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Abstract
Today’s typical application of geometric morphometrics to a quantitative comparison of organismal anatomies begins by 
standardizing samples of homologously labelled point configurations for location, orientation, and scale, and then renders 
the ensuing comparisons graphically by thin-plate spline as applied to group averages, principal components, regression 
predictions, or canonical variates. The scale-standardization step has recently come under criticism as unnecessary and 
indeed inappropriate, at least for growth studies. This essay argues for a similar rethinking of the centering and rotation, and 
then the replacement of the thin-plate spline interpolant of the resulting configurations by a different strategy that leaves 
unexplained residuals at every landmark individually in order to simplify the interpretation of the displayed grid as a whole, 
the “transformation grid” that has been highlighted as the true underlying topic ever since D’Arcy Thompson’s celebrated 
exposition of 1917. For analyses of comparisons involving gradients at large geometric scale, this paper argues for replace-
ment of all three of the Procrustes conventions by a version of my two-point registration of 1986 [originally Galton’s of 1907 
(Nature 76:617–618, 1907)]. The choice of the two points interacts with another non-Procrustes concern, interpretability 
of the grid lines of a coordinate system deformed according to a fitted polynomial trend rather than an interpolating thin-
plate spline. The paper works two examples using previously published midsagittal cranial data; there result new findings 
pertinent to the interpretation of both of these classic data sets. A concluding discussion suggests that the current toolkit of 
geometric morphometrics, centered on Procrustes shape coordinates and thin-plate splines, is too restricted to suit many of 
the interpretive purposes of evolutionary and developmental biology.

Keywords  Procrustes analysis · Thin-plate spline · Geometric morphometrics · Vilmann neurocranial octagons · 
Anthropoid midsagittal crania · Transformation grids · Quadratic fits · Bilinear maps · Cubic fits · Two-point shape 
coordinates · Modularity · Baseline registration · D’Arcy Thompson

Introduction

Figure 1 here arose simply as free play with the tools of 
geometric morphometrics (GMM). The data set comprises 
the familiar “Vilmann octagons” tracing around the midsag-
ittal neurocrania of close-bred laboratory rats radiographed 
in the 1960s by the Danish anatomist Henning Vilmann at 
eight ages between 7 and 150 days and digitized some years 
later by the New York craniofacial biologist Melvin Moss. 
This version of the data is the one explored in my textbook 

of 2018: the subset of 18 animals with complete data (all 
eight landmarks) at all eight ages. The concern of Fig. 1 is 
the contrast of the Procrustes-averaged shapes for the age-7 
and age-150 animals (only the averages, no consideration 
of covariances). The heavy lines are for the age-150 data 
subset; the light lines, the data from the animals at age 7 
days (a configuration this paper will occasionally refer to as 
the “template”). All panels of the figure complicate the usual 
Procrustes plot of shape coordinate pairs by all or some of 
the segments connecting these coordinate pairs. In the fig-
ure’s left column, all 8 ⋅ 7∕2 = 28 of the interlandmark seg-
ments have been drawn; in the right column, only the subset 
that are the reason for calling your attention to this figure. In 
the top row, those average locations correspond to the usual 
Procrustes-registered shape coordinates, partialling out only 
centering, size, and rotation. Panel (b) is limited just to the 
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nine (out of 28) interlandmark segments from panel (a) that 
rotated either way by at least 8.6◦ between age 7 and age 
150 days according to this registration. (The figure label 
expresses this as “0.15 radians”—1 radian is the mathema-
tician’s natural metric of angle, the angle of about 57◦ at 
which the extent of a circular arc is equal to the radius of the 
circle.) A pretty graphic, but it features too much overlay of 
signals to qualify as a legible pattern analysis.

Most of the clutter is due to the substantial change of 
aspect ratio (height-to-width ratio, obvious in the left col-
umn) that rotated both of the longer diagonals (Basion to 
Bregma, Lambda to SES) of the template with respect to 
the apparent principal axes (vertical and horizontal, in this 
registration) of that change. But that is not the problem here, 
where the apparent segmental rotations are independent of 
segment orientation but instead apparently a function mainly 
of position. So we want to adjust the graphical display in 
order to nullify the effects of just this specific known effect, 

the change of aspect ratio, in order to focus better on the 
relative rotation between ends of the organism that we are 
detecting in Fig. 1b. Fortunately, we already know how to 
remove this unwanted uniformity of relative vertical com-
pression from our comparison: recourse to the “nonuniform” 
component of Procrustes shape space, complement to the 
subspace of uniform transformations (those that take all rec-
tangles into parallelograms). The resulting plots are the pair 
in the bottom row.

It is no surprise that the diagram at lower left, panel (c), 
looks even more cluttered than panel (a), because now the 
calvarial roof, not just the cranial base, overlaps between 
the ages. But there is also a new signal once the diagram is 
edited to suppress all the segments that didn’t rotate much, a 
signal that seems not to have been anticipated in previously 
published analyses of these data. As panel (d) shows, 6 of 
the 28 possible segments rotate by more than 0.15 radian 
after standardizing this uniform aspect of the young-to-old 
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(a)      average Vilmann octagons, 7 and 150 days, (b)       cut at rotation 0.15 radians

(c)      the same, nonaffine component only (d)       the same, cut at 0.15 radians

Fig. 1   Unexpected pattern in the much-analyzed Vilmann data set of 
neurocranial octagons for growing laboratory rats. (upper left) Satu-
rated network of interlandmark segments, Procrustes average shapes 
of the octagons at ages 7 days (light lines) and 150 days (heavy lines). 
Landmarks: Bas basion, Opi opisthion, IPP interparietal point, Lam 
lambda, Brg bregma, SES sphenoëthmoid synchondrosis, ISS inters-
phenoidal synchondrosis, SOS sphenoöccipital synchondrosis. (upper 
right) Subnetwork of segments rotating by at least 0.15 rad ( 8.6◦ ) over 

this age comparison. (Lower left) the same saturated network for the 
nonaffine component only of the same Procrustes shape coordinates, 
with landmark numbers. (Lower right) now that the uniform com-
ponent of this shape coordinate space has been partialled out, there 
emerges a considerably simpler subnetwork, explicitly displaying the 
relative rotation of the anteriormost three landmarks with respect to 
the other five
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comparison. And now the pattern is obvious. The four seg-
ments connecting the five landmarks at left (anatomical pos-
terior, SOS around to Lam) are rotating clockwise (in this 
projection) over growth, while the three at the right, located 
anatomically anteriorly, are rotating counterclockwise, all 
this to a longitudinal arrangement (think of the centroid of 
the set of five, versus the centroid of the frontmost three) 
that isn’t rotating either way. This paper will refer to the 
segmented polygon SOS–Bas–Opi–IPP–Lam, the set of five 
landmarks at left in Fig. 1d, as the “posterior pentagon” 
and the remaining three, Brg–SES–ISS, as the “anterior 
triangle.”

The opposition of rotations in panel (d) is consistent with 
a report using an alternative arithmetic of intersegment 
length-ratios. There is evidently shortening of upper calva-
rial anteroposterior length, Lam to Brg, relative to the cen-
tral segment of the cranial base from ISS to SOS. There is no 
need to condition the finding as “relative to the sequestering 
of the uniform term,” because uniform transformations do 
not alter ratios of distances in the same direction, whether 
collinear or parallel.

This relative rotation, including that contrast of vertically 
aligned horizontal growth rates, the central cranial base ver-
sus the calvarial roof above it, is surely a feature of the 143-
day change of form here. But where is it to be found in the 
GMM toolkit? Fig. 2 recovers exactly the same report from 
a quantitative style dating back more than 80 years prior to 
GMM, analysis via the coordinates Francis Galton intro-
duced in (1907) for “classification of portraits.”1 Here I have 
diagrammed every possible two-point registration of these 
octagons (quantified only by their average coordinates as 
Moss originally digitized them). For each alternative base-
line, the original Cartesian coordinate average configurations 
have been recentered, rotated and rescaled separately so that 
the first baseline point is at (0, 0) of a new coordinate system 
and the second is at (1, 0) in the same system (the two points 
circled in every panel of the figure). We have thereby altered 
every single step of the Procrustes toolkit—the centering, 
the rotating, the scaling—while eschewing any recourse to 
the thin-plate spline for separating out that uniform term. 

And yet ten of the panels clearly show the same phenome-
non, the relative rotation between the anatomically posterior 
pentagon of landmarks and the anterior triangle. Whenever 
both ends of the baseline are in the same sector (here num-
bered [8, 1, 2, 3, 4] versus [5, 6, 7]), the rotation is clear in 
the behavior of the complementary sector. This is particu-
larly evident in the analysis to baselines 5–6 (row 4 column 
5), 5–7 (row 4 column 6), or 3–4 (row 3 column 2), where, 
regardless of any overall change of aspect ratio, the border 
of the octagon opposite the baseline appears to have radi-
cally shifted by a rotation with respect to that baseline. The 
disparity between ratios of change of length for segments 
ISS–SOS and Lam–Brg is clearest, perhaps, in the panel for 
that ISS–SOS baseline, fifth row, fourth column.

Such an analysis, both elegant and elementary, shares 
no arithmetic with the standard GMM toolkit of Procrustes 
registration and thin-plate splines. (For a good overview of 
computational aspects of that standard toolkit in a format 
suitable for routine biometric applications, see (Claude, 
2008). While the term “geometric morphometrics” is not 
limited to Procrustes methods, nevertheless the great major-
ity of today’s GMM papers do indeed begin by a Procrustes 
transform of their landmark data.) The two-point registration 
is far older than that morphometric synthesis of the 1990s, 
older even than analysis by triangles (“tensor biometrics,” 
Bookstein, 1984) or by biorthogonal grids (Bookstein, 
1978). Both of these versions involve attention to short or 
long transects of the form that intersect internally, where, by 
analogy with the change of form from a square to a rectan-
gle, for one particular pair of directions (sides of the square) 
the ratios of change of distance are greatest or least and the 
angle of intersection is invariant at 90◦, while the ratio of 
change of the two distances at 45◦ to these directions (diago-
nals of the square) is unity and it is the change of their angle 
that is maximized. A closer inspection of the interlandmark-
distance interpretation of Fig. 1d instead makes reference to 
distances that are parallel at some spacing (upper calvarial 
width versus lower), a change visible equally in the Pro-
crustes fits and in the two-point versions, especially ver-
sions 7–8 (row 5 column 4) and 3-5 (row 3 column 3). The 
idea of examining ratios of parallel distances like these is 
already present in some much earlier applied treatises, such 
as Martin (1914).

For an intuitive understanding of what is going on here, 
turn back to the earliest textbook introduction of the thin-
plate spline, (Bookstein, 1991), where analyses like these, 
restricted to just a quadrilateral of landmarks, exemplify 
what I called “purely inhomogeneous transformations” there, 
meaning, transformations without any uniform component. 
Figure 7.3.6 of that book displays, within the limits of the 
software tools of the time, the effect of rotating the starting 
grid on the graphs of this purely inhomogeneous component 
(here, the sole nonlinear component) of the deformations 

1  The GMM literature usually refers to these as “two-point coordi-
nates” or an “edge registration,” while the statistical literature ((Stuart 
& Ord, 1994), p. 279) calls them “Bookstein coordinates” in keep-
ing with Stigler’s Law, which states that innovations typically are 
named after the second person to stumble across them, namely, this 
author, in his (Bookstein, 1986). Ignoring the scaling aspect of this 
tool, the centering and orientation here were already explicit in Boas 
(1905) and probably can be traced back all the way to the German 
anthropologists’ adoption of the celebrated “Frankfurt Horizontal” 
in 1882 (see Garson, 1885 [which, remarkably enough, is available 
from JSTOR]—Orbitale set to (0, 0), Porion along the positive x-axis: 
the Ohr-Augen Horizontale of Martin, 1914). For a contemporary cri-
tique of this specific convention of 1882, see (Bookstein, 2016).
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of a square that minimize net bending energy—the now-
ubiquitous thin-plate spline.

Figure 3 is a modification of that textbook figure intended 
to clarify the contrast of the different types of salience 
(length-ratios and rotations) for interesting pairs of seg-
ments. Its four columns prototype different types of the 
transformations, each of a starting square of landmarks. 
In the top row are the starting squares, twice in Cartesian 
alignment with the page and twice at 45◦ . Below are the 
corresponding analyses, enhanced by ordinary thin-plate 
splines that are not actually part of the arithmetical report. 

(But that spline has nothing to do with the analysis here, 
which deals only with the landmark positions per se, not 
any interstitial tissue. The quadratic extension to the inter-
stitial rendering in Figs. 4, 5, 6, 7, 8, 9, 10, and 11 requires 
a minimum of six landmarks, not just these four; the further 
extension to a cubic fit in Figs. 17 and 19 requires at least 
ten.) In column (a) the square is transformed to a rhombus 
by rotating two of its edges without change in length. What 
change are the angles between the concurrent edges. In col-
umn (b) the same transformation is applied to the square of 
landmarks at 45◦ (in other words, the grid has rotated with 
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Fig. 2   Two-point superpositions (Bookstein coordinates) of the Vil-
mann age-7 and age-150 average octagons for every possible base-
line. Landmarks are numbered as in Fig. 1. Circled landmarks: ends 

of the baseline as registered to (0,  0) and (1,  0). Light lines, age-7 
average; heavy lines, age-150 average
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respect to the landmarks, the configuration of which has not 
changed in either row). Now the report is reversed: the great-
est change is in the ratio of lengths of diagonals, while the 
angle between them is left invariant at 90◦. This was also 
the case for the configuration in column 1, where it was 
confounded by the inconvenient orientation of the grid lines.

The situation in Figs. 1d or  2 corresponds instead to the 
prototype in columns (c) or (d) of Fig. 3. The starting con-
figuration is still the same square. But in column (c) the 
transformation changes the ratio of lengths of two edges 
that are parallel (horizontal in the figure), not perpendicu-
lar as in columns (a) or (b), while leaving unchanged the 
ratio of the other two edge lengths (the other pair of paral-
lels in panel c1) while radically altering their angle. This 
is a transformation from a square to an isosceles trapezoid. 
The complementary transformation in column (d), which 
the geometer would call square-to-kite, leaves the diago-
nals unchanged in length and in angle while altering the 
relation between their midpoints. Now it is a different pair 
of paired edges whose length-ratio has not changed—the 
top and bottom V’s—and while the angles at the end of the 
horizontal diagonal are hardly altered, those at the ends 
of the vertical diagonal are greatly changed, one increased 
and the other decreased. To repeat, these reports rely not at 
all on any curricular GMM technology, neither Procrustes 
nor thin-plate spline.

The aim of this paper is to push this insight as far as it can 
go while remaining elementary in its biomathematics. (For 
instance, its multivariate analysis is limited to the familiar 
setting of multiple regression.) In particular, every step of 

the usual Procrustes procedure (centering, rotating, rescal-
ing) proves surprisingly difficult to justify in any context 
of biotheoretical or biomathematical inference. The scale-
standardization step has recently come under criticism as 
unnecessary and indeed inappropriate, at least for growth 
studies (see, e.g., the defense of Boas coordinates in Book-
stein (2018, pp. 412–414 or Bookstein, 2021a). This essay 
argues for a similar rethinking of the centering and rotation, 
and then the replacement of the thin-plate spline interpolant 
of the resulting configurations by a different strategy that 
leaves unexplained residuals at every landmark individu-
ally in order to simplify the interpretation of the displayed 
grid as a whole, the “transformation grid” that has been 
highlighted as the true underlying topic ever since D’Arcy 
Thompson’s celebrated exposition of 1917. While the idea 
of two-point coordinates was originally Galton’s in (1907), 
the idea at which the analysis here is aimed, the quadratic or 
cubic simplification of a growth gradient or a phylogenetic 
comparison, is only half as old: it is present in embryo in 
Peter Sneath’s underrated paper of 1967 on trend-surface 
analysis of D’Arcy Thompson’s transformation grids.

The core of the argument inheres in any of the next eight 
figures, which selected eight interesting baselines from 
the 28 in Fig. 2 for expansion of the analysis to include an 
explicit quadratic regression of the averaged age-150 Car-
tesian coordinates against the same from the age-7 octa-
gons. These analyses completely ignore the tools of stand-
ard GMM—there is no Procrustes centering, no scaling or 
reorientation beyond the (arbitrary) choice of baseline, and 
thin-plate splines are drawn only to be dismissed—while 

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Fig. 3   Contrasting morphometric renderings for diverse transforma-
tions by thin-plate spline (lower row) of a variously oriented square 
(upper row). a Square to parallelogram, grid aligned with the edges of 

the square. b The same, grid now aligned with the square’s diagonals. 
c Square to trapezoid. d Almost the same, grid rotated 45◦ : square to 
kite. Adapted from Bookstein (1991, Fig. 7.3.6)
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what results, you will see, is a coherent summary of this 
particular change of neurocranial form. A combined Fig. 12 
arrays the eight separate summaries for a synthesis of their 
information content abstracted in Figs. 13 and 14. Follow-
ing this exploration, a further analysis of some data from a 
study of cranial hominization my Vienna group published 
20 years ago will consider some extensions of this approach, 
and a concluding Discussion will reflect on some implica-
tions of this seeming irrelevance of today’s conventional 
GMM toolkit for the explanatory purposes of evolutionary 
or developmental morphology.

Vilmann 7‑to‑150‑Day Growth Analyzed 
Without Procrustes GMM

The recommended alternate analysis of the Vilmann 
growth analysis in Fig. 1 may be narrated by an extrac-
tion of common findings from a suite of separate analyses 
to my selection of baselines, some that are transects of 
the octagon and others that lie circumferential to it. The 
analyses to be surveyed are laid out in Figs. 4, 5, 6, 7, 8, 

9, 10, and 11. Each of these eight composites offers four 
panels. They serve several different functions, as follows.

At upper left in each of these eight alternatives is the 
conventional thin-plate spline, as offered in many software 
packages, that warps the averaged octagon of Cartesian 
coordinates of the age-7-day animals into the corresponding 
average at age 150 days that minimizes net bending energy 
(Bookstein, 1991) while exactly fitting all the landmark posi-
tions. (All eight of these panels will later be collected as 
part of the composite Fig. 12.) While all these are splined 
deformations of the same pair of landmark configurations, 
they are drawn to eight different coordinate grid orienta-
tions, namely, the eight choices of baseline indicated by the 
pair of circled points in these upper-left panels. This is a 
graphical demonstration of one main point of this paper, 
which corrects an error of D’Arcy Thompson’s, his failure 
to consider the specification of grid orientation per se. It 
quickly becomes clear that different grid orientations lead to 
rather different reports of the same deformation, even though 
that orientation itself is not any kind of objective biologi-
cal parameter. (For instance, in one version of Procrustes 
analysis, the axes applied to a Procrustes mean are those 

Fig. 4   This is the first of eight 
figures that all have the same 
four-panel format as applied to 
one of eight selected baselines 
from the array of 28 offered 
in Fig. 2. Top-row panels, 
left to right: actual change of 
averaged Cartesian coordi-
nates, with thin-plate spline 
oriented to selected baseline; 
ordinary thin-plate spline of 
the quadratic fit to the age-150 
average as regressed on first 
and second powers of the x- and 
y-coordinates of the template 
and also their product xy. Bot-
tom row, left, the quadratic fit 
(not a spline) as a grid of its 
own. Solid circles, the observed 
age-150 average; open circles, 
predictions from this regression. 
Bottom right: restriction of the 
display list of grid vertices to 
the interior of the age-7 octagon 
as explained in the text. The 
baseline of this figure runs from 
Basion to Opisthion (landmark 
1 to landmark 2)
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of its own principal components; in the notation of Book-
stein (2018, p. 409), this is the condition that all six rows 
of what is called the J-matrix there are orthonormal, solely 
for the purpose of simplifying the resulting algebra.) Then 
if a particular orientation is to be used for some graphical 
reportage, how is it to be specified or optimized? One can’t 
say “align the starting grid at XX◦ to the orientation returned 
by the Procrustes software” when that Procrustes orientation 
itself has no referent upon the organism (after all, it is over-
whelmingly determined by the list of landmarks involved in 
the configuration)—when it cannot be referred to anything 
qualitatively observable except in the exceptional case of a 
bilaterally symmetric form. As GMM findings need to be 
communicated in terms of the landmark coordinates that 
comprise the GMM data base, the easiest way to reference 
a grid orientation is by reference to some pair of landmarks. 
Figures 4, 5, 6, 7, 8, 9, 10, and 11 demonstrate this for a 
selection of eight different landmark pairs out of the 28 pos-
sible choices.

A second standardization has been applied in these upper 
panels even though it is explicit only in the borders of the 

graphics in the lower row: the reference landmark pair cir-
cled and named in the figure caption has been placed with 
one landmark at Cartesian (0, 0) and the other at Cartesian 
(1, 0), thereby specifying a unit of distance as well. This 
is, of course, the two-point coordinate system (Bookstein, 
1986) already explored in Fig. 2. A specification of this 
type is needed in order to produce the representations in 
the upper-right panels of these same eight figures, which 
are thin-plate splines for a derived geometric mapping, the 
“growth fit.” Here the x-coordinate of the deformed grid 
is the predicted x-coordinate from the regression of the 
baseline-standardized octagon vertices of the 150-day aver-
age on both coordinates of the age-7 average, and also their 
squares and their crossproduct (i.e., a regression of each x150 
on (x7, y7, x 2

7
, y 2

7
, x7y7) ) and likewise the y150-coordinates. 

Each of these regressions involves five predictors, plus a 
constant, for only eight “cases” (the relevant coordinate, x 
or y, of the eight landmarks), and so has only two degrees 
of freedom for error; they are not really regressions, but 
rather almost interpolations, when the landmark count is so 
small. In these upper-right grids, the local bends visible in 

Fig. 5   The same as Fig. 4 
for a baseline from Basion to 
Interparietal point, landmark 1 
to landmark 3
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the upper-left panel (the bends actually pertinent to the pair-
ing of those averaged landmark configurations) are clearly 
somewhat weakened, but still bends remain that are difficult 
to describe in words.

At lower left in all eight of these figures is a more appro-
priate representation of the quadratic fit than the thin-plate 
spline (upper right) of the predicted values: the computed 
transforms of all the grid lines of the starting scene implied 
(but not drawn at upper left) as the squared grid over the 
age-7 configuration average, that is, centered and oriented 
according to the specified baseline pair. We see each regres-
sion explicitly now, as the deformed grid of all of its pre-
dicted values. (Like the panels above them, all eight of these 
versions are collected in Fig. 12.) The observed values for 
the age-150 landmarks in particular are again conveyed by 
the paired x- and y-coordinates of the filled dots, while the 
predictions from the age-7 data are the open circles nearby. 
Because this is a quadratic regression, every grid line is by 
algebraic necessity a parabola (although some curve so shal-
lowly as to be indistinguishable from straight lines, we shall 
see). This is the graphical demonstration of the other princi-
pal point of the paper: the claim, in agreement with Sneath 
(1967), that transformation grids can be most effectively 

reported by intentionally simplified least-squares fits like 
this one.

Finally, the panel at lower right will restrict this grid to 
just the interior of the age-7 octagon from the upper-left 
panel. This is the only portion of the graphic deserving 
of empirical attention, as the extension of the thin-plate 
spline to the exterior is algebraically mandated to drop off 
quickly toward linearity (see Bookstein, 1991), while the 
corresponding extrapolations of polynomial fits weight the 
highest-order terms more and more highly and thus have no 
biological meaning. At the consequently enlarged scale of 
these restricted diagrams there is more room to show the 
residuals between the predicted and observed locations of 
every landmark, including the baseline pair itself. (Recall 
that there were no such residuals in the upper left panel—
the thin-plate spline fits every designated landmark exactly, 
without error.) The eight examples of this truncated coor-
dinate-grid deformation in Figs. 4, 5, 6, 7, 8, 9, 10, and 11 
offer varying degrees of curving from side to side of the 
octagon along with varying degrees of rotation with respect 
to their parallels. In the ultimate analysis of this or any pair 
of landmark configurations, the preferred coordinate grid 
will be the one for which these grid lines lead to the sim-
plest pattern report. Here, that will be the preponderance of 

Fig. 6   The same for a baseline 
from Basion to Lambda, land-
mark 1 to landmark 5

tps of actual growth, 7 days to 150,
 baseline 1  to  5

Vil 7−da to 150−da, baseline 1  to  5 
 tps of growth fit

0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0

. . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . ...

. . . . . . . . . . . . . . ...

. . . . . . . . . . . . . ....

. . . . . . . . . . . . .....

. . . . . . . . . . . . .....

. . . . . . . . . . . ......

. . . . . . . . . . .......

. . . . . . . . . . ......
.. . . . . . . . . .......
.. . . . . . . . ........
.. . . . . . . ........

... . . . . . . ........
... . . . . . .........
... . . . . . .........
... . . . ..........

.... . . . ..........
...

.

. . .

.

.
.

.
.
.

.
.

.

.
.

.

Vil 7−da to 150−da, baseline 1  to  5 
 quad trend fit

0.0 0.2 0.4 0.6 0.8 1.0
−

0.
6

−
0.

2
0.

2
0.

4

. .. . .
. . . . . .

. . . . . . .
. . . . . . . . .

. . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . .

. . . . . . . . .

. . . . . . . .
. . . .

.

.
.

.

.

.
.

.

.

.
.

.

.

.
.

.

Vil 7−da to 150−da, baseline 1  to  5 
 quad trend fit, interior



283Evolutionary Biology (2023) 50:275–299	

1 3

nearly straight stretches within the organ’s outline, however 
they might rotate across the octagon. I return to this issue, 
the pursuit of simplicity of reporting, in the first part of my 
closing Discussion.

Consider, then, the first figure in this series, Fig. 4, which 
is the analysis for a baseline from Basion to Opisthion—a 
short interlandmark segment contained entirely within the 
posterior pentagonal compartment of Fig. 1d and hence one 
that might enlighten us as to the rotation archived there. 
That rotation between anterior landmark triangle and pos-
terior landmark pentagon is essentially the same as what is 
displayed in Fig. 1 for the conventional GMM approach and 
in Fig. 2 for the panel corresponding to this baseline (there, 
the panel in row 1, column 1)—indeed it will be the same in 
all eight of the figures of this series. Here in Fig. 4, for the 
baseline Basion to Opisthion (axis of the midsagittal fora-
men magnum), the orientation of the form is rotated about 
130◦ from the Procrustes convention in Fig. 1. The thin-
plate spline (upper left panel) is interesting in that inside 
the posterior five-landmark component, SOS around to Lam, 

the interior as rendered by the spline appears to be nearly 
affine (all grid cells the same size and shape) except near 
IPP, and likewise nearly affine for the anterior component 
Bas–SES–ISS. The growth fit (upper right panel) apparently 
has pulled IPP to the left in this diagram. As Fig. 1 shows, 
and as has been exposited in earlier papers (e.g., Bookstein, 
2017), this point participates in a specific focal process dis-
placing it upward in the more realistic anatomical setting of 
Fig. 1. Thus the fit in this upper right panel of Fig. 4 does 
not show the deviation of change at IPP from change at its 
neighbors that is present in the actual data.

Either panel of the lower row shows how closely the fitted 
landmarks (open circles) track the averaged 150-day loca-
tions observed (the solid circles). The horizontal grid lines 
in the interior of the form (lower right panel) are mainly 
straight, while their orientation on this diagram is graded 
from top to bottom more smoothly than one would infer from 
the analogous diagram at upper left (the thin-plate spline 
based on the fully detailed data record, which, by design, 
is not conducive to any lower-dimensional summary). The 

Fig. 7   The same for a baseline 
from Interparietal point to 
Sphenoöccipital synchondrosis, 
landmark 3 to landmark 8. Each 
panel is roughly a 90◦ rotation 
of the corresponding panel 
in Fig. 6, having a baseline at 
about 90◦ to this one
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steady rotation of this imputed grid line direction is com-
plemented by a gentle curvature of the other grid line direc-
tion, a curvature that is not so apparent in the explicit thin-
plate spline at upper left—the transformation that appears 
segmented there, one nearly linear system for the posterior 
pentagon and another for the anterior triangle, is smoothed 
by the quadratic regression into a continuous gradient from 
end to end of the template (top to bottom of the grid, in this 
coordinate system). The quadratic fit is not required to pre-
serve the baseline length at 1.0—there is usually a regression 
residual at each end.

Figure 5 shows the same analysis for a different baseline, 
Basion to Interparietal point, from the same posterior penta-
gon. Again the quadratic fit (lower row) shows a substantial 
residual, this time at only one of the baseline points (IPP). In 
the deformed grid, both systems of lines are curved, a feature 
that makes interpretation more difficult.

Figure 6 is the first to involve a cross-component baseline, 
Basion (from the posterior pentagon) to Bregma (from the 
anterior triangle). The starting grid has rotated roughly 80◦ 
from its position in the first of this series (i.e., the angle 
between segments Basion–Opisthion and Basion–Bregma 

in the age-7 average is about 80◦ ). Again the panels in the 
lower row inform us that the initially vertical grid lines 
(lines along Lambda–ISS or IPP–SOS) are transformed by 
the quadratic fit into a pencil of nearly straight lines at vary-
ing orientations, while the lines of the originally orthogonal 
system are gently curved in a manner that will concern us 
in detail in Fig. 13. At neither of the baseline points is there 
any substantial fitting error of the quadratic regressions. The 
approximate uniformity of cell sizes across the trimmed grid 
at lower right here and in every other figure of this series 
assures us that the recourse to distances from the centroid 
in models of centric allometry, such as Bookstein (2021a), 
is a reasonable default. Indeed the separation between the 
actual age-150 centroid and the quadratic trend transform 
of the age-7 centroid is a mere 0.054 units in the scale of 
this figure.

Figure 7, to a baseline from IPP to SOS, is very nearly 
the same analysis as in Fig. 6 inasmuch as the two base-
lines, IPP–SOS and Bas–Brg, are nearly at 90◦ in the age-7 
template. The main difference is the substantial increase 
in fitting error, owing to the fact that landmark 3, IPP, is 
known to be strongly loaded on a special factor not shared 

Fig. 8   The same for a baseline 
from Lambda to Sphenoöccipi-
tal synchondrosis, landmark 4 to 
landmark 8
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with the rest of the configuration. Nevertheless, the grids of 
the lower row still greatly resemble those of the preceding 
figure, for the baseline at 90◦ to this one: lines parallel to 
IPP–ISS (here, the baseline) remain straight but rotate from 
end to end, while the orthogonals are gently curved.

Let us move more quickly through the remaining versions 
of this four-panel scheme. In Fig. 8, baseline Lambda–SOS, 
both systems of grid lines in either panel of the lower row 
are gently curved (although the rotation from end to end 
of the original octagon is as clear as if they had remained 
straight). The errors of fit at the baseline points are moderate 
in magnitude, partly because the fit at Lambda is distorted 
by the need to accommodate the deviation at IPP.

Figure 9, for a baseline Bregma–SES within the anterior 
component of Fig. 1, displays gentle curves in both grid sys-
tems. Errors of the quadratic fit are again moderate, and the 
rotation so evident in Fig. 1d is very clear in spite of the cur-
vature of these deformed grid lines. The baseline in Fig. 10, 
Bregma–ISS, has similar errors of fit and similar curving of 
the grid lines. Finally, Fig. 11, for an ISS–Bas baseline, is 
roughly the 90◦ rotation of the analysis in Fig. 5, where the 
baseline (Bas–IPP) was roughly at 90◦ to the baseline here.

Figure 12 summarizes all eight of these analyses in a 
way that permits some criteria of interpretability to emerge 
regarding replacement of the Procrustes rotation by a proto-
col more conducive to reportage: a protocol that associates 
the reorientation of specimens to the ultimate simplifica-
tion of their deformation report by reference to the specific 
coordinate lines as deformed from the template’s square 
grid. We have seen that baseline analyses can sometime 
come in pairs if the corresponding interlandmark segments 
themselves lie at approximately 90◦ in the template, and it is 
better if they run close to the centroid of the octagon. More 
subtly, morphological comparisons that can result in reports 
of relative rotations of parts of a landmark configuration 
may be diagrammed best not by a thin-plate spline but by a 
choice of a specific baseline that highlights the rotation in 
question, like Figs. 6 or  7 here, by leaving one set of grid 
lines straight lines even as they are rotated. (For instance, in 
Fig. 6, the panel at lower right is more interpretable than the 
panel at upper left, even though the information content is 
effectively the same.) The thin-plate renderings in Fig. 12, 
columns 1 and 3, all confirm the relative rotation detectable 
already in Fig. 1, but do not otherwise appear to offer much 

Fig. 9   The same for a baseline 
from Bregma to Sphenoëthmoid 
synchondrosis, landmark 5 to 
landmark 6
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intuitive accessibility. By comparison, the quadratic-fit dis-
plays, columns 2 and 4, vary enough in their legibility that 
some are truly insightful. Those that seem most helpful are 
the pair of analyses in the second row, to baseline Bas–Lam 
or IPP–SOS (two directions that happen to be nearly per-
pendicular)—these seem to be considerably better than the 
standard GMM analysis at showing potentially meaningful 
gradients for the growth process being visualized here.

The analysis in Fig. 7 suggests a scenario I have high-
lighted in Fig.  13 by the simple trick of extending the 
domain of the quadratic fit beyond the bounds of the age-7 
landmark configuration undergoing warping, as shown in 
the upper left panel. Here, the black dots are the age-7 con-
figuration average, while the four open disks are the control 
points that will drive the bilinear map emerging as the inter-
pretation of this scene as a whole.2 The upper right diagram 
here extends the earlier gridded transformation merely by 
evaluating it on the new coordinate domain to the left in the 

same template coordinate system, i.e. into the empty space 
some distance above the foramen magnum of these animals, 
where the horizontal grid lines of Fig. 7 appear to be con-
verging. We see that the near-linearity of the transformation 
along the baseline and all the grid lines parallel to that direc-
tion persists quite far beyond the actual anatomical limits of 
the comparison. The apparent rotation suggested in Fig. 1d 
is embedded here in a larger system of reorientations that 
might be viewed as continuous rather than segmented, or, 
in a more suggestive language, graded rather than modular.

Even though they are rotating, this approximate straight-
ness and even spacing of the deformed coordinate grid lines 
suggests the geometrical interpretation as a bilinear map. 
Figure 14 will show such an interpretation in a textbook 
pose; here at the bottom of Fig. 13 I visualize it in situ as 
a pattern of relatively rotating lines that are not parabolas 
but absolutely straight in both coordinate systems. Such a 
map requires two quadrilaterals of control points, as dis-
played as open circles both at upper left (for the starting 
square grid) and then for the target form (lower right panel). 
The match between the second and third panels of the fig-
ure pleases me greatly: indeed this particular six-parameter 
regression can be represented well by the three-parameter 
version abstracted here. The rotation of Fig. 1d is completely 

Fig. 10   The same for a baseline 
from Bregma to Intersphenoidal 
suture, landmark 5 to landmark 
7
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2  These control quadrilaterals are not optimal in any computational 
sense. Many different pairs of quadrilaterals would produce the same 
bilinear transformation. The phenomenon is equivalent in its geom-
etry to the ruling by linear grids of a hyperboloid of one sheet in three 
dimensions—see (Hilbert & Cohn-Vossen, 1952, pp. 15–17).
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accounted for by the disproportion of lengthening between 
the calvarial roof and the cranial base, which remain approx-
imately parallel over this growth interval. The appearance 
of curving in most of the grids in Figs. 4, 5, 6, 7, 8, 9, 10, 
and 11 is mainly, though not completely, an artifact of an 
inappropriate choice of coordinate system. Bookstein (2023) 
goes in great detail into an algebraic index of the adequacy 
of such a lower-dimensional summary; here it is enough 
to note that the fit is pretty good. (But ignore that strong 
impression of some sort of descriptive center at an unphysi-
ological distance outside the actual calva. This is just an 
algebraic artifact of the angulation of sides of that target 
quadrilateral; depending on details of position, the point 
could be near −∞, near +∞, or anywhere in-between but 
well outside the organism.)

Figure 14 sketches two prototypical kinds of transforma-
tions of quadrilaterals, of which the preceding analysis is 
going to match one. Each is an alternative to the thin-plate 
spline of column (d) in Fig. 3; one will prove more realistic 
than the other for this paper’s examples. The more familiar 
map is the projection, central panel, that takes every straight 
line onto another straight line. But this mapping substantially 
alters the spacing of the points where these deformed grid 
lines meet the bounding kite. No such respacing appears in 
the extended quadratic fit itself, Fig. 13. An alternative better 
matching that observed quadratic fit is the family prototyped 

in the right-hand panel of the figure, the bilinear map that I 
discussed in considerable detail in Bookstein (1985). Bilin-
ear maps3 take one quadrilateral onto another as follows. 
Every point (x, y) in the interior of the template quadrilateral 
is the intersection of two lines connecting opposite edges 
each of which divides that pair of edges in the same ratio. 
The map takes (x, y) to the intersection of the two lines that 
divide the homologous pair of edges in the target in the same 
pair of ratios. For a warp of square onto kite this bilinear 
option can be written (x, y) → (x, y) + a(1 + xy, 1 + xy) for 
some a.

The projection in Fig. 14 required the upper isosceles 
triangle of the template to be mapped into the space above 
the horizontal diagonal of the kite, entailing a considerable 
compression of its vertical coordinate; the bilinear trans-
formation enforces much less compression here, at the cost 
of bending that horizontal diagonal over the course of the 
deformation. This attenuation of the variability of those 
ratios of area change seems to match the graphics of all the 
quadratic fits in Figs. 4, 5, 6, 7, 8, 9, 10, and 11 after an 
appropriate rotation. The projection map sends all straight 
lines to other straight lines; the bilinear map, in general, 

Fig. 11   The same for a baseline 
from Sphenoëthmoid synchon-
drosis to Basion, landmark 6 to 
landmark 1

tps of actual growth, 7 days to 150,
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3  In finite-element analysis, these are often called isoparametric 
coordinates of the quadrilateral.
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only the lines that join matched proportional aliquots from 
opposite edges. As graphed in Fig. 14, the deformations 
generate different warps (the dashed line) for the horizon-
tal diameter of the starting diamond shape. The projection 
(middle panel) takes this curve to a straight line; the bilinear 
map (right-hand panel), to a parabola engendering a less 

extreme reduction of the template cells’ areas above this 
diameter. Owing to the shared symmetry axis of square and 
kite there is another set of straight lines within the grid in 
the rightmost panel—the verticals—but this third set is not 
present in the general case, hence the “bi” of “bilinear,” and 
so I have not drawn them here.
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Fig. 12   Compendium of upper left and lower right panels of Figs. 4, 
5, 6, 7, 8, 9, 10, and 11, based on eight of the 28 possible two-point 
baselines. Clearly some of these choices lead to simpler reports than 
others do. As the thin-plate spline is covariant with similarity trans-
formations of its target, all the splines here (columns 1 and 3) are 

the same except for grid orientation and spacing. But the regressions 
associated with columns 2 and 4 weight different landmarks differ-
ently (in particular, weighting the two ends of the baseline not at all), 
so these grids can vary in more aspects than the baseline orientation 
per se
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Fig. 13   Graphical extension of the quadratic fit to the IPP–SOS base-
line yields a striking reinterpretation of the growth phenomenon. 
Upper left, square Cartesian grid extended to the left over the base-
line-registered template. Filled dots: age-7 average. Open circles: cor-
ners of the quadrilateral in the template coordinate system that will 
be subjected to a bilinear transformation. Upper right, corresponding 

version of the fitted quadratic trend from Fig. 7. Lower right: simpli-
fication of the fitted quadratic trend as a bilinear map sending all pro-
portional transects of parallel sides of the starting quadrilateral (open 
circles, upper left) to the same proportional transects of the target 
quadrilateral (open circles in this lower right panel)

Fig. 14   Two alternatives for 
column (d) of Fig. 3. The map 
at upper right in Fig. 13 more 
closely resembles the bilinear 
map (far right panel) than the 
projection map (central panel)
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Returning one final time to the scheme in Fig. 1d, the 
decomposition of the neurocranial octagon into two nono-
verlapping components, we see that the figure has indeed 
oversimplified the situation there. That the rotation of all 
edges of the posterior pentagon leaps to the viewer’s eye 
obscures the fact that all but one of these segments have 
changed their length. And likewise the anterior “triangle,” 
Brg–SES–ISS, does not rotate rigidly—its edge from SES 
to ISS shortens and also does not rotate as far as the other 
two. Any report focusing on the two “components” is defi-
cient in failing to refer to the coordinate space in-between 
them, where the unconformity between anteroposterior 
changes of length along the cranial base versus along the 
calvarial roof seems better captured by the rotating lines 
of the Bas–Brg baseline and IPP-SOS baseline analyses 
(Fig. 12, row 2, columns 2 and 4) than by the irregularities 
of the corresponding thin-plate splines (columns 1 and 3).

An Example from Hominization of the Skull

The Vilmann analysis of “Vilmann 7-to-150-Day Growth 
Analyzed Without Procrustes GMM” section exploited the 
best study design that experimental zoomorphology has to 
offer: a sample of close-bred animals imaged by identical 
machinery at a fixed sequence of developmental ages. (The 
identification of this research design as the summum bonum 
of laboratory evo–devo research is a century old—it dates 
from no later than Przibram, 1922.) Most of the data struc-
tures to which GMM has been applied are not so elegantly 
balanced. This paper’s final example is a pair of compari-
sons, each much more typical in its design, that share one 
20-landmark configuration scheme. The data are a selection 
from the 29 forms analyzed in Chap. 4 of Weber and Book-
stein (2011) that originated in computed midsagittal sections 
of a larger sample of CT scans digitized by Philipp Gunz 
(then at the University of Vienna) for the growth analysis 
in Bookstein et al. (2003). That original analysis explicitly 
relied upon the same GMM toolkit that is most commonly 
invoked today: Procrustes analysis, principal components of 
the resulting shape coordinates, and visualizations by thin-
plate spline.4

Of the specimens homologously digitized in 2003, 
most are Homo sapiens, while four are named specimens 
of H. neanderthalensis (Atapuerca, Kabwe, Guattari, and 
Petralona), and two are specimens of Pan, one of each sex. 
For the present reanalysis I have averaged the 18 adult sapi-
ens (one of which, Mladeč, is an archaic specimen) and, as 
a separate group, the four neanderthals. As a third “group” 
(present for a didactic purpose, a comparison of compari-
sons) I selected the female adult chimpanzee, because the 
adult male shows even more of the heterochrony that will 
render my final figure so extreme in certain aspects of its 

geometry. Of course these samples are far more limited than 
any data resources that would be brought to bear on the same 
comparisons today. It would be unreasonable to claim that 
the computations to be reported presently are valid empirical 
findings; my purpose is instead to demonstrate a methodo-
logical alternative to Procrustes- and spline-based GMM.

The left panel of Fig. 15 names these twenty landmarks 
at their positions in the average of the H. sapiens sample in 
the original CT coordinates, which were not far from a Sella-
Nasion orientation. In the right panel this configuration is 
supplemented by the configurations of the same twenty 
points for the female chimpanzee and also for the neander-
thal average, all after the two-point transformation (Book-
stein coordinates) that put all three ANS’s (of which two 
are group averages) at (0, 0) and all three internal Lambda’s 
at (1, 0). Evidently this coordinate system has been rotated, 
translated, and scaled from the panel at its left, but none of 
these steps proceeded by the Procrustes method.

Consider first the analysis in Fig. 16, which in its design 
echoes three of the four panels of the Vilmann series, Figs. 4, 
5, 6, 7, 8, 9, 10, and 11, but in this case only for one selected 
baseline, from ANS to LaI, as in the right panel of Fig. 15. 
(Analysis to a roughly perpendicular baseline, Opi–BrI, 
results in essentially the same diagrams.) The compari-
son in Fig. 16 is from the averaged points for H. sapiens in 
Fig. 15 to the averaged points for neanderthalensis. In both 
of these Homo averages (and also in the single female adult 
Pan specimen to come) the baseline crosses the cranial base 
near Sella roughly halfway along its length. The thin-plate 
spline deformation from the average of the eighteen humans 
to the average of the four neanderthals, upper left in the 
figure, shows the expected contrast of shrinking neurocra-
nium and expanding splanchnocranium, particularly along 
the palate; the cranial base interposes itself as the so-called 
“hafting zone.” As the upper-right panel shows, this grid is 
tracked to some extent by the analogous grid for the fitted 
values of the same neanderthalis landmarks from the quad-
ratic regression on the sapiens coordinates, That quadratic 
regression, already demonstrated many times in the Vilmann 
example preceding, shows most of its failure of fit (discrep-
ancies between the open circles and their filled neighbors 
in the lower-left panel) along that central separatrix, with a 
possible exception at lower right where the pairings of the 
two inions are rearranged in both separation and orientation. 
As Fig. 15 hinted, this rearrangement is due mainly to exces-
sive variation at InE, external inion.

4  In one version or another these data have already been used for 
demonstrations of GMM in textbooks three different times: not only 
Weber and Bookstein (2011) but also Bookstein (2014, 2018). The 
approach circumventing those typical GMM maneuvers is new to the 
present paper.
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Fig. 15   Landmark configurations for the hominization example, “An 
Example from Hominization of the Skull” section. (left) Abbreviated 
names of the twenty landmarks printed at the raw digitized coordinate 
averages of the adult sapiens subsample of Bookstein et  al. (2003). 
Alv alveolare, inferior tip of the bony septum between the two maxil-
lary central incisors, ANS anterior nasal spine, top of the spina nasa-
lis anterior, Bas basion, midsagittal point on the anterior margin of 
the foramen magnum, BrE, BrI external and internal Bregma, outer-
most and innermost innermost intersections of sagittal and lambdoi-
dal sutures, CaO canalis opticus intersection, intersection point of a 
chord connecting the two canalis opticus landmarks with the midsag-
ittal plane, CrG crista galli, point at the posterior base of the crista 
galli, FCe foramen caecum, anterior margin of foramen caecum in 
the midsagittal plane, FoI fossa incisiva, midsagittal point on the pos-
terior margin of the fossa incisiva, Gla glabella, most anterior point 

of the frontal in the midsagittal, InE, InI external and internal inion, 
most prominent projections of the occipital bone in the midsagit-
tal, LaE, LaI external and internal lambda, outermost and innermost 
intersections of sagittal and lambdoidal sutures, Nas nasion, high-
est point on the nasal bones in the midsagittal plane, Opi opisthion, 
midsagittal point on the posterior margin of the foramen magnum, 
PNS posterior nasal spine, most posterior point of the spina nasalis, 
Rhi rhinion, lowest point of the internasal suture in the midsagittal 
plane, Sel sella turcica, top of dorsum sellae, Vmr vomer, sphenobasi-
lar suture in the midsagittal plane. (right) Bookstein coordinates to 
an ANS-LaI baseline for the averaged adult H. sapiens and H. nean-
derthalensis samples and the single adult female chimpanzee. Land-
marks are tracked by polylines H. sapiens–H. neanderthalis–Pan to 
clarify their identifications

The final quadratic trend grid, at lower left in Fig. 16, is 
strikingly different from the thin-plate spline of the same 
point loci (upper right). Indeed this grid for the fit looks 
remarkably like a rotation of the grid at right in Fig. 14, 
the bilinear transformation leaving two specific families of 
straight lines straight after the deformation, while their ori-
entations rotate across the diagram. At this large scale, the 
comparison of midsagittal crania of these sister species is 
largely smooth—the points in the hafting zone differ hardly 
at all from their predicted locations under the quadratic anal-
ysis. In particular, the implication of modularity in the upper 
right panel is completely effaced in the quadratic fit grid at 
lower left, indicating instead an approximating spatial pro-
cess that is homogeneously graded with no natural bounda-
ries embryological or otherwise. The grading is consistent 
with the observation that relative to the face the neanderthal 
neurocranium is smaller than that of sapiens with some rela-
tive rotation as well.

Figure 17 analyzes the same comparison by a cubic fit 
instead of the quadratic fit in Fig. 16. (Specifically, this fit 
models each of the twenty x-coordinates of the H. nean-
derthalensis average and then each of its 20 y-coordinates 
as a linear combination of nine terms xsap, ysap, x2sap, y

2
sap

, 

xsapysap, x3sap, y
3
sap

, x2
sap

ysap, and xsapy2sap. The quadratic regres-
sions used only the first five of these predictors.) These cubic 
grids show bizarre behavior outside the limits of their driv-
ing data (the strange cusps already clear in Sneath’s exam-
ples of 1967), so as in the Vilmann exposition of “Vilmann 
7-to-150-Day Growth Analyzed Without Procrustes GMM” 
section I extended the figure by one more panel, lower right, 
that trims the grid to just the interior of the region occupied 
by the actual target configuration (here the H. neandertha-
lensis average). The straight lines of the rendering in Fig. 16 
now appear as S-curves across that same hafting zone, and 
of course the new fit, a regression on nine predictors, has to 
be closer than that in Fig. 16 based on only five of the nine. 
(Note that quadratic maps cannot generate points of inflec-
tion such as characterize these S-curves of cubic fits.) But 
the change of size-ratios between neurocranium and splanch-
nocranium remains clear, as does the directional extension 
along the palate and the relative rotations from anterior to 
posterior and from caudal to cranial.

The situation is quite different for the comparison of the 
H. sapiens average to our more distant relative, the female 
chimpanzee. The quadratic analysis analogous to Fig. 16 
can be found in Fig. 18, but it no longer appears to look 
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entirely like the bilinear map of Fig. 14. Instead we encoun-
ter a strong local feature of the transformation, the apparent 
rotation and flattening of the parietal region, that is seen 
in both of the thin-plate spline renderings of the top row 
(at left, for the actual shape coordinates; at right, for the 
quadratic fit) and likewise in the gridded representation of 
that quadratic fit at lower left. Strikingly, the residuals of 
this analysis seem no greater than those of the comparison 
of the sapiens sample with the neanderthals, Fig. 16, yet the 
flattening of the splines is clearly detected by this quadratic 
fit as well, which has so many fewer coefficients (and also 
a matrix inversion step of much lower rank, 5 × 5 instead of 
23 × 23 ). The bidirectional linearity of the lower left panel 
in Fig. 16 has certainly ceased to apply globally, while the 
hafting zone here seems still to be no sort of natural bound-
ary between multiple modules. The deformation remains 
smoothly graded except locally, in the parietal region.

Yet when we switch the algorithm from the quadratic (five-
term) fit to the cubic (nine-term) fit, Fig. 19, nothing essential 
changes in the analysis as a result of these additional four 
degrees of freedom per coordinate. The thin-plate spline of 
the fitted points (upper right panel) is not much altered from 
that in the previous figure except in that same nonconforming 

parietal region, and while the cubic fit here leads to patholo-
gies of the extrapolated grid at every corner of the original 
scheme (lower left panel), its restriction to the interior of the 
actual anatomy, lower right in the figure, shows grid lines that, 
ignoring their curvature, are actually well-aligned with those 
of the lower left panel in Fig. 16, the comparison from sapiens 
to neanderthalensis. We have thereby confirmed graphically 
that the shape difference in the parietal region is indeed local. 
Put this another way: in this warp analysis of the relation 
between the average H. sapiens 20-point configuration and the 
20 points of the single female Pan, the 10-parameter quadratic 
fit (Fig. 18) and the 18-parameter cubic fit (Fig. 19) convey the 
same message: a relatively continuous gradient of deforma-
tion right across the hafting zone. And they agree, too, that the 
situation at the parietal (landmarks Opi through LaE) is not 
coherent with this large-scale gradient. From Bregma forward, 
the lower right panels in Figs. 17 and 19 differ mainly in the 
intensity of rotation of these gridline segments; but posterior 
to that arbitrary boundary the parietal landmarks participate 
in a reorganization that is incommensurate between the two 
comparisons.

Thus we see again that, just as in the Vilmann growth 
example, an approach that eschews all of the standard Pro-
crustes steps and also the usual thin-plate spline is capable 
of generating a better understanding of a morphological phe-
nomenon, in this case a somewhat more complicated one, by 
polynomial fit instead of thin-plate interpolation.
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Fig. 16   Three grid diagrams for the comparison of the averaged H. 
sapiens and H. neanderthalensis twenty-landmark configurations, to 
an ANS-LaI baseline. (upper left) Conventional thin-plate spline grid 
deforming the sapiens average to the neanderthalensis. (upper right) 
Thin-plate spline rendering of the deformation from the same aver-
aged sapiens to the quadratic regression fits (regressions on first and 
second powers of the x- and y-coordinates and also their product xy) 
of the neanderthalensis configuration. (lower left) Explicit grid of that 
quadratic regression. Solid circles, observed averaged neanderthalensis 
two-point coordinates; open circles, fitted locations. This is even more 
bilinear than the growth fit of Vilmann neurocranial octagons in Fig. 7
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Fig. 17   The same for a cubic regression of the neanderthalensis coor-
dinates, nine predictors instead of five. Upper left, upper right, and 
lower left panels as in Fig.  16. At lower right, an enlarged version 
of the fitted grid (lower left) as trimmed to the interior of the actual 
neanderthalensis average
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Discussion

The Main Concern of GMM Ought to be 
the Transformation Grid Per Se

This focus was already clear from the earliest formal appear-
ance of the concept in D’Arcy Thompson’s On Growth and 
Form (Thompson, 1917), where the review literature usu-
ally begins (even though portrait artists like Albrecht Dürer 
had thought about this much earlier). The endpoint of the 
method ought not to be statistical but instead graphical, and 
the derived report should be geometrical, not statistical, en 
route to an ultimately biophysical or otherwise morphody-
namics-informed endpoint. Thompson (1961, p. 275) puts it 
this way: “The deformation of a complicated figure may be a 
phenomenon easy of comprehension, though the figure itself 
have to be left unanalyzed and undefined.” The main dilem-
mas in this tradition were already well-critiqued over the first 
six decades of its development as I reviewed them in Chap. 5 
of Bookstein (1978). No matter how clearly defined the posi-
tions of individual landmark points might be, there was no 
complementary rhetoric for reporting meaningful features of 
the transformation grid that expressed comparisons of their 
configurations over meaningful biological contrasts. Of the 
classic expositions of this problem, the best remains that of 
Sneath 1967, a paper that struggled, ultimately unsuccess-
fully, to bring the algebra of landmark analysis (in that pre-
spline era) into alignment with the reasoning of numerical 
taxonomy. Yet D’Arcy Thompson would have been delighted 
with the grid in Fig. 13, while presentations of the same 
information in Procrustes style, Fig. 1a, or spline-style, pan-
els 4 (a) through 11 (a), would have been of no use to him 
at all. A more contemporary and quite distinct tradition of 
transformation studies approaches the problem via a calculus 
of diffeomorphisms (see, for example, Grenander & Miller, 
2007), which makes no essential reference to landmarks at 
all, instead basing its computations on the full field of image 
contents, gray-scale or even colored, spanning the organ(s) 
of interest. The approach seems particularly helpful in neu-
rological applications to imagery of the human brain. This 
contrasting method, however, is beyond the scope of my 
Procrustes critique here.

The analysis in Figs. 7 or  13 suggests renewing Thomp-
son’s original concern in this domain, the interpretation 
of grids per se, via injecting a new theme into the discus-
sion, an anatomical basis for orienting the starting grid on 
the template, that more intensively exploits the interaction 
between deformation graphics and the investigator’s prior 
awareness of how non-Cartesian coordinate systems them-
selves can vary in their visually dominant features. The bio-
mathematics ought to begin, then, with a confluence of two 
insights: one, that some morphological domains might be 

amenable to some kind of functionally interpretable large-
scale pattern analysis, and the other, an intuition about the 
geometrical language by which the pattern of interest might 
be quantified. For Henning Vilmann, this translation began 
with the knowledge that growth of rodent neurocrania is a 
plausible domain for morphometric exploration and that its 
midsagittal aspect bears enough information about growth 
and function to be worthy of geometrization not only in his 
own measurements of extent, nor the numerous intermediate 
multivariate investigations of this same data set (including 
several of my own), but also in the novelties of “Vilmann 
7-to-150-Day Growth Analyzed Without Procrustes GMM” 
section. But given these two axioms, an applied study would 
culminate in an exploration not of alternative statistics but 
of alternative graphics: a survey not of diverse linear com-
binations but of diverse grid renderings. Information about 
absolute scale change, where relevant (as in biomechanical 
aspects of interpretation), can be embedded in any of these 
grid figures by a simple magnification over the course of 
printing, or can be inscribed upon interlandmark segments 
or the line-elements of a transformation grid by aligned text. 
In this context of large-scale comparison, rotation is a tool of 
rendering clarification, not a nuisance variable of digitizing.

The quadratic regressions in Figs. 4 through 11 all used 
the same list of five predictors x, y, x2, y2, xy . This consist-
ency lets the renderings here, unlike the approach in the 
lower row of Fig. 1, preserve the uniform component of the 
transformation grid, where we can see how it interacts with 
these gradients of large but finite scale. But the directions 
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Fig. 18   The same as Fig.  16 for the comparison of the averaged H. 
sapiens to the single female chimpanzee in the data base of Bookstein 
et al. (2003)
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corresponding to those two axes x and y vary from baseline 
to baseline, and the baseline points are not privileged by 
the regressions. Consequently the coordinates pinned by the 
two-point registration are not quite pinned by the regres-
sion—they are permitted to shift to some extent from solid 
to fitted circles in the grid figures here.

The resulting dataflow sheds new light on what we mean 
by “the best rotation” when, as in both of this paper’s exam-
ples, different parts of an organ appear to rotate relative to 
one another over a comparison of interest. The role of the 
multiple two-point registrations that this paper recommends 
as a substitute for the Procrustes algorithm is not itself a 
“finding” of any sort but merely a convenience, a simple 
way of regularizing the landmarks’ Cartesian coordinates in 
order that a selection of reasonable polynomial trends can 
be fitted, each in a reasonably equably weighted way. Their 
advantage is that unlike the case for the Procrustes method, 
there is more than one of them. The Procrustes approach 
optimizes a quantity (sums of squares of landmark shifts) 
that is irrelevant to the ultimate purpose of an evolutionary 
or developmental GMM analysis, which is not a minimized 
sum of squares or a singular-value decomposition or a clas-
sification but rather a plausible biological hypothesis for 
the observed form-differences, their causes, or their conse-
quences for the organism.

Then the logic of the inference engine we need is not the 
operationalized Procrustes arithmetic itself, the least-squares 
fit to what is almost always a completely wrong model (the 
null model, a pure similarity transformation). Instead we 
need the logic of E. T. Jaynes’s approach to numerical infer-
ence (e.g., Jaynes, 2003): the explicit acknowledgement 

of what we do not know—what is missing from the list 
of data-driven constraints on some quantitative empirical 
inference. (I have recently reviewed this logic in the rather 
different context of paleoseismology, which is the history 
of great earthquakes—see Bookstein, 2021b.) What is miss-
ing from a Procrustes analysis is, among other things, the 
acknowledgement that choice of an orientation constraint 
affects the resulting report: what we seek is the orientation 
that will best clarify the final published diagram. Further-
more, regardless of this issue of orientation, in every GMM 
context we already know there is no “correct” registration, 
because there is no “correct” list of landmarks—in the pres-
ence of any regional rotation or rescaling, different lists of 
landmarks or semilandmarks lead to different Procrustes reg-
istrations, and the empirical report of a shape comparison 
must accommodate that specific form of ignorance. That is 
the whole purpose of the grids—to free our attention from 
the landmark data per se to the space in-between, which is 
where biological processes actually take place.

The particular protocol dictating the selection of orienta-
tions to be considered may be irrelevant to the quantitative 
morphological inference under study. (Recall that in this 
paper the two points fixed in the baseline registration are 
not fixed by the fitted trend—the registration is not an infer-
ential component of the grid report at all.) Orientation may 
be specified as any interlandmark segment from the available 
pairings, or any homologous boundary alignment, or even a 
specific force vector such as a muscle load or gravitational 
vertical—or possibly all of these. Whatever the choices of 
orientation, the investigator of a global deformation is led to 
the approach here, which is the selection of at least one sat-
isfactory such orientation as judged by the ultimate diagram 
at the end of the workflow. In 3D, one could proceed via an 
assortment of what might be called “baseplanes” by anal-
ogy with baselines—large landmark triangles passing near 
the centroid, similarly searching for clarity and redundancy. 
But in other contexts that issue of orientation may be quite 
relevant to the interpretation. The examples here have all 
dealt with global trends, but Figs. 18 and 19 hinted at a need 
for a deformation tool suitable for local features as well. 
Such a tool would likewise entail a rotation of the Cartesian 
coordinate system prior to grid computation, but in general 
a different one—see, for example, the model of the crease in 
Bookstein (2000) or Bookstein (2014, Fig. 7.19).

The choice of a specific Cartesian coordinate system for 
reporting a fitted polynomial grid, as explored in Figs. 4 
through 11 and later at Figs. 16 through 19, combines two 
different quantifiable aspects of biometric reporting: sim-
plicity of the deformed grid, and magnitude (and distribu-
tion) of the residuals at the landmarks of the target con-
figuration. This paper, agreeing with D’Arcy Thompson, 
privileges the first of these purposes over the second, and it 
is appropriate to pause here to explain why. It is helpful to 
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Fig. 19   The same as Fig. 18 for the comparison of H. sapiens to the 
female Pan using the cubic tools. The grid at lower left, for the cubic 
fit, is correctly drawn even though it looks like a whale
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borrow a concept from psychometrics, the notion of a uni-
verse of items of which the measures of any psychological 
test, however long or short, constitute a finite subsample. 
The purpose of psychometric factor analysis is to explore the 
features of that universe by careful generalizations based in 
the available subsample of items. GMM offers a clear anal-
ogy here in the notion of a universe of possible landmark 
locations and an even larger universe of their arbitrary com-
bination into finite configurations—lists of matching points 
across a sample of specimens, any count, any distribution of 
positions, where “matching” could refer to any operational 
characterization of the points by geometry or image con-
tent. Any specific configuration constitutes a finite, usually 
arbitrary sample of one single template geometry from this 
immense universe of possibilities. (And there are also other 
ways of approaching morphometrics than by the combina-
torics of finite lists like these: on curving semilandmarks 
see, for instance, (Srivastava & Klassen, 2016), an approach 
that might prove better than GMM for applications in botany 
and perhaps in studies of planktonic foraminifera as well.) 
Thompson operationalized something like this when he 
arbitrarily drew his curves on line drawings without much 
respecting any individual pairing of points. Sneath dealt with 
it more carefully with his notion of “h-points,” homologous 
points whose precision was uncertain, but likewise he paid 
no attention to the uncertainty of those points per se.

In a context like this, with no grounded theory of the 
actual geometry of a GMM data set (however often we are 
well-informed about the specimen sampling aspects), any 
such notion as “accuracy” has to be very carefully formal-
ized. (The notion of a formal “theory of data” is real; I have 
borrowed the phrase from the title of yet another psychomet-
ric resource, Coombs, 1964.) There is a branch of statistics 
that does so, the subdiscipline usually called “spatial statis-
tics,” from which it is helpful to draw two concepts. One is 
the praxis of kriging, which is the prediction of quantitative 
properties anywhere on a map from its measured properties 
at any finite point sample. (As it happens, the conventional 
thin-plate spline is in fact an example of kriging: Kent & 
Mardia, 1994.) The other is the notion of a nugget effect, 
which is the component of variance of predictions like those 
that derives from the irreducible measurement error of the 
original data. (The literature of factor analysis has a simi-
lar formalism, the “unique variance” of any measurement 
that correlates with nothing else in the universe of alterna-
tive data.) A good reference on this general domain is Kent 
and Mardia (2022), and the ideas were already injected into 
the literature of biomedical image analysis by Mardia et al. 
(2006). The goal of figures like Figs. 7 or  19 here is analo-
gous to the goal of any other biometric regression analysis: 
to accurately estimate underlying meaningful quantities—
not to reproduce the actual data but to appropriately visual-
ize the interpretable pattern driving it with due regard for 

possible errors exogenous to the theory under consideration. 
Back in geometric morphometrics, it is no more a disadvan-
tage for there to be discrepancies between the filled dots and 
the open circles in Fig. 4 than for a regression line or curve 
to pass near but not exactly through a measured data point 
or for a highly intelligent teenager to miss one or two easy 
questions on the Scholastic Aptitude Test.

The psychometric problem most akin to this paper’s 
search for a good Cartesian coordinate rotation is the prob-
lem that that field actually refers to by the same word: the 
problem of factor rotation, nicely reviewed for biologists by 
Reyment and Jöreskog (1991). In Bookstein (2017) I tried to 
import one of the fundamental maneuvers of this field, vari-
max rotation, into GMM using these same Vilmann octagons 
as a demonstration data set. A varimax rotation attempts to 
maximize the variance of a set of correlations of items with 
factors—to send as many as possible of these correlations to 
±1 . The equivalent for this paper is the attempt to minimize 
the curvature of the deformed grid lines, which ultimately 
derive from the coefficients of those fitted quadratic or cubic 
polynomials. Such an explicit optimization could well be the 
subject of research on its own.

When GMM is being used as the source of hypotheses for 
subsequent biological exploration, rather than just a praxis 
for classification or facial recognition, its role is rather like 
a factor analysis, or a neural-net processor in some machine 
learning lab: a principled guess at some underlying cause of 
all the observable effects. Back in GMM, two well-known 
vicissitudes of the thin-plate spline, its tendency to extrapo-
late disproportions of small displacements interior to a con-
figuration while relaxing toward linearity outside the convex 
hull of the configuration, count as bugs, not features—see 
the discussion in Bookstein (2021a). Correction of these 
two pervasive difficulties is one role of the polynomial grids 
explored in this article (for instance, with closely-spaced 
landmarks, the regressions attenuate adjacent discrepancies 
rather than disseminating them outward). It is not the error 
sum of squares of these regression residuals that matters 
for subsequent work in evo–devo, but their role in generat-
ing fertile new hypotheses that can follow from the simpli-
fied appearance of the corresponding grids. What leads us 
to prefer cubic (Fig. 19) to quadratic (Fig. 18) grids in the 
hominization example is not the net residual sum of squares 
of the polynomial fit, corrected for degrees of freedom, but 
instead the cogency of the observation that one fits the pari-
etal bone so much better than the other.

The issue would be the same for interpretations in the 
language of modularity: not a matter of sums of squares 
pursuant to prior hypotheses, but a concern for the genera-
tion of new, better hypotheses that, e.g., search for evidence 
for the reality of boundaries between purported modules 
under various experimental designs. Because the interior 
of any non-nested module is at the same time a part of the 
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exterior of every other module, one sees from the hominiza-
tion example that the morphometric aspect of “modularity,” 
whatever its exact morphogenetic definition, is a matter not 
of landmark coordinates but of what happens to coordi-
nate grid lines, especially in the vicinity of what would be 
claimed to be intermodule boundaries. Figures 17 and 19 
confirm that, within the limits of these data resources (adult 
forms only, no growth series, a mere 20 landmarks), there 
is no graphical evidence for the cranial base as a separatrix 
between braincase and face, in spite of their obvious differ-
ences in function, but strong evidence for a separation of the 
whole anterior two-thirds of this landmark scheme from the 
five parietal landmarks, Opi through LaI and LaE, that so 
clearly seize control of the lower-right corner of the grids 
for either the quadratic fit (Fig. 18 lower left) or the cubic 
fit (Fig. 19 lower right) to the comparison across genera. 
While the empirical import of this second data example is 
obsolete, owing to advances in the accrual of samples of all 
these taxa, the practice whereby consideration of the trans-
formation grids per se might shape inferences from land-
mark data about morphogenetic control processes ought to 
be transferred from the current GMM toolkit to these more 
integrated investigative tools along the lines of the examples 
here.

We Need to Broaden the Range of Ideas We Borrow 
from Geometry

A combination of two branches of geometry led us to the 
bilinear interpretation in Fig. 13 of the grid in Fig. 7, but 
this other toolkit is not among those currently being taught 
to biomathematicians. The kernel r2 log r of the thin-plate 
spline doesn’t much resemble the biological processes we 
are trying to understand, but the algebra of polynomial 
fits (here, mainly the specific appearance of bilinear maps 
leaving both pencils of coordinate lines straight and evenly 
spaced after deformation even as they rotate) does pick up 
much of the classic appearance of growth-gradients as laid 
out for analysis from Thompson on. More important than 
the extension of the idea of a coordinate system, though, is 
an extension of the domain of morphometric data to include 
empirical entities other than landmark points. The descrip-
tion of the grid in Fig. 13 makes no essential mention of 
any of the landmarks—the simple exegesis here (bilinear 
reorganization of that particular family of grid lines while 
remaining lines) pertains much more to the interior of this 
octagon (the directions of those transects across it, or, if you 
will, the pairing of points across the left and right sides of 
the outline in this orientation) than to any of its boundary 
delineation detail, even though that boundary is the sole data 
source for the example. Thus at root the finding exemplifies a 
language of intraorganismal matching, the pairing of points 
along a shared curve bounding some anatomical entity in 

section. Pairings like these are not like landmarks in any 
formal aspect.

So even though this paper’s first example began from a 
playful GMM-derived diagram, Fig. 1d, it ends up formal-
ized in the rhetoric of a spatial extension (Fig. 13) unknown 
to GMM but accessible to any reader of Thompson’s chap-
ter, as interpreted in Fig. 14 via a similar-looking figure 
suitable for some college-level geometry text. This logi-
cal sequence can be reversed: beginning from those same 
textbooks, to try finding biological examples that illustrate 
them. We are used to polar coordinates, for example (most 
recently in the study of centric allometry, Bookstein, 2021a), 
but what about bipolar coordinates or confocal coordinates 
(Bookstein, 1981, 1985) and other schemes that (literally) 
co-ordinate position with respect to two origins or two axial 
systems at the same time? The range of coordinate systems 
is vastly broader than the Cartesian on which today’s GMM 
automatically relies. My biorthogonal grids (Bookstein, 
1978) already went beyond this possibility, though not in a 
statistically feasible way, via their formalism of one-axis and 
three-axis singularities corresponding to the “lemon” and 
“star” umbilics that are the topic of advanced treatises such 
as Koenderink (1990). From the earliest years of the twenti-
eth century the mathematics of geometry has permitted us to 
talk about coordinates of many different extended structures: 
not just points, but lines, planes, circles, and many other for-
malisms. See, at first, (Hilbert & Cohn-Vossen, 1931/1952), 
and then, among the more contemporary surveys, (Porteous, 
2001) or (Glaeser, 2012).

Thus the word “geometric” in the phrase “geometric mor-
phometrics” needs to have its meaning broadened beyond 
the current focus on the multivariate-centered aspects of 
GMM or indeed any version based on analysis of landmark 
points as logically separate data elements. “Procrustes dis-
tance” between specimens, when computed as a minimizing 
sum of squared Cartesian coordinate differences, is just a 
theory-free proxy for the far more subtle and multifarious 
concept the biologist knows as the opposite of “similarity,” 
and today’s GMM treats Procrustes shape coordinates as 
just a list of Cartesian pairs (or triples) in their own coor-
dinate space of position, without reference to any explicit 
features for describing how their interrelationships (e.g. the 
interlandmark segments of Fig. 1) actually change across a 
comparison of configurations. D’Arcy Thompson got this 
right all the way back in 1917: “This process of compari-
son,” he wrote (Thompson, 1961, p. 271), “recognizing in 
one form a definite permutation or deformation of another, 
apart altogether from a precise and adequate understanding 
of the original ‘type’ or standard of comparison, lies within 
the immediate province of mathematics.”

That geometry of “recognizing deformation” is not 
limited to the geometry of points referred individually to 
Cartesian axes. Thompson himself referred explicitly to 
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the appearance of the deformed grid lines in his drawings. 
For the comparison to Mola, for instance, he wrote, “I have 
deformed [Diodon’s] vertical coordinates into a system 
of concentric circles, and its horizontal coordinates into a 
system of curves which, approximately and provisionally, 
are made to resemble a system of hyperbolas” (Thompson, 
1961, p. 300). It is the configuration of these curves, not 
the landmarks on them, that is the bridge from arithmetic 
to understanding. In other words, the elementary language 
of deformation, the language by which we report morpho-
logical comparisons as deformations, must be based in a 
glossary of multiple elementary types of deformable image 
components, not disarticulated landmarks. The roster of 
these is broad indeed, including, among other options, 
the changes of point-pairs to other point-pairs at a differ-
ent distance or direction that we already saw in Fig. 1, but 
also changes of triangles to other triangles, squares to any 
quadrilateral whether rectangle, parallelogram, trapezoid, 
or some other form, displacement of interior points with 
respect to an unchanging boundary, circles to ellipses, ellip-
ses to any other simple closed curve, straight lines to other 
straight lines, lines to any other open curve, line-elements 
having an orientation in the small as well as a location (for 
a spline cognizant of this structure, see Bookstein & Green, 
1993), or nearby pairs of parallel curves to any bent rib-
bon tracing the sequence of changes all along their shared 
length. All of these have appeared in biometric examples; 
to each corresponds a different geometric grammar for its 
reporting. For instance (in another acknowledgement of our 
sister discipline of neuromorphometrics), line elements per 
se summarize image data for the method known as diffusion 
tensor analysis that traces and summarizes patterns of wiring 
in the human brain.

As I hope you have already come to suspect from the 
figures in this paper, the thin-plate spline is not designed to 
be of any particular help in this matter. Its functional form is 
mainly a sum of terms r2 log r, where r is the distance from 
each grid point to each landmark of the template in turn, 
and so it has no machinery for collecting references to two 
or more landmarks at the same time, but must revert to the 
nonbiological symmetries of linear multivariate statistics for 
this purpose (so that the partial warps, for instance, are just a 
(2k − 4)−dimensional rotation of a configuration’s Cartesian 
coordinates however they were arrived at to that point, while 
the relative warps are just a different (2k − 4)−dimensional 
rotation of the same coordinates). No, the elements of a 
quantitative morphometric comparison in terms of deforma-
tion must be the whole coordinate systems of our deforma-
tion diagrams, and the features we extract must be features 
that refer to those deformed lines and areas, whether end to 
end or truncated to the vicinity of specific landmark subsets. 
Any geometric report qualified to drive a programme like 
Thompson’s aimed at simple descriptions of relationships 

among individually complicated specimens must begin with 
more complicated elementary entities than positions of dis-
crete landmark points. A search for such explananda, begin-
ning from the paired interlandmark segments in Fig. 1, leads 
immediately to the elementary aspects of this paper’s two 
examples, which make no reference to the formula r2 log r 
nor indeed any quantification beyond the squaring or cubing 
of coordinates and products of those powers that allows us 
to parameterize families of nearly parallel curves that began 
as parallel lines.

The Implications of a Diminished Role 
for the Existing Core of Geometric Morphometrics 
in Quantitative Morphology are Liberating

Via a new toolbox that intentionally discards Procrustes cen-
tering, Procrustes scaling, and Procrustes orientation, and 
that downplays the role of thin-plate splines—the whole 
core of today’s GMM as it has been conventionally black-
boxed for routine use—we may be able to better achieve 
GMM’s principal declared purpose, the quantitative under-
standing of morphological variation and its causes or effects, 
by recourse to more diverse geometrical formalisms, some 
ancient and some relatively novel. This methodological pos-
sibility has several implications, some for actual analysis of 
morphologies and others for the methodological component 
of graduate curricula in the evo–devo sciences. The aspects 
of geometry that today’s GMM is accustomed to borrowing 
for its tools concentrate much too heavily on matrix algebra 
and linear multivariate analysis. As Peter Sneath suspected 
so long ago in his paper on trend-surface analysis, there are 
other geometric entities, such as those here dealing with 
quadratic and cubic bivariate polynomials, that speak more 
clearly to the investigator’s visual instincts, especially as 
regards phenomena of orientation. (Examine, for instance, 
panel 1d of Sneath (1967),5 which shows a relative rotation 
between face and braincase in the comparison of Homo to 
Pan similar to the one in Fig. 18 here, without, however, 
the optimization of coordinates that “An Example from 
Hominization of the Skull” section exploited.) And far more 
objects can be assigned coordinates than discrete points (or 
semilandmarks) alone: grid lines, for instance, deserve coor-
dinates of their own (Figs. 4 through 11) and also interland-
mark segments (Fig. 1).

Similarly, the way GMM relies on thin-plate splines for 
its published renderings exaggerates their importance for 
organismal biology. The spline is an interpolating map, 

5  According to Biegert (1957), the orientation is along the central 
plane of the sphenoid (in Latinate German, “Planum-sphenoideum-
Ebene”) to suit the needs of a much broader study of the midsagittal 
skull across the order Primates.
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whereas, in view of how colossally arbitrary our landmark 
lists actually are, biological interpretation is usually deeper 
and better when it goes via approximating maps instead. 
The actual role of interpolating splines in the research 
cycle, then, might be shifted well earlier, all the way back 
to before the final rendering style is chosen, in order to sup-
ply guidance about which geometrical languages should be 
exploited for the most effective dissemination. At that early 
stage, interpolating splines are good aids to the search for 
component processes that are primarily local, but are poor 
at the analogous global reports, which, as Sneath already 
knew in 1967, do better with polynomial analyses. Both pos-
sibilities might appear in a report, the way Fig. 4 ff. show 
both the thin-plate spline, which reveals the local change at 
IPP, and the quadratic grid, which summarizes the overall 
change of form so much better (in both contexts ignoring the 
Procrustes side of GMM in favor of the different optimiza-
tion of orientation recommended here).

The finding in Fig. 1d should not have been new to this 
paper. In the many previous GMM investigations of the 
Vilmann data there should long since have been mention 
of rotations of subanatomies, a rhetoric that has been sup-
pressed, perhaps unintentionally, by virtue of our current tra-
ditions of overly symmetric data summaries like Procrustes 
distance, principal component analysis and interpolating 
splines.6 It is time for the morphological side of biomath-
ematics to return to its roots in biological geometry sensu 
lato—what might the organism’s function space “know” 
about its own form?—in order to rebuild the interplay 
between data and explanation using a much broader range 
of geometric formalisms than just “points” (or their “mod-
ules”) and “deformations.” The method of cubic regression, 
Figs. 17 and 19, is likewise not new; I copied it straight from 
Sneath (1967). The particularly careless way the Procrustes 
method dismisses orientation as just a nuisance variable has 
blinded our field to the possibility that relative intraspeci-
men orientations can be just as informative a channel of 
insight and explanation as relative extents (proportions). To 
restore and then extend this symmetry we need to abandon 
the standard Procrustes tool in favor of explorations that 
explicitly consider multiple orientations at the same time, 
just as studies of allometry have been considering multiple 
size measures since at least (Blackith & Reyment, 1971). 
More generally, to understand transformation grids we must 
extend our understanding of the sort of entities that can have 
coordinates from points to more extended structures. Only 

then can we trust our diagrams to provide straightforward 
practical summaries of the “blooming, buzzing confusion” 
(W. James) that is the spectrum of Darwinian phenomena 
we call evo–devo.
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