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Abstract In systems biology, molecular interactions are

typically modelled using white-box methods, usually based

on mass action kinetics. Unfortunately, problems with

dimensionality can arise when the number of molecular

species in the system is very large, which makes the system

modelling and behavior simulation extremely difficult or

computationally too expensive. As an alternative, this

paper investigates the identification of two molecular

interaction pathways using a black-box approach. This type

of method creates a simple linear-in-the-parameters model

using regression of data, where the output of the model at

any time is a function of previous system states of interest.

One of the main objectives in building black-box models is

to produce an optimal sparse nonlinear one to effectively

represent the system behavior. In this paper, it is achieved

by applying an efficient iterative approach, where the terms

in the regression model are selected and refined using a

forward and backward subset selection algorithm. The

method is applied to model identification for the MAPK

signal transduction pathway and the Brusselator using

noisy data of different sizes. Simulation results confirm the

efficacy of the black-box modelling method which offers

an alternative to the computationally expensive conven-

tional approach.
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Introduction

The phenotypic behavior of living organisms is determined

by the underlying and highly complex interactions of

molecules, for example proteins, DNA, RNA or other

biochemical substances (Kitano 2002). These interactions

can occur at an extremely fast rate and therefore the overall

dynamics of the cell or higher organism is highly nonlin-

ear. One of the challenges of systems biology is to utilize

proven techniques that have been developed in other areas,

such as control engineering, and apply these to biological

systems in order to try to gain a better understanding of the

function and behaviour of the underlying molecular pro-

cesses (Wolkenhauer et al. 2005; Wellstead 2007).

This paper investigates two such processes that have

been widely studied in the literature: the mitogen-activated

protein kinase (MAPK) cascade (Gormley et al. 2007;

Sasagawa et al. 2005; Huang and Ferrell 1996; Kholo-

denko 2000) and a biological oscillator known as the

Brusselator (Karafyllis et al. 1997; Peng and Wang 2005;

Wang et al. 2002; Zimmerman 2006). The MAPK cascade

can be found in all eukaryotic cells and is an important

signal transduction pathway that helps to activate several

transcription factors involved in the regulation of cell cycle

activity (Widmann et al. 1999). The Brusselator is a sim-

plified model of biochemical oscillations; a behaviour that

is the basis for much of the dynamic behaviour found in

many cellular systems. For example, the regulation of

enzyme activity produces metabolic oscillations, circadian

rhythms originate from the regulation of gene expression,

P. Gormley (&) � K. Li � G. W. Irwin

School of Electronics, Electrical Engineering and Computer

Science, Queen’s University Belfast, Belfast, BT9 5AH, UK

e-mail: pgormley02@qub.ac.uk

K. Li

e-mail: k.li@qub.ac.uk

123

Syst Synth Biol (2007) 1:145–160

DOI 10.1007/s11693-008-9012-5



and oscillations in intracellular calcium levels are respon-

sible for the control of cell receptor activity which in turn is

responsible for intercellular signalling (Goldbeter 2002).

Therefore, identifying the key features and dynamics in

these types of molecular processes is important for

understanding system behaviour and also for possible

regulatory control of biological systems.

Throughout the systems biology literature, the most

common approach to representing these molecular interac-

tions and signalling pathways is by ordinary/partial

differential equations (Levchenko et al. 2000; Chen et al

2004; Markevich et al. 2007). Such equations describe

concentration levels of the individual molecular species in

the pathway over time. In control engineering, this is com-

monly known as white-box modelling as the models have

been derived from chemical rate equations of the underlying

biological process to provide a complete picture of the sys-

tem at any time. Such models are perfectly feasible when the

number of molecular species in the pathway is relatively

small (such as in the cases investigated here). However, in

other biological systems the number of species interactions

can become incredibly large, resulting in the model

becoming too complex to analyse and even impossible to

solve. The work described here therefore takes a different

approach by adopting simplified black-box identification of

these biological systems using a linear-in-the-parameters

model. This class of nonlinear model comprises of a linear

combination of some model terms or basis functions, that are

a function of past system states of interest, and has been used

to model a wide range of nonlinear dynamic systems in the

literature. Some examples include the polynomial nonlinear

AutoRegressive model with eXogenous inputs (polynomial

NARX), neurofuzzy networks, and radial basis function

(RBF) networks (Chen et al. 1989; Haber and Unbehauen

1990; Sjberg et al. 1995; Li et al. 2005, 2006; Peng et al.

2006). It has been shown that linear-in-the-parameters

models have broad approximation capabilities and have been

widely used in modelling and control of complex nonlinear

engineering systems (Chen et al. 1989; Harris et al. 2002;

Zhu and Billings 1996; Li et al. 2004; Huang et al. 2005;

Hunt et al. 1992).

When building a linear-in-the-parameters model, a

major problem is that a very large pool of candidate model

terms has to be considered initially (Mao and Billings

1997; Li et al. 2005; Haber and Unbehauen 1990), from

which a useful and simplified model is then generated

based on the parsimonious principle (Ljung 1987;

Söderström and Stoica 1989), of selecting the smallest

possible model, in terms of size, which explains the data. In

the linear regression field, this problem is referred to as the

subset selection (Draper and Smith 1981; Hastie et al.

2001; Lawson and Hanson 1974; Miller 1990; Li et al.

2006). However, in modelling nonlinear dynamic systems,

the size of the term pool can be so huge (Mao and Billings

1997) that to select an optimal subset is computationally

too expensive. For example, (Mao and Billings 1997)

pointed out that exhaustive search of the optimal model

with 20 possible model terms involves 2.43 9 1018 search

paths—the so-called curse of dimensionality.

Among various subset approaches, the forward methods

are among the most effective for model building where a

very large term pool has to be considered. In particular, the

orthogonal least squares (OLS) method (Chen et al. 1989;

Chen and Wigger 1995; Zhu and Billings 1996), which

performs the forward stepwise model selection using

modified Gram–Schmidt (MGS) orthogonalization, is the

most popular one. In forward model selection, significant

terms are selected one-by-one, and the net decrease in the

cost function due to each newly selected term can be

computed without explicitly solving the least-squares. Thus

the computational complexity is significantly reduced and

the dimensionality problem can be effectively relieved. To

further improve the computational efficiency and numeri-

cal stability, other fast algorithms have been proposed

(Li et al. 2005; Chen and Wigger 1995; Korenberg 1988).

Despite the great efficiency of forward stepwise meth-

ods in model selection, the major disadvantage is that the

model obtained is not optimal (Sherstinsky and Picard

1996). To overcome this problem, the orthogonal estima-

tion algorithm has been augmented with genetic search

procedures to search the optimal model (Mao and Billings

1997). However, it is well known that genetic algorithms

suffer from slow and premature convergence (Andre et al.

2001; Peng et al. 2004). Given the fact that the search for

the optimal model is a mixed integer problem and that

numerous local minima exist, there is no guarantee that the

global optimum can be produced in practice through a

genetic search. Moreover, the computational complexity is

usually extremely high, and it is also impossible to analyse

this due to the stochastic sampling nature of genetic search.

In this paper, an iterative subset selection approach is used

for identification of the nonlinear dynamics of molecular

interactions that underly many biological systems. The

model terms are selected and refined within one analytic

framework, leading to improved model compactness over

forward subset selection methods. It will be shown that the

proposed method can capture the inherent dynamics of these

systems using only sparse input–output data of system states,

where the sets are of varying size. It will be demonstrated that

the method is of sufficient accuracy, even considering system

noise, to offer a simple alternative to the more computa-

tionally expensive white-box approach.

This paper is organised as follows. The next section

describes the main method used to select the optimal model

structure. Following that, the two biological systems to be

investigated are introduced. The iterative subset selection
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method is then applied to modelling simulations of these

molecular processes using a polynomial NARX structure.

Finally some conclusions are drawn.

The modelling method

The method applied to modelling the biological systems in

this paper is a polynomial NARX model. This type of

model uses regression of system input–output data to create

a model structure and has been applied to modelling many

types of conventional nonlinear systems throughout the

control engineering literature. The ability of these models

to approximate any nonlinear function to arbitrary accuracy

is well known (Ljung 1987). They provide a method of

mapping input states to system output, where the internal

structure of the target system is usually not considered.

These are relatively simple linear-in-the-parameters mod-

els, where the output at any time is a linear combination of

previous input/output states of the system. For readers less

familiar with this type of approach, the following subsec-

tion provides a brief introduction to the technique.

Introduction to polynomial NARX models

A general nonlinear dynamic system can be represented as:

yðtÞ¼ f ðyðt�1Þ; . . .;yðt�nyÞ;uðt�1Þ; . . .;uðt�nuÞÞþ�ðtÞ
¼ f ðxðtÞÞþ�ðtÞ

ð1Þ

where the output of the system y(t) at any time is a function

of previous output and input states u(t) plus some unknown

noise variation �ðtÞ; where nu and ny are the maximal input/

output lags, x(t) is the model ‘input’ vector, and f(�) is some

unknown (usually nonlinear) function.

Now suppose the systems to be investigated are repre-

sented by a polynomial NARX model, which is a linear-in-

the-parameters model of the form:

yðtÞ ¼
XM

i¼1

hiuiðxðtÞÞ þ �ðtÞ ð2Þ

where u is the regression matrix which contains M can-

didate model terms and h is the corresponding vector of

model parameters to be estimated.

The regression matrix u is constructed from a polynomial

expansion of previous input and output states of the target

system. The main steps taken to construct it are as follows:

1. First perturb the target system to obtain a set of input–

output data evenly sampled over a period of time.

2. Now taking the input u(t) and output y(t) vectors of N

samples each, create new data vectors by delaying u(t)

and y(t) by a number of time points to create the model

input vector x(t). So for example a system lag of 3

would create a model input vector of:

xðtÞ ¼ fyðt � 1Þ; yðt � 2Þ; yðt � 3Þ; uðt � 1Þ;
uðt � 2Þ; uðt � 3Þg

ð3Þ

3. Next perform a polynomial expansion of the model

input vector x(t) to create the full regression matrix u.

So for a polynomial expansion of 3, u would be a N

9 M matrix containing M = 14 column vectors of

linear and nonlinear candidate terms of up to 2nd

order.

Now the problem is to select the best n regressor terms

p1,…,pn [ [u1,…,uM] so that the sum squared error (SSE)

between the target system and model output is minimised:

min
hi;pi

XN

t¼1

yðtÞ �
Xn

i¼1

pihi

 !2

ð4Þ

Through minimising the cost function, the model parame-

ters are also estimated and the significance of each term in

the regression matrix towards the true system can be

established. Terms that are unrelated to the true system will

be found to have an insignificant contribution to minimis-

ing the cost function and hence, the most important

regressor terms can be selected to be included in the model.

Obviously, when building a model, both the order of

expansion and number of delays selected for the input

vector will affect the performance. Increasing these

parameters means that the subset selection algorithm will

be more likely to converge upon the optimal model,

however, this will also increase the solution space as M

tends towards infinity and therefore the computational

complexity of finding the solution becomes too high.

Implementation example

To illustrate the basic concept proposed in the paper,

consider the following true system which is unknown to the

modeler:

yðtÞ ¼ �1:7yðt � 1Þ � 0:8yðt � 2Þ
þ uðt � 1Þ þ 0:8uðt � 2Þ þ �ðtÞ

ð5Þ

Now, if a NARX model is created with five delays on the

model input vector with a polynomial expansion of order 2,

the full model can be constructed as:

yðtÞ ¼ fyðt � 1Þ; . . .; yðt � 5Þ; uðt � 1Þ; . . .; uðt � 5Þ;
y2ðt � 1Þ; . . .; yðt � 1Þ � uðt � 5Þghþ �ðtÞ ð6Þ

Now comparing this to the true system shows that only

linear terms are required in this case, so ideally the model

subset selection algorithm will only select these terms

when performing the regression, while ignoring the insig-

nificant nonlinear terms.
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However, suppose a set of observations (samples) has

been obtained from the true system, based on which a run

of the forward selection algorithm might have selected the

following four terms:

yðtÞ ¼ � 1:655yðt � 1Þ � 0:225yðt � 3Þ
þ 0:95uðt � 1Þ þ 0:68uðt � 2Þ � yðt � 1Þ

ð7Þ

Comparing this with the true system shows that only two of

the most significant terms have been selected, even though

the model may still be able to give a reasonable approxi-

mation of the system.

Now if instead we perform the forward and backward

subset selection algorithm proposed in this paper, the terms

selected are:

yðtÞ ¼ � 1:689yðt � 1Þ � 0:775yðt � 2Þ
þ 0:998uðt � 1Þ þ 0:830uðt � 2Þ

ð8Þ

This algorithm has selected the most significant model

terms and has therefore converged upon the optimal model

structure resulting in greater transparency in the model and

an improved modelling performance.

The 2-stage algorithm

The two-stage identification algorithm used to perform the

subset selection is only briefly described in the following

subsections. A more detailed algorithm can be found in the

Appendix section.

Forward subset selection

This section briefly outlines the first stage of the identifi-

cation method where the algorithm uses forward selection

to generate an initial model. The model terms are chosen

one-by-one from a pool of candidates so that each time the

cost function is reduced by the maximum amount. This

procedure is repeated until k model terms have been

selected, where k is determined by the model structure

selection criterion.

To begin with, consider a general nonlinear dynamic

system (Chen et al. 1989; Li et al. 2005, 2006)

yðtÞ ¼ f ðyðt � 1Þ; . . .; yðt � nyÞ; uðt � 1Þ; . . .; uðt � nuÞÞ
¼ f ðxðtÞÞ

ð9Þ

where u(t) and y(t) are the system input and output at

sample time instant t, nu and ny are the corresponding

maximal lags, x(t) represents the model ‘input’ vector, and

f(�) is some unknown nonlinear function.

Now suppose in this case a polynomial NARX model is

used to represent system (9), then

yðtÞ ¼
XM

i¼1

hiuiðxðtÞÞ þ eðtÞ ð10Þ

where ui(�), i = 1,…, M are candidate basis functions and

e(t) is the model residual. If a sequence of N data

samples {x(t), y(t)}, t = 1,…, N is to be used for model

identification, Eq. (10) can be rewritten as:

y ¼ UHþ N ð11Þ

where U ¼ ½u1; . . .;uM � 2 <N�M with ui ¼ ½uiðxð1ÞÞ; . . .;

uiðxðNÞÞ�T 2 <N for i = 1,…, M, yT ¼ ½yð1Þ; . . .; yðNÞ�
2 <N ;H ¼ ½h1; . . .; hM �T 2 <M , and NT ¼ ½eðt1Þ; . . .; eðtNÞ�
2 <N .

The model selection aims to select, say k, regressor

terms, denoted as p1,…,pk, from all the candidates,

uið�Þ; i ¼ 1. . .;M (M is usually � k), resulting in a linear-

in-the-parameters model

y ¼ PkHk þ e ð12Þ

which best fits the data samples such that the sum squared-

error (SSE) is minimised where

JðPkÞ ¼ min
Uk2U;Hk2<k

feTeg

¼ min
Uk2U;Hk2<k

fðy�Uk
bHkÞTðy�Uk

bHkÞg
ð13Þ

Here Uk is an N 9 k matrix composing of k columns from

U; bHk denotes the corresponding regression coefficient

vector, and the selected regression matrix

Pk ¼ ½p1; . . .; pk� ð14Þ

If Pk is of full column-rank, the least-squares estimate of

the regression coefficients in (12) is given by

bHk ¼ ðPT
k PkÞ�1PT

k y ð15Þ

Having selected k model terms, suppose that one more is

added into the model with the corresponding regressor term

pk+1. The net reduction in the cost function due to adding

this term is now given by

DJkþ1ðpkþ1Þ ¼ JðPkÞ � JðPkþ1Þ ð16Þ

Evaluating the contribution of all remaining terms requires

some redefinitions:

U ¼ ½Pk;CM�k�
CM�k ¼ ½/kþ1; � � � ;/M�

ð17Þ

Now clearly the first k regressors in U (i.e. Pk) correspond

to the selected k terms, while the remaining M-k terms

CM-k = [/k+1,_, /M] make up the candidate pool CM-k.

Using (16) the contribution of all remaining candidate

terms in U = {/1,…,/M} can now be calculated and the

term from CM-k which gives the maximum contribution is

then selected as the (k + 1)th model term. For example, if

the index j of the next most significant term is given by
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j ¼ arg max
k\i�M

fDJkþ1ð/iÞg ð18Þ

then /j is selected as the (k + 1)th model term and re-

labelled as pk+1 = /j. The regression matrix of the selected

model is then Pk+1 = [Pk pk+1], while the candidate pool is

reduced in size and becomes CM-k-1. The remaining

candidates in CM-k-1 are re-indexed as /k+2,_,/M.

Finally, the full regression matrix U changes to

U = [Pk+1 CM-k-1].

This forward selection is repeated until the desired

number of model terms (k) has been reached, or the cost

function is reduced to a given level, or a certain stop cri-

terion has been reached, such as Akaike’s information

criterion (AIC) (Akaike 1974) or the minimum description

length (MDL) (Gustafsson and Hjalmarsson 1995). Once

the initial model has been constructed, the model can be

refined using a backward selection approach to replace

insignificant model terms in the original structure.

Backward model refinement

Each iteration of the forward selection algorithm described

above selects one new term and adds this to the model. The

term is chosen as the one that produces the maximum

reduction in the cost function. However, there is usually

some correlation between the regressor terms. Therefore

terms that are selected subsequently may affect the con-

tribution of previously selected ones. In other words, while

a previously selected model term may once have provided

a large contribution to reducing the cost, due to a newly

introduced term, its contribution can suddenly become

insignificant. This inefficiency in forward subset selection

methods has been explored in (Sherstinsky and Picard

1996). To overcome this a second stage is introduced

whereby all the previously selected model terms are

reviewed and the model is refined. Any insignificant terms

are removed and/or replaced until an optimal model is

achieved for a given selection criterion.

Assume an initial model with n regressor terms has been

generated using forward selection. Then suppose a term,

say pi, 1 B iB n, is to be reviewed. Its contribution to the

cost (SSE) reduction DJn (pi) needs to be compared to the

individual in the pool of candidate terms offering the

largest contribution to cost reduction. Denoting the maxi-

mum candidate contribution as DJnð/jÞ, then the

significance of a model term pi can be checked by identi-

fying the maximum of the contribution of all the other

candidates from

DJnð/jÞ ¼ maxfDJnð/sÞ; s ¼ nþ 1; . . .;Mg ð19Þ

If DJnð/jÞ[ DJnðpiÞ; pi is said to be insignificant, and

will be replaced with /j as the new regressor term, while pi

is returned to the candidate pool, taking the position of /j .

Such an exchange of model terms will further reduce the

SSE by DJnð/jÞ � DJnðpiÞ, which means that the model

compactness is further improved and an optimal model

structure can be obtained.

The experimental results

The following sections now provide a description of the

steps taken to perform the identification of two simulated

biological systems using the proposed method from the

previous section. The two systems investigated here are the

MAPK signalling pathway and the Brusselator. In each

case a brief introduction to the system is given, along with

a description of the modelling process. Finally, the mod-

elling results obtained using the two-stage algorithm are

compared with the conventional forward selection

approach.

The MAPK cascade

The MAPK cascade is an important intracellular signalling

pathway that is involved in producing many different cel-

lular responses, including cell growth and proliferation

(Kholodenko 2000). As such, it is an important pathway

that can even be implicated in cancer development when its

normal signalling process malfunctions. The pathway

describes the response of a cell when it detects the binding

of extracellular signalling molecules to receptor proteins at

the surface of the cell membrane. The binding process

results in conformational changes on the part of the

receptor that is below the membrane surface, which in turn

triggers the activation of a cascade of intracellular signal-

ling proteins. This is a three-tiered cascade where the

kinase at each level is activated through dual phosphory-

lation at two amino acid sites by the activated kinase of the

previous level (see Fig. 1). At the end of the cascade, the

terminal signalling protein activates target proteins which

alter the behaviour of the cell, for example, by regulating

the expression of certain genes, by altering cell shape (by

cytoskeletal proteins) or by changing cell metabolism

(Alberts et al. 2002).

Simulation of the MAPK cascade

To create a black-box model of the MAPK cascade, a set of

input–output data is required to perform model estimation

and validation. A simulation of the signalling pathway was

performed to generate a sufficiently large data set. The

mathematical model used for the simulation is based on

one derived in (Kholodenko 2000) which includes the
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addition of negative feedback. This is an 8th order state

model with a single-input and single-output (SISO). The

model uses Michaelis–Menten enzyme kinetics to derive

chemical rate equations for each of the pathway connec-

tions in the cascade. The rate equations are given in

Tables 1 and 2. After setting the initial concentrations of

each species and rate constants, the physical equations can

be solved for a particular time series.

Identification of the MAPK cascade

A data set of 800 samples was generated from the simu-

lation of the MAPK signalling cascade. In order to simulate

the effects of measurement noise, a signal of uniformly

distributed random noise was generated for each time point

and added to the data. The noise was at a level of 30 dB of

the signal power of the original data. Finally, the data was

normalised to within the range 0–1 and the corresponding

statistical measures for this set can be seen in Table 3.

Ideally when performing this type of regression mod-

elling, a large data set (typically 1,000–2,000 samples) is

used to make certain that the model will capture the entire

range of possible dynamics of the system. However, when

dealing with biological systems the amount of data

Fig. 1 Kinetic pathway diagram of the MAPK cascade. The single

and dual phosphorylation of each molecule is represented by the

addition of a ‘-P’ and ‘-PP’ respectively to the name of the kinase,

where MAPK-PP represents the output activated form of the kinase.

Ras (or MKKKK) is the input protein that triggers the activation of

the kinase at the top level of the cascade

Table 1 Kinetic rate equations for the concentrations of each of the

eight types of molecule found in the MAPK cascade (Kholodenko

2000)

d[MKKK]/dt = v2-v1

d[MKKK-P]/dt = v1-v2

d[MKK]/dt = v6-v3

d[MKK-P]/dt = v3 + v5-v4-v6

d[MKK-PP]/dt = v4-v5

d[MAPK]/dt = v10-v7

d[MAPK-P]/dt = v7 + v9-v8-v10

d[MAPK-PP]/dt = v8-v9

Moiety conservation relations:

[MKKK]total = [MKKK] + [MKKK-P] = 100

[MKK]total = [MKK] + [MKK-P] + [MKK-PP] = 300

[MAPK]total = [MAPK] + [MAPK-P] + [MAPK-PP] = 300

Table 2 Rate equations and parameters for each of the 10 reactions

in the MAPK pathway diagram (Fig. 1)

Reaction Rate equation

v1 k1 � [Ras0] � [MKKK]/((1 + ([MAPK-PP]/

KI)
n) � (K1 + [MKKK]))

v2 V2 � [MKKK-P]/(K2 + [MKKK-P])

v3 k3 � [MKKK-P] � [MKK]/(K3 + [MKK])

v4 k4 � [MKKK-P] � [MKK-P]/(K4 + [MKK-P])

v5 V5 � [MKK-PP]/(K5 + [MKK-PP])

v6 V6 � [MKK-P]/(K6 + [MKK-P])

v7 k7 � [MKK-PP] � [MAPK]/(K7 + [MAPK])

v8 k8 � [MKK-PP] � [MAPK-P]/(K8 + [MAPK-P])

v9 V9 � [MAPK-PP]/(K9 + [MAPK-PP])

v10 V10 � [MAPK-P]/(K10 + [MAPK-P])

The Michaelis–Menten constants (KI = 9, K1 = 10, K2 = 8, K3-

K10 = 15) and molecular concentrations are given in nM. [Ras0] is the

initial concentration of the input protein or MKKK kinase. The cat-

alytic rate constants (k1 = k3 = k4 = k7 = k8 = 0.025) and the

maximal enzyme rates (V2 = 0.25, V5 = V6 = 0.75, V9 = V10 =

0.5) are given in units of s-1 and nM�s-1 respectively (Kholodenko

2000)

Table 3 Statistics of the input–output data sets used for training and

validation

Training Validation

ut yt ut yt

Mean 0.5255 0.4158 0.5036 0.4494

Std. deviation 0.2871 0.2882 0.2930 0.2778

Min–max 0–1 0–1 0–1 0–1

Ras corresponds to the input data vector (ut) and MAPK-PP corre-

sponds to the output data vector (yt)
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available using current experimental techniques is much

smaller than this. For example a typical differential equa-

tion model in the Systems Biology literature is fitted to a

set of around 30–50 data points. This could be a potential

stumbling block for applying the proposed two-stage

algorithm to model biological systems. However, provided

the derived model is able to perform well when validated

on previously unseen data, then the model can be said to be

sufficiently accurate. To investigate the effect that data size

has on performance, models were derived using subsets of

the original 800 samples, beginning with 30 samples and

gradually increasing this up to 400 samples.

In each case a nonlinear polynomial AutoRegressive

model with eXogenous inputs (NARX), with polynomial

order up to 3, was used to construct the regression model.

The model input variables Ras (ut) and MAPK-PP (yt),

with delays of up to 3 time steps each, were used to con-

struct the full model set, resulting in a candidate pool of

285 terms. First the forward selection procedure was per-

formed (using the MDL as the stop criterion) to select a

subset of terms from the pool and estimate the corre-

sponding model parameters. Then the obtained model

structure was validated on a new set of 400 data points not

provided to the algorithm during estimation. The process

was then repeated for each set, this time using the proposed

two-stage identification algorithm, to perform both forward

and backward subset selection in each case. As mentioned

in the previous section, the forward approach is not optimal

therefore the two-stage method should obtain a more

accurate model. To compare the performances, the results

of training and validation for both methods on each data set

are listed in Table 4.

From Table 4, it is clear that the proposed two-stage

method outperformed the conventional forward selection

method in terms of modelling accuracy. As expected the

performance also increases, particularly under validation,

as the amount of data available to the algorithm increases.

To get an indication of the ability of this method to

approximate the MAPK system, Figs. 2 to 11 display the

model output superimposed over the target output during

the estimation and validation stages. As can be seen in

Fig. 2 the polynomial NARX model can be easily fitted to

the data when only 30 samples are available from the set.

Unfortunately this model is then quite poor when it

attempts to be validated on new unseen data in Fig. 7. As

the number of samples used at the estimation stage is

increased (Figs. 2–6), the performance of the models under

validation also improves (Figs. 7–11). In fact even using

only 100 samples for estimation (Fig. 4) the validation

performance has reached an acceptable level (Fig. 9) and

the NARX model can approximate the MAPK pathway to

sufficient degree of accuracy.

Taking the case of the models generated using only 100

samples as an examples, the model structure and parame-

ters derived from both methods are given in Tables 5 and

6. Using the MDL as the stop criterion, the forward subset

selection procedure produced a model structure containing

only eight terms out of the entire pool of 285 candidates.

When the proposed two-stage forward and backward

selection method was used, a new optimal subset of eight

terms was selected instead. The different subsets of terms

and parameters obtained by the two approaches can be

compared in Tables 5 and 6. It is obvious from looking at

the tables that these model structures are very simple,

consisting only of a linear combination of eight (linear/

nonlinear) terms and associated parameters. Therefore as

already stated in previous sections, these types of models

are much simpler than their differential equation counter-

parts and offer a potential solution to the problem of

solving complex high-dimensional systems containing a

large number of variables.

The Brusselator

The second example describes the black-box identification

of a biochemical oscillator model known as the Brusselator

Table 4 MAPK training and validation results with mean squared

error (MSE) between the model and target output given for different

sized data sets

No. samples Training Validation

Forward Two-stage Forward Two-stage

30 0.0012 0.0008 0.0285 0.0199

50 0.0025 0.0015 0.0118 0.0088

100 0.0044 0.0029 0.0101 0.0037

200 0.0028 0.0022 0.0038 0.0031

400 0.0008 0.0006 0.0010 0.0008
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Fig. 2 MAPK model estimation using only 30 data points
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Fig. 3 MAPK model estimation using only 50 data points
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Fig. 4 MAPK model estimation using 100 data points
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Fig. 5 MAPK model estimation using 200 data points
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Fig. 6 MAPK model estimation using 400 data points
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Fig. 7 MAPK model validation using only 30 data points
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Fig. 8 MAPK model validation using only 50 data points
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(Karafyllis et al. 1997). Biochemical oscillations are the

underlying basis for much of the dynamic behaviour found

in many cellular systems. Many biological processes that

exhibit oscillatory behaviour are fundamental to life itself.

A typical example of this is the cell cycle, where cell

growth and division are controlled by oscillations in the

levels of certain proteins and therefore by mitotic oscilla-

tions (Tyson 1991; Novak and Tyson 1997; Chen et al.

2004). Therefore, identifying the key features and

dynamics in these biochemical oscillations is important for

understanding the underlying dynamical behaviour and for

possible regulatory control of these biological systems.

Simulation of the Brusselator

As with the previous example, a simulation of the Brus-

selator was performed to generate a set of input–output

data for model estimation and validation. The model used

for the simulation is based on the four biochemical reaction

equations given below:
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Fig. 9 MAPK model validation using 100 data points
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Fig. 10 MAPK model validation using 200 data points
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Fig. 11 MAPK model validation using 400 data points

Table 5 MAPK model structure obtained from forward selection

Selection order Term index Terms Param’s SSE

1 6 yt-1 -3.5189 2.1032

2 7 yt-2 1.9256 0.8905

3 51 y2
t-1 -2.5403 0.7060

4 252 y2
t-1yt-2 2.0019 0.6166

5 10 yt-5 0.1762 0.5361

6 139 ut-2ut-4ut-5 -0.0910 0.5117

7 254 y2
t-1yt-4 -0.4038 0.4928

8 276 y3
t-3 0.1814 0.4403

The parameters Pk and regressor terms Hk selected are given for the

case of 100 training samples. This method selected the following

eight terms from the pool of 285 candidates: {6, 7, 51, 252, 10, 139,

254, 276}

Table 6 MAPK model structure obtained from two-stage, forward

and backward subset selection

Selection order Term index Terms Param’s SSE

1 132 ut-2ut-3ut-5 -0.0990 2.1193

2 56 y2
t-2 2.1606 0.9038

3 51 y2
t-1 -3.3213 0.7320

4 251 y3
t-1 1.5365 0.3664

5 57 yt-2yt-3 -1.1189 0.3410

6 8 yt-3 0.9515 0.3163

7 7 yt-2 -3.1124 0.2984

8 6 yt-1 3.8819 0.2851

The parameters Pk and regressor terms Hk selected are given for the

case of 100 training samples. The two-stage method selected a new

set of terms: {132, 56, 51, 251, 57, 8, 7, 6}
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A �! X

2Xþ Y �! 3X

B þ X �! Yþ C

X �! D

This is a 6th order state model with a 2 inputs and 2

outputs. The inputs are the concentrations of molecular

species A and B, and the outputs are the oscillatory species

of interest X and Y. The model uses simple mass–action

kinetics to derive the chemical rate equations for each of

the reactions taking place in the model. From this, the rate

equations for the oscillatory species of interest are derived

for the Brusselator model as:

dX

dt
¼ k1A� k3BX þ k2X2Y � k4X ð20Þ

dY

dt
¼ k3BX � k2X2Y ð21Þ

where X and Y are the outputs, A and B are input species

variables and k1, k2, k3 and k4 are the rate constants. After

setting the initial concentrations of A = 0.5, B = X =

Y = 3.0 and C = D = 0.0 and rate constants of k1 =

k2 = k3 = k4 = 1, the differential equations can be solved

to generate a particular time series.

Identification of the Brusselator

From the above simulation, a data set of 800 samples was

again generated to be used for model estimation and vali-

dation. As before, a uniformly distributed random noise

signal was added to the data and then the sample values

were normalised to within the range 0–1. Statistical mea-

sures from this new data are given in Table 7.

This time a polynomial NARX model of order 3, and

inputs X(t-1), Y(t-1), A(t-1), B(t-1), was used to con-

struct the full model set, resulting in a candidate pool of

454 terms. The forward subset selection procedure was

performed first, and this time AIC was used as the stop

criterion. For the case of modelling X(t) as the system

output, 12 terms were selected from the entire candidate

pool. The process was then repeated using the iterative

forward and backward subset method. The different subsets

of terms and parameters obtained by the two methods can

be compared in Tables 8 and 9.

The modelling result produced by the two methods for

training and validation (on different sized data sets of 30–

400 samples) are listed in Table 10. Figures 12–16 show

the variation in X(t) over time during the estimation stage,

whereas Figs. 17–21 show this variation while attempting

to validate the model over previously unseen data. These

Table 7 Statistics of the input–output data sets used for training and

validation

Training Validation

Mean Std. deviation Mean Std. deviation

A 0.4906 0.2868 0.4863 0.2922

B 0.4981 0.2870 0.4911 0.2961

X 0.2014 0.1815 0.1735 0.1631

Y 0.4491 0.2103 0.4300 0.2087

A and B correspond to the input data sets (ut) and X an Y correspond

to the output data sets (yt). All data set values were normalised to

within the range 0.0–1.0

Table 8 Brusselator model structure for concentration of X obtained

from forward selection

Selection order Term index Terms Param’s SSE

1 73 Xt-1Yt-1 0.4519 0.2788

2 75 Xt-1Yt-3 0.1368 0.1295

3 439 Xt-3Y2
t-1 -0.0669 0.1046

4 79 Xt-2Yt-2 0.0761 0.0978

5 429 Xt-2Y2
t-1 0.0847 0.0926

6 425 Xt-2X2
t-3 1.4923 0.0864

7 294 B2
t-1Xt-2 -0.4418 0.0816

8 11 Yt-2 -0.0073 0.0750

9 419 Xt-1Y2
t-3 -0.0093 0.0716

10 43 At-3Yt-1 -0.0142 0.0695

11 147 At-1Bt-3Yt-3 0.0126 0.0666

12 402 X2
t-1Yt-1 -0.5576 0.0645

The parameters Pk and model terms Hk are given for the case of no. of

training samples = 100. The forward and two-stage methods both

selected a different set of terms from the pool of 454 candidates

Table 9 Brusselator model structure for concentration of X obtained

from two-stage, forward and backward subset selection

Selection order Term index Terms Param’s SSE

1 232 At-2Y2
t-2 -0.0022 0.2969

2 280 At-3X2
t-3 0.8045 0.1325

3 429 Xt-2Y2
t-1 0.0929 0.0986

4 323 Bt-1Xt-2Yt-2 -0.1898 0.0831

5 404 X2
t-1Yt-3 -0.1552 0.0739

6 43 At-3Yt-1 -0.0672 0.0703

7 402 X2
t-1Yt-1 -2.1765 0.0664

8 260 At-3Bt-2Yt-2 0.0879 0.0617

9 414 Xt-1Y2
t-1 -0.0299 0.0604

10 439 Xt-3Y2
t-1 -0.0929 0.0594

11 75 Xt-1Yt-3 0.1809 0.0577

12 73 Xt-1Yt-1 0.8531 0.0523

The parameters Pk and model terms Hk are given for the case of no. of

training samples = 100. The forward and two-stage methods both

selected a different set of terms from the pool of 454 candidates

154 P. Gormley et al.

123



results again illustrate that the two-stage method outper-

forms the conventional forward approach in terms of

modelling accuracy as was predicted. The figures also

show that the the model begins to show a sufficient level of

Table 10 Brusselator training and validation results with mean

squared error (MSE) between the model and target output given for

different sized data sets

No. samples Training Validation

Forward Two-stage Forward Two-stage

30 0.0002 0.0001 0.2969 0.2311

50 0.0002 0.0001 0.0548 0.0497

100 0.0006 0.0005 0.0083 0.0046

200 0.0005 0.0004 0.0072 0.0036

400 0.0001 0.0001 0.0022 0.0010
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Fig. 12 Brusselator model estimation using only 30 data points
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Fig. 13 Brusselator model estimation using only 50 data points
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Fig. 14 Brusselator model estimation using 100 data points
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Fig. 15 Brusselator model estimation using 200 data points
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Fig. 16 Brusselator model estimation using 400 data points
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accuracy under validation when training has taken place on

a data set of at least 100 samples.

Discussion

The work described in this paper has investigated the

black-box identification of two well known nonlinear

molecular interaction pathways that have traditionally been

modelled using white-box methods. A two-stage approach

has been used to obtain an optimal nonlinear model

effectively and efficiently, where the model terms are

selected and refined using a forward and backward subset

selection algorithm. The simulation experiments carried

out to model the Brusselator and the MAPK signalling

pathway have confirmed the efficacy of the proposed

algorithm. One of the main contributions of this paper has

been to show that, instead of white-box modelling
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Fig. 17 Brusselator model validation using only 30 data points
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Fig. 18 Brusselator model validation using only 50 data points
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Fig. 19 Brusselator model validation using 100 data points
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Fig. 20 Brusselator model validation using 200 data points
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Fig. 21 Brusselator model validation using 400 data points
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approaches which have been widely used in systems bio-

logy research, black box methods offer an alternative for

capturing the essential behavior and dynamics of the bio-

logical processes using a simplified model structure. This

enables the identification and analysis of large-scale bio-

logical systems using a relatively small set of simple

models, based on which the design of control strategies

may become possible. Future work will include using

physically related basis functions to build up nonlinear

models from the underlying biological system, improving

the model transparency and interpretability.
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Appendix

The two-stage identification algorithm used to perform the

subset selection is outlined in the following sections of this

appendix.

Problem statement and preliminaries

Consider a general nonlinear dynamic system (Chen et al.

1989; Li et al. 2005, 2006)

yðtÞ ¼ f ðyðt � 1Þ; . . .; yðt � nyÞ; uðt � 1Þ; . . .; uðt � nuÞÞ
¼ f ðxðtÞÞ

ð22Þ

where u(t) and y(t) are the system input and output vari-

ables at time instant t, nu and ny are the corresponding

maximal lags, x(t) represents the model ‘input’ vector, and

f(�) is some unknown nonlinear function.

Suppose a nonlinear polynomial NARX model is used to

represent the system (22):

yðtÞ ¼
XM

i¼1

hiuiðxðtÞÞ þ eðtÞ ð23Þ

where ui (�), i = 1,…, M are all candidate basis functions,

and e is the model residual sequence. And N data samples

{x(t), y(t)}, t = 1,…, N are used for model identification.

Equation (23) is then formulated as:

y ¼ UHþ N ð24Þ

where U ¼ ½u1; . . .;uM� 2 <N�M with ui ¼ ½uiðxð1ÞÞ;
. . .;uiðxðNÞÞ�T 2 <N for i ¼ 1; . . .;M; yT ¼ ½yð1Þ; . . .;
yðNÞ� 2 <N ;H ¼ ½h1; . . .; hM �T 2 <M ; and NT ¼ ½eðt1Þ;
. . .; eðtNÞ� 2 <N .

The model selection aims to select, say n, regressor

terms, denoted as p1,…,pn, from all the candidates,

uið�Þ; i ¼ 1. . .;M (M is usually a very large number in

nonlinear system identification), resulting in the linear-in-

the-parameters model of the form

y ¼ PnHn þ e ð25Þ

which best fits the data samples in the sense of least-

squares, i.e. the sum squared-errors (SSE) is minimised

JðPnÞ ¼ min
Un2U;Hn2<n

feTeg

¼ min
Un2U;Hn2<n

fðy�UnHnÞTðy�UnHnÞg
ð26Þ

where Un is an N 9 n matrix composing of n columns from

U;Hn denotes the corresponding regression coefficient

vector, and the selected regression matrix

Pn ¼ ½p1; . . .; pn� ð27Þ

If the selected regression matrix Pn is of full column-

rank, the least-squares estimation of the regression

coefficients in (25) is given by

Hn ¼ ðPT
n PnÞ�1PT

n y ð28Þ

Theoretically, each subset of n terms out of the M

candidates forms a candidate model, and there are M!/(n!/

(M-n)!) possible combinations. Obviously, to obtain the

optimal subset is computationally very expensive or

impossible if M is a very large number, and part of this

is also referred to as the curse of dimensionality. To

overcome the difficulty, an iterative subset selection

method will be proposed in the following.

The main objective of the proposed method is to itera-

tively select and refine the model. Firstly, the method

performs forward subset selection where the model terms

are selected one by one with the cost function being

maximally reduced each time. Once a certain model

structure selection criterion is satisfied, e.g. the AIC (Ak-

aike 1974) or MDL (Gustafsson and Hjalmarsson 1995), or

the maximal reduction of the error for adding a new term is

below certain threshold, then the second stage backward

model refinement is performed. At the second stage, the

model structure is further refined by removing all insig-

nificant terms from the model, given that the model

selection criterion is satisfied, leading to further improved

model compactness and performance.

Forward subset selection

The core idea of the forward subset selection is to select the

model terms one by one from a pool of candidates, each

time the reduction of the cost function is maximized. This

procedure is iterated until n model terms are selected (n is

determined by a certain model structure selection crite-

rion). The major objective in this subsection is to propose a

fast algorithm to select the model terms.
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To begin with, suppose k model terms have been

selected, producing the following regression matrix

Pk ¼ ½p1; p2; � � � ; pk� ð29Þ

The corresponding cost function is given by

JðPkÞ ¼ yTy� yTPkðPT
k PkÞ�1PT

k y ð30Þ

If Pk is of full column rank, then (Pk
T Pk) in (30) is

symmetric and positive definite. And the optimal

estimation of the coefficient Hk is given by

Hk ¼ ðPT
k PkÞ�1PT

k y ð31Þ

Define

W ¼ PT
k Pk ¼ ½wi;j�k�k ð32Þ

then, applying Cholesky decomposition to W gives

W ¼ PT
k Pk ¼ ~A

T
D~A ð33Þ

where D = diag(d1, …,dk) is a diagonal matrix and ~A ¼
½~ai;j�k�k is a unity upper triangular matrix. Define

A ¼ D~A ¼ ½ai;j�k�k; ai;j ¼
0; j\i

di~ai;j j� i

�
ð34Þ

According to (33), it can be derived that

ai;j¼wi;j�
Xi�1

s¼1

as;ias;j=as;s i¼1;���;k; j¼i;���;k ð35Þ

Define

ay ¼ AH ¼ D~AH ¼ ½a1;y; � � � ; ak;y�T ð36Þ

and

wy ¼ PT
k K2y ¼ ½w1;y; � � � ;wk;y�T ð37Þ

Then left-multiplying the both sides of (31) with W, and

substituting (33), gives

~A
T
D~Ah ¼ PT

k K2y

or

~A
T
ay ¼ wy

ð38Þ

ay in (38) could be computed as

ai;y ¼ wi;y �
Xk�1

i¼1

as;ias;y=as;s; i ¼ 1; � � � ; k ð39Þ

Then

JðPkÞ ¼ yTK2y�
Xk

i¼1

a2
i;y=ai;i ð40Þ

Now, suppose that one more term is added into the

model with the corresponding regressor term pk+1, the cost

function becomes

JðPkþ1Þ ¼ yTK2y�
Xkþ1

i¼1

a2
i;y=ai;i ð41Þ

where Pk+1 = [Pk pk+1].

Then, the net reduction of the cost function due to

adding one more model term is given by

DJkþ1ðpkþ1Þ ¼ JðPkÞ � JðPkþ1Þ ¼ a2
kþ1;y=akþ1;kþ1 ð42Þ

where ak+1,y, ak+1,k+1 are computed using (35) and (39) as k

increases by 1.

According to (42) the selection of next model term is

formulated as

minfJð½Pk;/�Þg ¼ JðPkÞ �maxfDJkþ1ð/Þg
s:t: / 2 f/1; � � � ;/Mg;/ 62 fp1; � � � ; pkg

ð43Þ

where {/1,…,/M} is the candidate node pool.

According to (43), the contribution of all remaining

candidate terms in U = {/1,…,/M} need to be calculated

using (42). To achieve this, the dimension of A, ay defined

above will be augmented to store the information of all

remaining candidate terms in U. To achieve this, re-define

U ¼ ½Pk;CM�k�
CM�k ¼ ½/kþ1; � � � ;/M�

ð44Þ

Based on (35), A is re-defined as
A ¼ ½ai;j�k�M

ai;j ¼

0;j\i

wi;j �
Xi�1

s¼1

as;ias;j

as;s
;i� j�M

8
>><

>>:

ð45Þ

where

wi;j ¼
pT

i pj; j� k
pT

i /j; j [ k

�
ð46Þ

Based on (34), ~A is re-defined as

~A ¼ ½~ai;j�k�M ; ~ai;j ¼ ai;j=ai;i ð47Þ

and vector ay is re-defined as

ay ¼ ½ai;y�M�1

ai;y ¼
yTpi �

Xi�1

s¼1

as;ias;y=as;s;i� k

yT/i �
Xk

s¼1

as;ias;y=as;s;i [ k

8
>>>>><

>>>>>:

ð48Þ

In addition, one more M 9 1 vector b is defined as

b ¼ ½bi�M�1

bi ¼
pT

i pi �
Xi�1

s¼1

as;ias;i=as;s;i� k

/T
i /i �

Xk

s¼1

as;ias;i=as;s;i [ k

8
>>>>><

>>>>>:

ð49Þ
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Thus, the contribution of each of the candidates in CM-k

to the cost function can be computed as follows

DJkþ1ð/iÞ ¼ a2
i;y=bi; i ¼ k þ 1; � � � ;M ð50Þ

and the one from CM-k which gives the maximum con-

tribution is then selected as the (k + 1)th model term.

The main body of this subsection has provided a frame-

work to iteratively select the model terms one by one from a

pool of candidates. This forward selection procedure will be

terminated once the desired number (say n) of model terms

have been reached or the cost function is reduced to a given

level (Chen and Billings 1992), or some information crite-

rion such as Akaike’s information criterion (AIC) begins to

increase (Akaike 1974). Once an initial model has been

constructed, in the following subsection, a backward

approach will be proposed to refine the model to improve the

model compactness and performance.

Backward model refinement

The above forward algorithm selects one regressor at a time,

which maximizes the reduction of error subject to the con-

straint that all previously selected regressors are fixed.

However, the regressors are generally correlated, later

introduced regressors may affect the contribution of previ-

ously selected regressors. Therefore, the previously selected

regressors may become insignificant due to the later intro-

duced regressors. This inefficiency of forward subset

selection methods have been explored in (Sherstinsky and

Picard 1996). In the backward model refinement, all the

previously selected model terms will be reviewed, and the

model will be refined. Any insignificant terms will be

removed and/or replaced, given that the model selection

criterion is satisfied.

Suppose a regressor term (from a model of size n), say

pi, 1 B i B n, is to be reviewed. Its contribution to the error

(SSE) reduction DJn (pi) needs to be compared with that of

the one in the pool of candidate terms that can give the

maximum contribution among the candidate pool. Denote

the maximum candidate contribution as DJnð/jÞ. If

DJnðpiÞ\DJnð/jÞ; pi is said to be insignificant, and will be

replaced with /j and pi will be put back into the candidate

pool. This exchange of model terms will further reduce the

error (SSE) by DJnð/jÞ � DJnðpiÞ, which means that the

model compactness is further improved.

To review the model terms as explained above, the

contributions for pi and all the candidates /nþ1; � � � ;/M

need to be computed. To achieve efficient computation,

matrices and vectors A; ~A; ay, and b, which are defined and

used to compute the contributions of a regressor term in the

model and in the candidate pool, have to be updated. The

algorithm to update these quantities can be derived based

on their definitions and follows the same procedures

outlined in the forward selection algorithm, therefore will

not repeated. The detailed mathematical framework can be

found in (Li et al. 2006).
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