characteristic processes. Future work will include the

examination of unannotated genes to determine novel

functional characteristics, as well as a study of the causal

relations between genes to facilitate richer descriptions of

the underlying biology. GOALIE is currently available for

Windows XP on request from the authors.
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Cilibrasi R, Vitányi P (2005) Clustering by compression. IEEE Trans

Inf Theory 51(4):1523–1545

Clark W (1952) The Gantt chart. Pitman and Sons, London

Clarke EM, Grunberg O, Peled DA (1999) Model checking. MIT

Press

Cover TM, Thomas JA (1991) Elements of information theory.

Wiley-Interscience, New York

Emerson EA (1997) Model checking and the Mu-calculus. In:

DIMACS series in discrete mathematics, vol 31, pp 185–214

Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short

time series gene expression data. BMC Bioinformatics 7(1):191

Forum, MPI (1994) MPI: a message-passing interface standard. Int J

Supercomput Appl 8(3/4):159–416

Friedman N et al (2000) Using Bayesian networks to analyze

expression data. Comput Biol 7(3/4):601–620

Kleinberg S, Mishra B (2008) Inferring causation in time course data

with temporal logic (submitted)

Kleinberg S et al (2006) Remembrance of experiments past: a

redescription approach for knowledge discovery in complex

systems. In: Minai A, Braha D, Bar-Yam Y (eds) Proceedings of

ICCS’06. 6th international conference on complex systems,

Boston, MA, June 2006

Kleinberg S et al (2008) Modal logic, temporal models and neural

circuits: what connects them. CIMS technical report TR2007-

907
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