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Abstract
A widespread pattern in vertebrate life-history evolution is for species to evolve towards either fast or slow life histories; 
however, the underlying causes of this pattern remain unclear. Toothed whales (Odontoceti) are a diverse group with a 
range of body sizes and life histories, making them an ideal model to investigate potential drivers of this dichotomy. Using 
ancestral reconstruction, we identified that certain groups of odontocetes evolved more-streamlined, presumably faster, body 
shapes around the same time that killer whales (Orcinus orca) evolved into whale predators approximately 1 Mya during 
the Pleistocene. This suggests that the evolution of a streamlined body shape may have been an adaptation to escape killer 
whale predation, leading to longer life-history events. To test this hypothesis, we performed a cluster analysis of odontocete 
whales and confirmed the dual pattern of life-history traits, with one group referred to as ‘reproducers’ characterized by early 
age of maturity, short gestation, short interbirth interval, and short lifespan, and the other group referred to as ‘bet-hedgers’ 
exhibiting the opposite pattern. However, we found that life history grouping was relatively unrelated to whale shape (i.e., 
more streamlined or less streamlined). Therefore, we incorporated principal component results into mixed effects models, and 
the model results indicated that body shape was positively related to neonate length (a measure of investment in progeny), 
but not significantly related to the temporal life-history traits. Thus, whale body shape is not a sufficient explanation for the 
evolution of fast-slow life histories in odontocete whales.
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Introduction

Understanding the ecological factors that drive patterns of 
life‐history diversification is a central goal of evolution-
ary biology (Rolf, 1992; Stearns, 1976). Vertebrates often 
exhibit distinct evolutionary strategies, evolving towards 
either fast or slow life histories, even when controlling for 
body size (Dobson & Oli, 2007; Ferguson & Higdon, 2013; 
Read & Harvey, 1989; Ross, 1991). Lagomorphs, for exam-
ple, exemplify a fast life history with short life spans, high 
reproductive rates, and low parental investment, while bats 
represent a slow mammalian life history characterized by 
long life spans, low reproductive rates, and high parental 
investment (Blueweiss et al., 1978; Dobson & Oli, 2008; 
Jones & MacLarnon, 2001). These life-history strategies are 
shaped by the costs and benefits associated with different 
ecological pressures, such as predation risk and foraging 
efficiency (Caddy, 2008; McNamara et al., 2008; Weimer-
skirch, 2001).

“There is no such thing as perfection, only the relentless, thirsty 
matching of an organism to its environment. That is the engine that 
drives evolution.” Siddhartha Mukherjee.
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Morphological specialization in locomotion is influ-
enced by an organism’s greater need to either search and 
capture prey to gain reproductive energy or evade preda-
tors to minimize mortality risk (Abrams, 2003; Huey 
& Pianka, 1981; Urban, 2007). In marine mammals, a 
streamlined body shape is a characteristic feature (Webb, 
1984) that benefits swimming capabilities, as it reduces 
drag during swimming (Wassersug & Hoff, 1985), and 
thus should play a role in predator escape abilities (Dayton 
et al., 2005). Burst speed, a trait that is correlated with 
survivorship in a number of taxa, including fish, anu-
rans, lizards, and mammals, is also influenced by body 
shape (Miles, 2004; O'Steen et al., 2002; Teplitsky et al., 
2005; Wirsing, 2003). A streamlined body shape typi-
cally includes a rounded leading edge or head that tapers 
slowly to the tail (Videler, 1981), with a length/girth ratio 
that optimizes drag reduction and volume accommoda-
tion (Williams, 2018). Studies on a wide range of marine 
mammals have shown that many species conform to an 
ideal hydrodynamic range of around 4.5 for the length/
girth ratio, indicating an optimized body shape for effi-
cient swimming (Williams, 2018). Cetaceans, including 
odontocete whales, exhibit a range of body shapes with 
length/girth ratios from 3.0 to 8.0, reflecting different 
levels of streamlining that may be specialized for diving 
foraging efficiency or predator evasion (Fish, 1993; Kooy-
man, 1985).

Previous research has also suggested that life-history 
strategies in cetaceans (mysticetes & odontocetes) can be 
categorized into two groups: bet-hedgers, which exhibit 
reduced investment in progeny and long temporal life-his-
tory events, and reproducers, which exhibit greater invest-
ment in progeny and short timing of events (Ferguson & 
Higdon, 2013). However, while the temporal life-history 
traits align with the fast-slow continuum, these two groups 
do not conform perfectly to it. Possible explanations by the 
authors for this dichotomous pattern included differences 
in diet, environment, and predation, but body morphol-
ogy has also been proposed as a contributing factor to 
life-history strategies (Gotthard & Nylin, 1995; Zhang, 
2006). For example, a more-streamlined body shape may 
favor fast-swimming whales in escaping predation pres-
sure, resulting in a slow life history strategy, while less-
streamlined, slower swimming whales may specialize in 
foraging efficiency at the expense of predation mortality, 
leading to a fast life history strategy. Predation plays a 
significant role in shaping the life histories of prey spe-
cies (Law, 1979; Walsh & Reznick, 2008), including 
odontocetes. Direct predation effects, such as changes in 
age/size-specific mortality, can have strong evolutionary 
consequences and influence the life history strategies of 
prey species (Benard, 2004; Jørgensen & Holt, 2013). For 
example, predation can impact growth rates and reduce 

the ability to procure food, indirectly affecting prey life 
histories (Lima, 1998; Matthews et al., 2020).

In many animal species, locomotion and foraging com-
petition are critical for survival and reproductive fitness. 
However, there are trade-offs between traits that make an 
individual good at fleeing predators and traits that enhance 
foraging performance (Ludwig & Rowe, 1990). For exam-
ple, rapid and economical swimming typically depends on 
a long, streamlined body shape and specialized muscles for 
the storage and recovery of elastic strain energy. This spe-
cialization in swimming performance may limit foraging 
efficiency. These biomechanical trade-offs likely contribute 
to the dichotomy between fast swimming and specialized 
foraging strategies observed in different phylogenetic line-
ages of cetaceans (Ford & Reeves, 2008). Some cetacean 
species may exhibit high performance in speed, allowing 
them to escape predation pressure through rapid swim-
ming, while others may specialize in foraging efficiency at 
the expense of predation mortality, resulting in a slower life 
history strategy.

Foraging adaptations can influence life histories depend-
ing on the environmental conditions that either favor a sus-
tained focus on energy acquisition to match a fast life or 
low energy acquisition foraging behavior that matches a 
slow life (Boggs, 1992; Pianka, 1976; Webb et al., 2003). 
In highly productive environments where food resources 
are abundant and nutrient-dense, animals may exhibit a fast 
life history strategy. They may focus on maximizing energy 
acquisition through behaviors such as specialized foraging 
techniques, efficient hunting strategies, or exploiting high-
quality food sources. This can result in early maturation, 
short gestation periods, short interbirth intervals, and shorter 
lifespans, as the increased availability of food allows for a 
higher reproductive output and faster pace of life history 
events. Conversely, in food-insecure environments, where 
food resources are scarce or unpredictable, animals may 
adopt a slow life history strategy. They may have to invest 
more effort in acquiring food, such as through deep dives 
to forage for food, cooperative foraging behaviors, or seek-
ing refuge habitats to avoid predators. These behaviors can 
lead to delayed maturation, longer gestation periods, longer 
interbirth intervals, and longer lifespans, as individuals may 
need to invest more in self-maintenance and survival before 
allocating energy to reproduction (Rogers & Smith, 1993). 
Understanding the interplay between foraging adaptations, 
predation conditions, and life history traits can provide valu-
able insights into the ecological and evolutionary dynamics 
of animals, including odontocetes.

Toothed whales (Odontoceti) are a particularly speciose 
group that include the main lineage families Delphinidae 
(dolphins), Monodontidae (beluga whale (Delphinapterus 
leucas) and narwhal (Monodon monoceros)), Phocoeni-
dae (porpoises), Kogiidae (pygmy (Kogia breviceps) and 



302	 Evolutionary Biology (2023) 50:300–317

1 3

dwarf (K. sima) sperm whales), Physeteridae (sperm whale, 
(Physeter macrocephalus)), and Ziphiidae (beaked whales) 
(McGowen, 2011). Odontocetes are characterized by a sub-
stantial range of body morphology and life histories, and 
thus represent a model group to test the hypothesis that 
predation/foraging morphology explains the evolution of 
fast/slow dichotomy. Within the Odontoceti suborder, dif-
ferent groups exhibit different phylogenetic origins, as well 
as unique morphological and ecological specializations. 
For example, crown-delphinids are approximately 10 My 
younger than crown-ziphiids (beaked whales). Delphinids 
exemplify a more-streamlined body shape and remarkable 
swimming speeds of up to 37 km/h, while ziphiids display 
a less-streamlined shape that may be related to their excep-
tional diving ability (Cozzi et al., 2010). The feeding behav-
iour of killer whales is known to vary across populations, 
with different groups targeting different prey and displaying 
unique behavioral patterns (Pitman & Ensor, 2003; Tavares 
et al., 2017). The primary predator of odontocetes is the 
killer whale, whose common name refers to their ability 
to kill and eat other whales (Heyning & Dahlheim, 1988). 
Fossil evidence of prey remains, skull morphology, tooth 
wear, and body size provide evidence that the ancestors of 
both killer and false killer whales (Pseudorca crassidens) 
had a fish-based diet up to around 1.3 Mya ago when these 
two distinct dolphin lineages independently evolved whale-
eating diets (Berta et al., 2022; Bianucci et al., 2022; Ortega-
Ortiz et al., 2014). Furthermore, predation pressure likely 
influenced the evolution of distinct life histories among dif-
ferent prey species (Cortés, 2000; Ferguson & Higdon, 2006; 
Forbes, 1993; Pagán et al., 2008).

Here we propose and test the hypothesis that evolutionary 
selection pressures are responsible for the divergent body 
shapes observed in odontocetes, and that these differences 
in morphology are directly or indirectly linked to specific 
life history strategies, which may explain the fast-slow 
dichotomy observed among cetaceans. Odontocetes may 
have evolved distinct body shapes to cope with predation 
pressure. Narrow fusiform body shapes may have evolved 
to maximize speed, allowing for escape from predators such 
as killer whales. In contrast, other species may have evolved 
more rotund body shapes that prioritize foraging ability, 
despite the associated increase in predation risk. This sug-
gests that streamlined, fast whales are capable of outracing 
predators and have evolved slow reproductive life history, 
including late maturation, long gestation, long interbirth 
interval, and long life. Conversely, less-streamlined whales 
that are less able to escape killer whale predation through 
speed have had to rely on behavioural responses such as 
hiding at depths (Aguilar de Soto et al., 2020; Baird et al., 
2008). As a result, these species have evolved life-history 
traits that ameliorate the demographic effects of predation. 
We hypothesize that less-streamlined whales invest more 

in their offspring, as evidenced by relatively large neo-
nates, and exhibit accelerated timing of life-history events, 
including early maturation, short gestation, short interbirth 
interval, and short lifespan. We propose that the evolution 
of more streamlined body shapes in odontocetes occurred 
during the Pleistocene geological epoch which lasted from 
about 2,580,000 to 11,700 years ago, coinciding with the 
period when killer whales were evolving the behaviour, 
physiology, and morphology to hunt other whales as a food 
source (Bianucci et al., 2022). To test this hypothesis, we 
quantified the degree of streamlining in various odontocete 
species and examined the relationships between body shape 
and life history traits.

Methods

First, we determined whether a whale species is more or less 
streamlined by performing a log-linear regression of body 
mass versus body length and categorized whales with posi-
tive residuals as ‘less-streamlined’, and those with negative 
residuals as ‘more-streamlined’. Next, we conducted ances-
tral reconstruction to compare the evolutionary history of 
more or less streamlined whales relative to the timing of 
the evolved ability of killer whales to prey on other whales. 
We then tested whether odontocete shape (with sample 
unit being whales) aligned with the previous clustering of 
cetaceans (including mysticetes) into reproducers and bet-
hedgers (as established by Ferguson & Higdon, 2013), as 
well as the current clustering based solely on odontocetes. 
Additionally, we employed cluster analysis to group life-
history traits (with the sample unit being traits) and utilized 
Principal Component Analysis (PCA) to generate factors 
representing these two groups, such as neonate length and 
temporal life-history traits. Subsequently, we employed 
linear mixed-effects models that accounted for phylogeny 
to investigate whether a causal relationship between whale 
shape and odontocete life-history traits could explain the 
observed variation.

Data Management

Our nomenclature adheres to the guidelines set forth by the 
Society of Marine Mammalogy’s Committee on Taxonomy 
(2021). To update the odontocete life-history data, we com-
piled information from various sources, with a focus on pub-
lished databases, while excluding river dolphins due to their 
limited exposure to killer whale predation and not being 
deep divers (Hamilton et al., 2001). The AnAge Database of 
Animal Ageing and Longevity, a component of the Human 
Ageing Genomic Resources (HAGR) project (Tacutu et al., 
2018), served as the primary source for data on odontocete 
longevity, female age at sexual maturity, gestation length, 



303Evolutionary Biology (2023) 50:300–317	

1 3

interbirth interval, and neonate body length. To augment 
this, we also utilized data from the PanTHERIA database 
(Jones et al., 2009) for the same variables. For adult body 
mass, the EltonTraits database (Wilman et al., 2014) for 
cetacean species was employed as the primary source due 
to its larger sample size. Notable, all three databases are 
highly correlated and share the same values for many species 
for some variables, as the databases used similar sources. In 
total, we obtained data on species’ traits from 6 families, 24 
genera, and 42 species of odontocete whales.

Life‑History Data

We selected neonate length (cm), age of maturity (y), ges-
tation length (d), interbirth interval (y), and longevity (y) 
as the key life-history variables. To ensure data quality, we 
only included species with length and mass data for at least 
5 adult individuals. We did not include nursing duration due 
to uneven data quality leaving us with complete data for 
19 of the 42 species. For the 23 whales with missing val-
ues (13% of trait values missing), we substituted a residual 
value of zero from a linear regression of body length on 
each life-history trait, following the approach of Weijerman 
et al., (2005). This minimized the impact of missing values 
on the statistical tests and allowed us to maximize statistical 
power by including all odontocete species. To normalize the 
distribution of data, which exhibited a strong right skew, 
all variables were log-transformed, a standard practice in 
comparative approaches (Ives & Garland, 2014). Normality 
of all log10-transformed data distributions was confirmed 
using Wilk-Shapiro normality tests for all traits.

To assess body shape, we calculated an index based on 
residuals from a log–log regression of body mass versus 
body length. Positive residuals were assigned to whales 
deemed less streamlined, while negative residuals were 
assigned to whales considered more streamlined. Residual 
values closer to zero indicated greater uncertainty in the 
designation of streamlined body types, whereas larger mag-
nitude differences indicated a clearer categorization into 
either more or less streamlined body shapes. This approach 
allowed for a continuum of body shapes, with the magni-
tude of the residuals providing an indication of the degree 
of streamlining in each whale species.

Ancestral Reconstruction

Ancestral reconstruction is a statistical method that uses 
phylogenetic inference to construct an evolutionary tree, or 
“phylogeny”, representing the evolutionary relationships 
between species (Joy et al., 2016). Here, we used phylo-
genetic inference to construct a phylogeny that represented 
the evolutionary relationships among odontocete species. 

We developed a phylogeny for the 42 odontocete species 
based on McGowen et al., (2020) to control for phylogenetic 
effects and to understand the evolutionary history of more- 
or less-streamlined whales (Fig. 1). Ancestral reconstruction 
was performed using the Ancestral Character Estimation 
(ace) method in the ape package (version 5.5), which esti-
mated the characteristics of ancestral species based on the 
characteristics of their descendants, while also accounting 
for uncertainty (Garamszegi & L.Z. ed., 2014). Maximum 
likelihood values at a given node were computed using only 
the information from the tips and branches descending from 
that node, projecting the phylogenetic tree in a space defined 
by phenotype (on the y-axis) and time (on the x-axis) (Evans 
et al., 2009).

Grouping Whales and Life‑History Traits

We conducted a hierarchical cluster analysis to test whether 
more or less streamlined odontocetes exhibited differences 
in life-history traits similar to the previously reported dichot-
omy (Ferguson & Higdon, 2013) but here, we excluded mys-
ticetes as a group due to their different life history (Wade 
et al., 2012). We used a binomial generalized linear model 
(GLM) with a logistic link to test for differences in whale 
shape, which was categorized as 0 for less streamlined and 
1 for more streamlined. We also performed a cluster analysis 
of life-history traits using a Pearson's chi-square test with 
Yates' continuity correction to assess the similarity between 
the cluster analysis results.

Species-mode cluster analysis examined clusters of 
objects (species) for a measured number of variables (life-
history traits), and the variable values were used to measure 
distance. Cluster analysis assigned species as similar accord-
ing to the average Euclidean distance between clusters using 
hclust (version 2.1.3; Maechler et al., 2022). Analyses used 
the unpaired group averaging method, which had the high-
est cophenetic correlation coefficient compared with other 
cluster analysis methods (Romesburg, 1984).

To model statistical relationships between whale shape 
(measured by body length and mass) and temporal life-
history traits (n = 4), we needed to reduce the number of 
explanatory variables due to our relatively small sample of 
42 species (Knofczynski & Mundfrom, 2008). In addition, 
the life-history traits were strongly collinear (Supplemen-
tary Fig. 1). Therefore, we conducted a trait-mode clus-
ter analysis of life history data to reduce the five traits to 
a smaller number of non-correlated explanatory variables 
(Romesburg, 1984). The cluster analysis examined clusters 
of variables (temporal life-history traits), with object values 
(species) measuring the distance between variables. This 
reduction in the number of explanatory variables helped 
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to interpret variable contributions relative to multivariate 
analyses (see below).

Relationships Among Variables

We assessed whether phylogenetic signal was present in 
odontocete life-history traits, which refers to the pattern 
where closely related species exhibit more similar trait val-
ues than more distantly related species. We tested whether 
phylogenetic corrections were necessary to account for 
the potential violation of the statistical assumption of 
independence due to phylogenetic structure, following 
the methods of Harvey and Pagel (1991) and Freckleton 
(2000). We estimated phylogenetic signal using Pagel's λ 
(Pagel, 1994) and Blomberg's K (Blomberg et al., 2003) 
methods, implemented using the treeplyr (Harmon, 2020) 
and phytools (Revell, 2012) packages in R.

To control for body-size effects, we calculated residu-
als for the life-history traits. We then used mixed-effects 
models with a Brownian correlation structure to control for 
phylogeny and determine the relationship between whale 

shape and life-history traits, following the methods of Har-
vey and Keymer (1991) and Martins and Hansen (1997). 
Finally, to compare models with nested fixed effects while 
controlling for phylogeny, we used maximum likelihood 
(ML) estimation, as described by Zuur et al. (2009).

Taxonomic identifiers for odontocete species names (sci-
entific & common) and taxonomic hierarchical information 
were obtained from the National Center for Biotechnology 
Information (NCBI) Taxonomy database (Federhen, 2012) 
and we adopted the phylogeny and branch lengths for the 
analyses from McGowen et al. (2020). Assembled taxo-
nomic data were used to control for phylogeny and perform 
phylogenetic signal testing in the analyses of the life-history 
traits and their relationship with whale shape (Chamberlain 
& Szöcs, 2013).

Fig. 1   Phylogenetic reconstruction of body shape evolutionary history of odontocete family. Negative values indicate more-streamlined whales 
and positive trait values indicate less-streamlined body shape
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Results

Data Management

Odontocete whale body mass spanned three orders of mag-
nitude from Indo-Pacific finless porpoise (Neophocaena 
phocaenoides) at 32.5 kg–14,025 kg sperm whale (Physeter 
macrocephalus) (Table 1). The residuals of log mass ver-
sus log length, obtained from linear regression, were used 
to assess body shape, with positive values indicating less 
streamlined and negative values indicating more streamlined 
whales (Table 2). Beaked whales were generally found to be 
less streamlined, while porpoises (Phocoenidae) were more 
streamlined, and dolphins (Delphinidae) fell within the aver-
age range for odontocetes (Fig. 2).

Ancestral Reconstruction

The analysis of the odontocete traits revealed that six out of 
seven traits, including five temporal and two morphologi-
cal traits, exhibited a significant phylogenetic signal. This 
indicates that consideration of phylogeny is necessary in any 
statistical analysis involving these traits. The morphology 
traits, specifically adult body length (λ = 0.99, K = 1.12), 
adult mass (λ = 0.99, K = 1.74), and neonate length (λ = 0.97, 
K = 1.28), showed the strongest phylogenetic signals. Gesta-
tion length (λ = 0.916, K = 0.374) and age of sexual maturity 
(λ = 0.652, K = 0.318) also exhibited significant phylogenetic 
signals, albeit comparatively weaker. The only trait that did 
not show a significant phylogenetic signal was interbirth 
interval (λ = 0.445, K = 0.232). Therefore, in statistical anal-
yses involving all life-history traits, phylogenetic corrections 
were applied to account for the phylogenetic structure of 
the data.

Grouping Whales and Life‑History Traits

Species-mode cluster analysis resulted in two groups of 
whales. The first group consisted of 14 whales and included 
many of the less-streamlined whales, such as beaked whales. 
The second group consisted of 28 whales and included many 
of the dolphins and porpoises (Fig. 3). This resulted in two 
different groupings of odontocetes based on life-history 
traits: (1) the previous clustering of cetaceans (Ferguson & 
Higdon, 2013) excluding the Mysticetes, and (2) the current 
clustering based on a more comprehensive set of life-history 
traits for odontocetes. A comparison of the previous clus-
tering with the current clustering found a different pattern 
(Chi-square = 1.44, df = 1, p = 0.23).

Logistic regression of the previously identified whale 
clusters (Ferguson & Higdon, 2013) with whale shape 
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showed a significant pattern (z = 2.060, p = 0.032, 35 
df), with less-streamlined whales being more likely 
to be reproducers and more-streamlined whales being 
more likely to be bet-hedgers. Specifically, with every 
one-unit increase in the shape index (residual value of 
log(mass) ~ log(length)), the odds of being a reproducer 
increased 53-fold. However, when comparing the more 
or less streamlined whales to the cluster analysis of the 
updated odontocete life-history traits, no significant 

relationship was found (z = 1.630, p = 0.1031, Null devi-
ance = 53.467 with 41 df).

Next, the trait-cluster analysis separated body length and 
body mass from temporal life-history traits, with body shape 
remaining as an outlier (Fig. 4). As a result, we ran a PCA 
analysis on the four temporal life-history traits (age of matu-
rity, gestation length, interbirth interval, and longevity) to 
reduce the number of explanatory variables.

Table 2   Log linear regression results of odontocete whale body length versus life-history traits

*** probability <0.001
a Independent variable log10(length)
b Age of sexual maturity

Dependent variable (log10)a Intercept Coefficient (slope) Adj R2 df F-statistic P

Body mass − 1.446 ± 0.400*** 2.733 ± 0.157*** 0.884 1,40 304.3  < 0.001
Neonate length 0.1219 ± 0.0986 0.775 ± 0.0386*** 0.914 1,38 403.1  < 0.001
ASMb 0.1338 ± 0.2214 0.2999 ± 0.0866*** 0.271 1,32 11.92 0.002
Gestation length 0.162 ± 0.027*** 0.6712 ± 0.0699*** 0.494 1,36 35.19  < 0.001
Interbirth interval 0.3378 ± 0.1439 0.6186 ± 0.3736 0.193 1,23 5.51 0.028
Longevity − 0.2231 ± 0.3389 0.6922 ± 0.1315*** 0.464 1,32 27.7  < 0.001

Fig. 2   Log–log regression of odontocete mass versus length describing body shape of whales belonging to different families. Note that Ziphiidae 
whales are less-streamlined in shape and Phocoenidae are more streamlined in shape
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Relationships Among Variables

The PCA analysis reduced the variables to two vectors. The 
first vector (PC1) was positively correlated with all four 
temporal life-history traits, including age of sexual matu-
rity, gestation length, interbirth interval, and longevity, with 
similar axis loadings for all traits (Table 3). On the other 
hand, PC2 was most strongly correlated with age of sexual 
maturity and negatively correlated with gestation length and 

interbirth interval. Graphical evidence from the PCA plot 
did not suggest a clear separation of whales based on body 
shape. However, visual examination of the plot suggested 
that size variables, such as adult and neonate length, were 
positively related to shape, while temporal life-history traits 
were negatively related to shape (Fig. 5).

Controlling for body size, mixed-effects models that 
tested for relationships between life-history traits and body 
shape, while accounting for phylogeny and body size, 

Fig. 3   Cluster analysis of odontocete whales according to life-history traits resulting in two groupings – one group (red) characterized by slow 
life history and another (black) with fast life history (i.e., early age of sexual maturation, short gestation, short interbirth interval, and short life)
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revealed a positive association between shape and neonate 
length, but no significant relationships with either princi-
pal component (Table 5). Additionally, the principal com-
ponents for temporal life-history traits, including age of 

sexual maturity, gestation length, interbirth interval, and 
longevity, did not significantly correlate with body shape 
(Table 5). It should be noted that some of the life-history 
traits were constrained by seasonality, which limited the 

Fig. 4   Cluster analysis of life-history variables for odontocete whales 
describing two groups: (1) associated with morphology (neonate 
body length) and (2) associated with temporal life-history traits (age 
of sexual maturity, gestation length, interbirth interval, longevity). 

Note that whale shape (residuals from log–log regression of whale 
mass versus length) clusters as an outlier indicating little association 
with life-history traits
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Table 3   (A) Results of principal components analysis (PCA) of odontocete temporal life-history traits. The resulting two vectors explained 82% 
of the variance of the four life-history traits. (B) PCA results by odontocete family

(A)Log (variable) PC1 PC2

Gestation length 0.524 − 0.357
Interbirth interval 0.482 − 0.511
Longevity 0.540 0.168
Age of Sexual maturity 0.449 0.764
Proportion of variance 0.666 0.167
Standard deviation 1.632 0.817

(B)Family Shape (+ = less streamlined,—= more streamlined) PC1 PC2

Delphinidae − 0.0837 0.242 − 0.451
Kogiidae  + 0.1793 1.569 1.953
Monodontidae  + 0.0936 − 2.344 − 0.0248
Phocoenidae − 0.0969 2.233 0.6334
Physeteridae − 0.4289 − 5.107 0.964
Ziphiidae  + 0.3536 − 2.597 1.473

Fig. 5   Principal component analysis results illustrating clustering of 
odontocete whale temporal life-history traits by family according to 
the two top vectors that explain 83% of the variation (PC1 64.48% 
and PC2 13.91%). Note that the Ziphiidae family (beaked whales) and 

Phocenidae (porpoises) are characterized by a dissimilar life histories 
along PC1. Ellipses represent 90% confidence interval for core family 
life-history traits. The vectors in blue represent the life-history traits 
that contributed above expected average (12.5%) to PCA
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variation. For example, most gestational and interbirth 
intervals were close to annual (Table 1).

Furthermore, when controlling for body size, life-history 
traits varied among families, except for interbirth interval 
(Table 4). As observed in the cluster analysis, porpoises 
were generally more streamlined and presumed to be fast, 
while beaked whales were less streamlined. However, the 
mixed-effects models did not find significant relationships 
between life-history traits and body shape after accounting 
for phylogeny and body size (Table 5).

Discussion

Our study is the first to use ancestral trait reconstruction 
to investigate the evolution of body shape and its relation-
ship to life history traits in odontocetes. Life-history theory 
recognizes the duality of the fast-slow continuum (Bielby 
et al., 2007), and evolutionary ecology acknowledges that 
food competition and predation are two environmental selec-
tion pressures affecting reproduction and survival (Murphy, 
1968; Walsh & Reznick, 2009; Wilbur et al., 1974). In this 
study, we investigated whether whale morphology, specifi-
cally the degree of streamlining, is aligned with the fast-slow 
life-history continuum. It has been suggested that odontocete 
whales with more fusiform body shapes, enabling greater 
speed, can minimize killer whale predation (Domenici, 
2001; Ford et al., 2005). Therefore, we hypothesized that 
these more-streamlined whales would have evolved (1) 
reduced investment in offspring, indicated by smaller neo-
nates, and (2) a slower timing of life-history events, such 
as delayed sexual maturation and longer gestation length, 
interbirth interval, and longevity. Conversely, we predicted 
that less-streamlined species that evolved enhanced forag-
ing features at the expense of speed would (1) invest more 
energy in progeny, leading to larger neonate body size, and 
(2) reduce the timing of life-history events, as indicated by 
earlier age of sexual maturity and shorter gestation length, 
interbirth interval, and longevity. Our results showed the 
predicted relationship between body shape and neonate size, 
but we did not find a relationship between body shape adap-
tations and fast or slow life histories. Although morpho-
logical adaptations associated with speed may have evolved 
among odontocetes in response to killer whale predation, 
life-history traits related to the timing of life-history events 
have not.

Ancestral reconstruction suggests that many odontocetes 
evolved more streamlined body shapes in response to the 
evolution of killer whale that allowed them to catch and eat 
other whales approximately 1 Mya (Kurtén, 2017). Although 
oceanic predators of cetaceans existed since the divergence 
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of Odontocetes from Mysticetes around 30 Mya (Thewissen 
& Williams, 2002), many of the larger predators, such as 
Otodus megalodon (Shimada et al., 2016; Pimiento et al., 
2017; Cooper et al., 2022) and a large physeteroid (sperm 
whale) (Kimura et al., 2006; Lambert et al., 2014; Peri et al., 
2022) disappeared around the end of the Pliocene, a period 
marked by climatic variability and sea-level fluctuations 
(Pimiento et al., 2017). The earliest known fossil of a killer 
whale, O. citonensis, dates back to the Pliocene Epoch (5.3 
million to 2.6 Mya) and was only about 4 m in length, simi-
lar in size to a typical dolphin (Galatius et al., 2020). This 
suggests that during the Pleistocene, prior to the evolution 
of larger-bodied killer whales that evolved to eat other odon-
tocetes (Berta et al., 2022), there may have been a lack of 
large oceanic predators of odontocetes. The split between 
the ancestors of modern killer whales and their closest living 
relatives, the false killer whales, occurred around 1.9 million 
years ago with a large margin of error (range of 700,000 to 
3.5 Mya) (Foote et al., 2013).

Fusiform body shape in odontocetes appears to have 
evolved recently, with extremes in body shape associated 
with speed emerging during the Pleistocene (< 2.5 Mya), a 
period characterized by repeated glaciations (Fig. 1). This 
pattern is particularly evident in dolphins (family Delphi-
nidae) and porpoises (family Phocoenidae), which tend to 
be more streamlined, while beaked whales have retained a 
less-streamlined body shape (Fig. 1). However, there does 
not appear to be a corresponding shift in life-history traits 
among odontocetes.

Beaked whales are known for their less-streamlined bod-
ies, characterized by a small dorsal fin and short narrow 
flippers. Despite their relatively slow swimming speeds, 

most beaked whale species have relatively fast life histo-
ries when their larger size is taken into account (Table 4). 
These whales are deep divers, often feeding entirely on squid 
(MacLeod, 2018) and foraging at extreme depths may have 
placed constraints on their morphology (Peters et al., 2022), 
potentially explaining their less-streamlined body shape. 
Foraging styles among beaked whales typically involve slow, 
energy-conserving movements during long, deep dives, with 
reproduction requiring energy-dense prey and high-quality 
habitat to support survival and reproduction (New et al., 
2013). These factors likely contributed to the evolution of 
beaked whale life-history strategies (Feyrer et al., 2020).

Pelagic species belonging to the Delphinidae family are 
characterized by their streamlined body shape, allowing 
them to swim at high speeds (Curren et al., 1994). Despite 
the faster swimming ability of killer whales and false killer 
whales (Pseudorca crassidens) compared to common bot-
tlenose dolphins (Tursiops truncatus), the smaller dolphins 
display greater mobility and are able to swim at higher rela-
tive speeds, which enhances their ability to escape predation 
(Fish, 1998). In addition to body shape, the fluke design 
of dolphins also contributes to their superior swimming 
performance. Although the precise dates of morphological 
evolution remain uncertain, many dolphins appear to have 
evolved their streamlined body shape during the Pleistocene 
geological epoch (< 2.5 Mya), which coincides with the time 
killer whales developed their hunting ability to prey on other 
whales (Pyenson, 2017). This shift led to the evolution of a 
more streamlined morphology in many odontocete whales, 
likely as an adaptation to contend with the new predator. 
Dolphins have a slow life history indicated by their long 
lifespan and relatively slow prenatal growth relative to their 

Table 5   Linear effects model results of dependent variable shape (residuals of log(mass) ~ log(length)) using standard regression and controlling 
for phylogenetic effects

Explanatory variables include neonate body length and Principal Component Analysis (PCA) vectors that combined four temporal life-history 
traits
† Residuals neonate length
‡ PCA variable from four temporal life history traits – age of sexual maturity, gestation length, interbirth interval, and longevity
1 Generalized least squares fit by REML (shape ~ neonate length + PC1 + PC2); AIC = 15.11; BIC = 23.30; Log likelihood = -2.56; Residual stand-
ard error = 0.228; df 42 total (38 residual)
2 Controlling for phylogeny generalized least squares fit by REML: AIC = 10.13; BIC = 19.96; Log likelihood = 0.934; Correlation Structure 
using Pagel statistic (lambda = 0.582);
Residual standard error: 0.263; Degrees of freedom 42 total (38 residual)

Standard Regression1 Phylogeny Controlled Regression2

Coefficient Estimate Standard Error t value p-value Estimate Standard Error t value p-value
Intercept 0.00284 0.0351 0.0809 0.936 0.0420 0.105 0.401 0.691
RNL† 2.338 0.601 3.891 0.0004 1.419 0.596 2.382 0.0224
PC1‡ 0.0109 0.0223 0.490 0.627 − 0.0218 0.0403 − 0.540 0.593
PC2‡ − 0.0115 0.0448 − 0.256 0.799 − 0.0119 0.0238 − 0.500 0.620
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body size (Huang et al., 2008). Furthermore, they are con-
sidered income breeders, relying on energy acquired during 
the reproductive period (Huang et al., 2011).

Our analysis revealed that morphological and temporal 
life-history traits clustered, which supports the hypothesis 
of correlated traits functioning as genetic modules (Murren, 
2012). Correlated selection has been proposed in previous 
studies (Kelly, 1992; Santos et al., 2021), and research on 
mammals has demonstrated that temporal life-history traits 
can either be extended or shortened in response to selec-
tion for reproductive adaptations such as delayed implanta-
tion (Ferguson et al., 1996), diet (Fisher et al., 2001), or 
maximum lifespan (Mayne et al., 2019). Understanding the 
underlying mechanisms that cause these traits to cluster 
and show coordinated evolutionary changes may be useful 
in developing species response models to global climate 
change (Waldvogel et al., 2020). By incorporating an evolu-
tionary perspective on the limits of adaptive genetic change 
for a species, we can better predict their ecological flexibil-
ity in response to changing conditions. For instance, a slow 
species may lack the genetic capacity to exploit the benefits 
of greater primary productivity resulting from warming 
(Cheung et al., 2008).

We limited our analysis to odontocetes, excluding other 
marine mammal groups like mysticetes as the former exhibit 
a range of responses to killer whale predation, including hid-
ing and maneuverability (Domenici, 2002; Matthews et al., 
2020). They also display variability in life history strate-
gies (Busson et al., 2019; Ferguson et al., 2012; Morisaka 
& Connor, 2007). Mysticetes have fewer species than Odon-
tocetes and therefore are not as useful for phylogenetic stud-
ies, but as a group they may represent multiple approaches 
to defending against killer whale attacks, which could lead 
to life-history evolutionary responses to predation pressure 
(Corsi et al., 2022; Ford & Reeves, 2008).

While our study focused on odontocete shape and 
its correlation with swimming speed (Fish, 1998), the 
relationship between shape and life history has not been 
explored. We recognize that other factors besides speed, 
such as habitat, evolutionary history, and social consid-
erations, can also influence the prey’s ability to evade 
predators (Scherer & Smee, 2016). Group size may be a 
factor in social species (Blumstein, 2006), but the influ-
ence of sociality on life-history evolution may decouple 
from the evolutionary response of shape. There is taxo-
nomic uncertainty among odontocete families, particu-
larly within delphinids, and new beaked whale species 
have been identified (Dalebout et al., 2002; LeDuc et al., 
1999). The ancestral state reconstruction produced in 
our study does not fully consider the diversity of ceta-
cean body shapes or predators over mammalian history. 
We recommend additional research on taxonomy and 
the evolution of odontocetes. Other phylogenetic groups 

should be studied to test whether morphology matches 
the life-history pattern. Our study focused on the impact 
of Orcinus predation pressure on the evolution of body 
proportions in odontocetes; however, other factors such as 
adaptation to long-distance migration or sexual selection 
may also have influenced the evolution of body shape 
in some odontocete clades. We have not evaluated these 
competing hypotheses.

A significant consideration for conservation is the need 
for research that includes knowledge of evolutionary trends 
in ecology (e.g., morphology and predation) and life history 
(e.g., longevity) to mitigate the threats of climate change. 
Odontocetes provide a useful taxonomic group for assessing 
evolution and conservation since they exhibit a wide range 
of morphology and life history, and play both predator and 
prey roles (Rupil et al., 2022). Although we did not find 
a strong link between shape and life history in this study, 
further research could investigate other explanations for 
the fast-slow life-history continuum in odontocetes. For 
example, environmental selection pressure may explain the 
dichotomy with offshore species evolving slower tempo-
ral life-history traits relative to inshore species (Crawford 
et al., 2006; Rolland et al., 1998; Whitfield, 1990). In addi-
tion to studying predation effects, investigations are required 
into how foraging mode influences life history traits such 
as growth, maturity, reproduction, and survival. Future 
research should examine the morphological evolution of 
the fast-swimming odontocetes beyond a simple length-
mass relationship. This research could include investigating 
differences in evolved appendage morphology, such as fore 
flippers and flukes that may increase agility at the expense 
of speed, thereby allowing for defense against killer whale 
predation (Adamczak et al., 2020; Scheffer, 1952). It is pos-
sible that the intense selection pressure of recently evolved 
killer whale predation favored fast-swimming morphologi-
cal adaptations in their prey during a predator–prey race. 
However, it is also possible that behavioral and life-history 
traits may take longer to evolve in step with morphology. An 
understanding of life-history evolution will assist in identify-
ing species that are less able to adapt to the effects of climate 
change and, therefore, require more significant conservation 
efforts (Nicotra et al., 2015).
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