Skip to main content
Log in

Evidence of Morphological Divergence and Reproductive Isolation in a Narrow Elevation Gradient

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Elevation gradients generate different environmental conditions. This environmental differentiation can influence morphological adaptation, habitat isolation, reproductive isolation, and pollinator limitation in plants. Habitat differentiation and isolation often act first on phenotypic traits and then on genotype variation, causing genetic divergences between populations. We evaluated the effect of elevation on morphological traits, reproductive isolation, and pollinator limitation in Croton aff. wagneri in dry shrublands of inter-Andean valleys in Ecuador. We measured morphological traits of Croton at three elevations and carried out experimental pollination crosses between and within each population at different elevations to assess the degree of reproductive isolation and pollinator limitation. Morphological traits such as leaf thickness, plant volume, inflorescence length and inflorescence number were dissimilar between plants in different elevations. There was evidence of incipient reproductive isolation between plants in populations at the highest and the lowest studied elevations. Pollination experiments within each elevation showed a limitation of pollinators in Croton in the highest elevation. Intrinsic barriers to pollen dispersal and ecological divergence can produce reproductive incompatibilities between individuals with different traits along the Croton elevation gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

If this paper is accepted our data will be deposited in Dryad Digital Repository. However, they will be available for Evolutionary Biology and for peer reviewers if required.

Code availability

Code will be sent to the reviewers when they require it.

References

  • Adams, C. E., & Huntingford, F. A. (2004). Incipient speciation driven by phenotypic plasticity? Evidence from sympatric populations of Arctic charr. Biological Journal of the Linnean Society, 81(4), 611–618.

    Article  Google Scholar 

  • Alix, K., Gérard, P. R., Schwarzacher, T., & Heslop-Harrison, J. S. P. (2017). Polyploidy and interspecific hybridization: Partners for adaptation, speciation and evolution in plants. Annals of Botany, 120(2), 183–194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso, C. (2005). Pollination success across an elevation and sex ratio gradient in gynodioecious Daphne laureola. American Journal of Botany, 92(8), 1264–1269.

    Article  PubMed  Google Scholar 

  • Apaza-Quevedo, A., Lippok, D., Hensen, I., Schleuning, M., & Both, S. (2015). Elevation, topography, and edge effects drive functional composition of woody plant species in tropical Montane forests. Biotropica, 47(4), 449–458.

    Article  Google Scholar 

  • Arroyo, M. T. K., Muñoz, M. S., Henríquez, C., Till-Bottraud, I., & Pérez, F. (2006). Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecologica, 30(2), 248–257.

    Article  Google Scholar 

  • Arroyo, M. T. K., Pacheco, D. A., & Dudley, L. S. (2017). Functional role of long-lived flowers in preventing pollen limitation in a high elevation outcrossing species. AoB Plants, 9(6), 195–212.

    Article  Google Scholar 

  • Badr, A., El-Shazly, H. H., Ahmed, H. I. S., Hamouda, M., El-Khateeb, E., & Sakr, M. (2017). Genetic diversity of Achillea fragrantissima in Egypt inferred from phenotypic variations and ISSR markers associated with traits of plant size and seed yield. Plant Genetic Resources, 15(3), 239–247.

    Article  CAS  Google Scholar 

  • Blionis, G. J., & Vokou, D. (2002). Structural and functional divergence of Campanula spatulata subspecies on Mt Olympos (Greece). Plant Systematics and Evolution, 232(1), 89–105.

    Article  Google Scholar 

  • Bridle, J. R., & Vines, T. H. (2007). Limits to evolution at range margins: When and why does adaptation fail? Trends in Ecology & Evolution, 22(3), 140–147.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd Edn.). Springer.

  • Caetano, R. A., Sanchéz, S., Costa, C. L. N., & de Aguiar, M. A. M. (2020). Sympatric speciation based on pure assortative mating. Journal of Physics A: Mathematical and Theoretical53(15), 155601.

    Article  Google Scholar 

  • Cardona, J., Lara, C., & Ornelas, J. F. (2020). Pollinator divergence and pollination isolation between hybrids with different floral color and morphology in two sympatric Penstemon species. Scientific Reports, 10(1), 8126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, M. A., Hiscock, S. J., & Filatov, D. A. (2016). The genomic bases of morphological divergence and reproductive isolation driven by ecological speciation in Senecio (Asteraceae). Journal of Evolutionary Biology, 29(1), 98–113.

    Article  CAS  PubMed  Google Scholar 

  • Chevin, L.-M., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biology, 8(4), e1000357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chitwood, D. H., Ranjan, A., Martinez, C. C., Headland, L. R., Thiem, T., Kumar, R., Covington, M. F., Hatcher, T., Naylor, D. T., Zimmerman, S., Downs, N., Raymundo, N., Buckler, E. S., Maloof, J. N., Aradhya, M., Prins, B., Li, L., Myles, S., & Sinha, N. R. (2014). A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiology, 164(1), 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Cierjacks, A., Rühr, N. K., Wesche, K., & Hensen, I. (2008). Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecology, 194(2), 207–221.

    Article  Google Scholar 

  • Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D., & Vitousek, P. M. (1998). Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 113(2), 188–196.

    Article  CAS  PubMed  Google Scholar 

  • Corl, A., Davis, A. R., Kuchta, S. R., & Sinervo, B. (2010). Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proceedings of the National Academy of Sciences, 107(9), 4254–4259.

    Article  CAS  Google Scholar 

  • Cruz-Nicolás, J., Giles-Pérez, G., González-Linares, E., Múgica-Gallart, J., Lira-Noriega, A., Gernandt, D. S., Eguiarte, L. E., & Jaramillo-Correa, J. P. (2020). Contrasting evolutionary processes drive morphological and genetic differentiation in a subtropical fir (Abies, Pinaceae) species complex. Botanical Journal of the Linnean Society, 192(2), 401–420.

    Google Scholar 

  • Dai, W., Kadiori, E. L., Wang, Q., & Yang, C. (2017). Pollen limitation, plasticity in floral traits, and mixed mating system in an alpine plant Pedicularis siphonantha (Orobanchaceae) from different altitudes. Journal of Systematics and Evolution, 55(3), 192–199.

    Article  Google Scholar 

  • Depardieu, C., Gérardi, S., Nadeau, S., Parent, G. J., Mackay, J., Lenz, P., Lamothe, M., Girardin, M. P., Bousquet, J., & Isabel, N. (2021). Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Molecular Ecology. https://doi.org/10.1111/mec.15846

    Article  PubMed  PubMed Central  Google Scholar 

  • Domic, A. I., & Capriles, J. M. (2009). Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant Ecology, 205(2), 223–234.

    Article  Google Scholar 

  • Domínguez, C. A., & Bullock, S. H. (1989). La reproducción de Croton suberosus (Euphorbiaceae) en luz y sombra. Revista De Biología Tropical, 37(1), 1–9.

    Google Scholar 

  • Donnelly, S. E., Lortie, C. J., & Aarssen, L. W. (1998). Pollination in Verbascum thapsus (Scrophulariaceae): The advantage of being tall. American Journal of Botany, 85(11), 1618–1625.

    Article  CAS  PubMed  Google Scholar 

  • Draghi, J. A., & Whitlock, M. C. (2012). Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution, 66(9), 2891–2902.

    Article  PubMed  Google Scholar 

  • Espinosa, C. I., Luzuriaga, A. L., de la Cruz, M., Montero, M., & Escudero, A. (2013). Co-occurring grazing and climate stressors have different effects on the total seed bank when compared to the persistent seed bank. Journal of Vegetation Science, 24(6), 1098–1107.

    Article  Google Scholar 

  • Espinosa, C. I., Vélez-Mora, D. P., Ramón, P., Gusmán-Montalván, E., Duncan, D. H., & Quintana-Ascencio, P. F. (2019). Intraspecific interactions affect the spatial pattern of a dominant shrub in a semiarid shrubland: A prospective approach. Population Ecology, 61(2), 217–226.

    Article  Google Scholar 

  • Fabbro, T., & Körner, C. (2004). Altitudinal differences in flower traits and reproductive allocation. Flora—Morphology, Distribution, Functional Ecology of Plants, 199(1), 70–81.

    Article  Google Scholar 

  • Fenster, C. B. (1995). Mirror image flowers and their effect on outcrossing rate in Chamaecrista fasciculata (Leguminosae). American Journal of Botany, 82(1), 46–50.

    Article  Google Scholar 

  • Gomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences, 103(50), 19021–19026.

    Article  CAS  Google Scholar 

  • Gonzalo-Turpin, H., & Hazard, L. (2009). Local adaptation occurs along altitudinal gradient despite the existence of gene flow in the alpine plant species Festuca eskia. Journal of Ecology, 97(4), 742–751.

    Article  Google Scholar 

  • Grant, B. R., & Grant, P. R. (1996). High survival of Darwin’s finch hybrids: Effects of beak morphology and diets. Ecology, 77(2), 500–509.

    Article  Google Scholar 

  • Grant, P. R. (1999). Ecology and evolution of Darwin’s finches. Princeton University Press.

    Google Scholar 

  • Gugerli, F. (1998). Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia, 114(1), 60–66.

    Article  PubMed  Google Scholar 

  • Gurung, S., Pradhan, A., & Chettri, A. (2019). Pollination in an endemic and threatened monoecious herb Begonia satrapis CB Clarke (Begoniaceae) in the eastern Himalaya, India. Journal of Threatened Taxa, 11(10), 14328–14333.

    Article  Google Scholar 

  • Halbritter, A. H., Fior, S., Keller, I., Billeter, R., Edwards, P. J., Holderegger, R., Karrenberg, S., Pluess, A. R., Widmer, A., & Alexander, J. M. (2018). Trait differentiation and adaptation of plants along elevation gradients. Journal of Evolutionary Biology, 31(6), 784–800.

    Article  PubMed  Google Scholar 

  • Hall, J. P. (2005). Montane speciation patterns in Ithomiola butterflies (Lepidoptera: Riodinidae): are they consistently moving up in the world? Proceedings of the Royal Society b: Biological Sciences, 272(1580), 2457–2466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallik, L., Niinemets, Ü., & Wright, I. J. (2009). Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist, 184(1), 257–274.

    Article  CAS  PubMed  Google Scholar 

  • Harder, L. D., & Prusinkiewicz, P. (2013). The interplay between inflorescence development and function as the crucible of architectural diversity. Annals of Botany, 112(8), 1477–1493.

    Article  PubMed  Google Scholar 

  • Harper, J. L., & Ogden, J. (1970). The reproductive strategy of higher plants: I. The concept of strategy with special reference to Senecio vulgaris L. The Journal of Ecology, 58(3), 681–698.

    Article  Google Scholar 

  • Herzog, S. K., Martínez, R., Jørgensen, P. M., & Tiessen, H. (2011). Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).

  • Homeier, J., Breckle, S., Günter, S., Rollenbeck, R. T., & Leuschner, C. (2010). Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica, 42(2), 140–148.

    Article  Google Scholar 

  • Huber, S. K., León, L. F. D., Hendry, A. P., Bermingham, E., & Podos, J. (2007). Reproductive isolation of sympatric morphs in a population of Darwin’s finches. Proceedings of the Royal Society B: Biological Sciences, 274(1619), 1709–1714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Itino, T., & Hirao, A. S. (2016). Plant genetic diversity and plant–pollinator interactions along altitudinal gradients. In Structure and function of mountain ecosystems in Japan (pp. 63–88). Springer.

  • Jara-Guerrero, A., De la Cruz, M., Espinosa, C. I., Méndez, M., & Escudero, A. (2015). Does spatial heterogeneity blur the signature of dispersal syndromes on spatial patterns of woody species? A test in a tropical dry forest. Oikos, 124(10), 1360–1366.

    Article  Google Scholar 

  • Jian, Q., Keming, M., & Yuxin, Z. (2009). Leaf-trait relationships of Quercus liaotungensis along an altitudinal gradient in Dongling Mountain, Beijing. Ecological Research, 24(6), 1243–1250.

    Article  Google Scholar 

  • Jiang, S., Luo, M.-X., Gao, R.-H., Zhang, W., Yang, Y.-Z., Li, Y.-J., & Liao, P.-C. (2019). Isolation-by-environment as a driver of genetic differentiation among populations of the only broad-leaved evergreen shrub Ammopiptanthus mongolicus in Asian temperate deserts. Scientific Reports, 9, 12008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Josse, C., Cuesta, F., Navarro, G., Barrena, V., Cabrera, E., Moreno, E. C., Ferreira, W., Peralvo, M., Saito, J., & Tovar, A. (2009). Ecosistemas de los Andes del Norte y Centro. Universidad de los Andes.

    Google Scholar 

  • Kremer, A., Potts, B. M., & Delzon, S. (2014). Genetic divergence in forest trees: understanding the consequences of climate change. Functional Ecology, 28(1), 22–36.

    Article  Google Scholar 

  • Leal, M.C. (2015). Cambios en las características morfológicas y genéticas de Croton sp. en un gradiente altitudinal en matorral seco. Undergraduate Thesis, Universidad Técnica Particular de Loja, Ecuador.

  • Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends in Ecology & Evolution, 17(4), 183–189.

    Article  Google Scholar 

  • León-Yánez, S., Valencia, R., Pitmam, N., Endara, L., Ulloa, C., & Navarrete, H. (2011). Libro rojo de plantas endémicas del Ecuador: Croton wagneri. Pontificia Universidad Católica del Ecuador.

  • Levis, N. A., & Pfennig, D.W. (2020). Phenotypic plasticity and the origins of novelty. In Levine, H., Jolly, M. K., Kulkarni, P., & Nanjundiah, V. (Eds.), Phenotypic switching: Implications in biology and medicine (pp. 443–458). Academic Press.

  • Mallet, J. (2008). Hybridization, ecological races and the nature of species: Empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society b: Biological Sciences, 363(1506), 2971–2986.

    Article  Google Scholar 

  • Matesanz, S., Ramos-Muñoz, M., Blanco-Sánchez, M., & Escudero, A. (2020). High differentiation in functional traits but similar phenotypic plasticity in populations of a soil specialist along a climatic gradient. Annals of Botany, 125(6), 969–980.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matute, D. R., Novak, C. J., & Coyne, J. A. (2009). Temperature-based extrinsic reproductive isolation in two species of Drosophila. Evolution, 63(3), 595–612.

    Article  PubMed  Google Scholar 

  • McCartney, M. A., & Lessios, H. A. (2004). Adaptive evolution of sperm bindin tracks egg incompatibility in neotropical sea urchins of the genus Echinometra. Molecular Biology and Evolution, 21(4), 732–745.

    Article  CAS  PubMed  Google Scholar 

  • McKinnon, J. S., Mori, S., Blackman, B. K., David, L., Kingsley, D. M., Jamieson, L., Chou, J., & Schluter, D. (2004). Evidence for ecology’s role in speciation. Nature, 429(6989), 294–298.

    Article  CAS  PubMed  Google Scholar 

  • Medina, C. A., Escobar, F., & Kattan, G. H. (2002). Diversity and habitat use of dung beetles in a restored Andean landscape. Biotropica, 34(1), 181–187.

    Article  Google Scholar 

  • Minelli, A. (2016). Species diversity vs. morphological disparity in the light of evolutionary developmental biology. Annals of Botany, 117(5), 781–794.

    Article  PubMed  Google Scholar 

  • Mitchell, R. J., & Shaw, R. G. (1993). Heritability of floral traits for the perennial wild flower Penstemon centranthifolius (Scrophulariaceae): Clones and crosses. Heredity, 71(2), 185–192.

    Article  Google Scholar 

  • Noble, D. W. A., Radersma, R., & Uller, T. (2019). Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proceedings of the National Academy of Sciences, 116(27), 13452–13461.

    Article  CAS  Google Scholar 

  • Nosil, P. (2012). Ecological speciation. Oxford University Press.

    Book  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O´Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). vegan: Community ecology package. R package version 2.5-7 https://cran.r-project.org/web/packages/vegan/index.html

  • Olito, C., Abbott, J. K., & Jordan, C. Y. (2018). The interaction between sex-specific selection and local adaptation in species without separate sexes. Philosophical Transactions of the Royal Society B, 373(1757), 20170426.

    Article  Google Scholar 

  • Pais, A. L., Whetten, R. W., & Xiang, Q. Y. (2017). Ecological genomics of local adaptation in Cornus florida L. by genotyping by sequencing. Ecology and Evolution, 7(1), 441–465.

    Article  PubMed  Google Scholar 

  • Peakall, R., & Whitehead, M. R. (2014). Floral odour chemistry defines species boundaries and underpins strong reproductive isolation in sexually deceptive orchids. Annals of Botany, 113(2), 341–355.

    Article  PubMed  Google Scholar 

  • Pélabon, C., Armbruster, W. S., & Hansen, T. F. (2011). Experimental evidence for the Berg hypothesis: Vegetative traits are more sensitive than pollination traits to environmental variation. Functional Ecology, 25(1), 247–257.

    Article  Google Scholar 

  • Pérez, F., Lavandero, N., Ossa, C. G., Hinojosa, L. F., Jara-Arancio, P., & Arroyo, M. T. K. (2020). Divergence in plant traits and increased modularity underlie repeated transitions between low and high elevations in the Andean genus Leucheria. Frontiers in Plant Science, 11, 714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennig, D. W., & McGee, M. (2010). Resource polyphenism increases species richness: A test of the hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1540), 577–591.

    Article  Google Scholar 

  • Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution, 25(8), 459–467.

    Article  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2020). nlme: Linear and nonlinear mixed effects models. R package version 3.1 https://cran.r-project.org/web/packages/nlme/index.html

  • Pyrcz, T. W. (2004). Pronophiline butterflies of the highlands of Chachapoyas in northern Peru: faunal survey, diversity and distribution patterns (Lepidoptera, Nymphalidae, Satyrinae). Genus, 15(4), 455–622.

    Google Scholar 

  • Quilot-Turion, B., Leppälä, J., Leinonen, P. H., Waldmann, P., Savolainen, O., & Kuittinen, H. (2013). Genetic changes in flowering and morphology in response to adaptation to a high-latitude environment in Arabidopsis lyrata. Annals of Botany, 111(5), 957–968.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintana, C., Girardello, M., Barfod, A. S., & Balslev, H. (2017). Diversity patterns, environmental drivers and changes in vegetation composition in dry inter-Andean valleys. Journal of Plant Ecology, 10(3), 461–475.

    Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Radersma, R., Noble, D. W. A., & Uller, T. (2020). Plasticity leaves a phenotypic signature during local adaptation. Evolution Letters, 4(4), 360–370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Aguirre, E., Martén-Rodríguez, S., Quesada-Avila, G., Quesada, M., Martínez-Díaz, Y., Oyama, K., & Espinosa-García, F. J. (2019). Reproductive isolation among three sympatric Achimenes species: pre- and post-pollination components. American Journal of Botany, 106(7), 1021–1031.

    Article  PubMed  Google Scholar 

  • Ramos-Jiliberto, R., Domínguez, D., Espinoza, C., López, G., Valdovinos, F. S., Bustamante, R. O., & Medel, R. (2010). Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecological Complexity, 7(1), 86–90.

    Article  Google Scholar 

  • Ramsey, J., Bradshaw, H. D., & Schemske, D. W. (2003). Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution, 57(7), 1520–1534.

    PubMed  Google Scholar 

  • Richter, M., Diertl, K.-H., Emck, P., Peters, T., & Beck, E. (2009). Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online, 12(1), 1–35.

    Article  Google Scholar 

  • Richter, M., & Moreira-Muñoz, A. (2005). Heterogeneidad climática y diversidad de la vegetación en el sur de Ecuador: un método de fitoindicación. Revista Peruana De Biología, 12(2), 217–238.

    Article  Google Scholar 

  • Rojo, J. H., Fernández, D. A., Figueroa, D. E., & Boy, C. C. (2020). Phenotypic and genetic differentiation between diadromous and landlocked puyen Galaxias maculatus. Journal of Fish Biology, 96(4), 956–967.

    Article  PubMed  Google Scholar 

  • Rundle, H. D., Chenoweth, S. F., Doughty, P., & Blows, M. W. (2005). Divergent selection and the evolution of signal traits and mating preferences. PLoS Biology, 3(11), e368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352.

    Article  Google Scholar 

  • Scheepens, J. F., Frei, E. S., & Stöcklin, J. (2010). Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia, 164(1), 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Schliewen, U., Rassmann, K., Markmann, M., Markert, J., Kocher, T., & Tautz, D. (2001). Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology, 10(6), 1471–1488.

    Article  CAS  PubMed  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.

    Google Scholar 

  • Seguí, J., Lázaro, A., Traveset, A., Salgado-Luarte, C., & Gianoli, E. (2018). Phenotypic and reproductive responses of an Andean violet to environmental variation across an elevational gradient. Alpine Botany, 128(1), 59–69.

    Article  Google Scholar 

  • Sexton, J. P., Strauss, S. Y., & Rice, K. J. (2011). Gene flow increases fitness at the warm edge of a species’ range. Proceedings of the National Academy of Sciences, 108(28), 11704–11709.

    Article  CAS  Google Scholar 

  • Shaw, K. L., & Mullen, S. P. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649–661.

    Article  PubMed  Google Scholar 

  • Shivanna, K. R., & Tandon, R. (2014). Reproductive ecology of flowering plants: A manual. Springer.

    Book  Google Scholar 

  • Sierra, R. (1999). Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental. Proyecto INEFAN/GEF-BIRF y EcoCiencia.

  • Snell, H., & Rea, S. (1999). The 1997–98 El Niño in Galápagos: Can 34 years of data estimate 120 years of pattern? Noticias De Galápagos, 60, 111–120.

    Google Scholar 

  • Sobel, J. M., & Chen, G. F. (2014). Unification of methods for estimating the strength of reproductive isolation. Evolution, 68(5), 1511–1522.

    Article  PubMed  Google Scholar 

  • Sun, S. J., Catherall, A. M., Pascoal, S., Jarrett, B. J. M., Miller, S. E., Sheehan, M. J., & Kilner, R. M. (2020). Rapid local adaptation linked with phenotypic plasticity. Evolution Letters, 4(4), 345–359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Díaz, C., Gómez-González, S., Stotz, G. C., Torres-Morales, P., Paredes, B., Pérez-Millaqueo, M., & Gianoli, E. (2011). Extremely long-lived stigmas allow extended cross-pollination opportunities in a high Andean plant. PLoS ONE, 6(5), e19497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uller, T., Feiner, N., Radersma, R., Jackson, I. S., & Rago, A. (2020). Developmental plasticity and evolutionary explanations. Evolution & Development, 22(1–2), 47–55.

    Article  Google Scholar 

  • Ulloa, C., & Jørgensen, P. (1995). Árboles y arbustos de los Andes del Ecuador (2nd Edn). Abya-Yala.

  • Van der Niet, T., Peakall, R., & Johnson, S. D. (2014). Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Annals of Botany, 113(2), 199–212.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Ee, B. W., Riina, R., & Berry, P. E. (2011). A revised infrageneric classification and molecular phylogeny of new world Croton (Euphorbiaceae). Taxon, 60(3), 791–823.

    Article  Google Scholar 

  • Vélez-Mora, D., Ramón, P., Vallejo, C., Romero, A., Duncan, D., & Quintana-Ascencio, P. F. (2020). Environmental drivers of femaleness of an inter-Andean monoecious shrub. Biotropica, 53(1), 17–27.

    Article  Google Scholar 

  • Vile, D., Garnier, E., Shipley, B., Laurent, G., Navas, M. L., Roumet, C., Lavorel, S., Díaz, S., Hodgson, J. G., Lloret, F., Midgley, G. F., Poorter, H., Rutherford, M. C., Wilson, P. J., & Wright, I. J. (2005). Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany, 96(6), 1129–1136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel, S. (2009). Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist, 183(1), 13–26.

    Article  PubMed  Google Scholar 

  • Walter, G. M., Aguirre, J. D., Blows, M. W., & Ortiz-Barrientos, D. (2018). Evolution of genetic variance during adaptive radiation. The American Naturalist, 191(4), E108–E128.

    Article  PubMed  Google Scholar 

  • Walter, G. M., Abbott, R. J., Brennan, A. C., Bridle, J. R., Chapman, M., Clark, J., Filatov, D., Nevado, B., Ortiz-Barrientos, D., & Hiscock, S. J. (2020). Senecio as a model system for integrating studies of genotype, phenotype and fitness. New Phytologist, 226(2), 326–344.

    Article  PubMed  Google Scholar 

  • Wang, J., Zhao, X., Wang, W., Qu, Y., Teng, W., Qiu, L., Zheng, H., Han, Y., & Li, W. (2019). Genome-wide association study of inflorescence length of cultivated soybean based on the high-throughout single-nucleotide markers. Molecular Genetics and Genomics, 294(3), 607–620.

    Article  CAS  PubMed  Google Scholar 

  • Webster, G. L. (1993). A provisional synopsis of the sections of the genus Croton (Euphorbiaceae). Taxon, 42(4), 793–823.

    Article  Google Scholar 

  • Webster, G. L. (2014). Euphorbiaceae. In Kubitzki K. (Ed), Flowering plants. Eudicots (pp. 51–216). Springer.

  • White, N. J., Snook, R. R., & Eyres, I. (2020). The past and future of experimental speciation. Trends in Ecology & Evolution, 35(1), 10–21.

    Article  Google Scholar 

  • Willmer, P. (2011). Pollination and floral ecology. Princeton University Press.

    Book  Google Scholar 

  • Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., & Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Li, Y., Shi, Y., Song, Y., Zhang, D., Li, C., Buckler, E. S., Li, Y., Zhang, Z., & Wang, T. (2016). Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology Journal, 14(7), 1551–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z. G., & Wang, Y. K. (2015). Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLOS ONE, 10(2), e0118299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, Y., Jiang, Y., Liu, Q., Kang, M., Spehn, E. M., & Körner, C. (2009). Elevational trends of biodiversity and plant traits do not converge—A test in the Helan Range, NW China. Plant Ecology, 205(2), 273–283.

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Inés Vélez, Ismael Vélez and many Universidad Técnica Particular de Loja students for their help in the field. Thanks to Monterrey Azucarera Lojana C.A. and the Jaramillo family for access to their beautiful property. We also thank Chris Brinegar and Javier Morente-López for valuable comments on this document.

Funding

This work was supported by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador PIC-13-ETAPA-005 to DPVM, and The Winter Park Garden Club through a University of Central Florida endowment to PFQA.

Author information

Authors and Affiliations

Authors

Contributions

DPVM and PFQA conceived the study and design. DPVM, KTA and PFQA collected the samples and measurements. DPVM carried out the pollinations. PFQA conducted the analyses. DPVM and PFQA wrote the draft of the manuscript. All authors edited and reviewed the final version of the manuscript.

Corresponding author

Correspondence to Diego P. Vélez-Mora.

Ethics declarations

Conflict of interest:

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vélez-Mora, D.P., Trigueros-Alatorre, K. & Quintana-Ascencio, P.F. Evidence of Morphological Divergence and Reproductive Isolation in a Narrow Elevation Gradient. Evol Biol 48, 321–334 (2021). https://doi.org/10.1007/s11692-021-09541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-021-09541-1

Keywords

Navigation