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Abstract
More and more analyses of biological shapes are using the techniques of geometric morphometrics based on configurations 
of landmarks in two or three dimensions. A fundamental concept at the core of these analyses is Kendall’s shape space and 
local approximations to it by shape tangent spaces. Kendall’s shape space is complex because it is a curved surface and, for 
configurations with more than three landmarks, multidimensional. This paper uses the shape space for triangles, which is 
the surface of a sphere, to explore and visualize some properties of shape spaces and the respective tangent spaces. Consid-
erations about the dimensionality of shape spaces are an important step in understanding them, and can offer a coordinate 
system that can translate between positions in the shape space and the corresponding landmark configurations and vice versa. 
By simulation studies “walking” along that are great circles around the shape space, each of them corresponding to the 
repeated application of a particular shape change, it is possible to grasp intuitively why shape spaces are curved and closed 
surfaces. From these considerations and the available information on shape spaces for configurations with more than three 
landmarks, the conclusion emerges that the approach using a tangent space approximation in general is valid for biological 
datasets. The quality of approximation depends on the scale of variation in the data, but existing analyses suggest this should 
be satisfactory to excellent in most empirical datasets.

Keywords Geometric morphometrics · Kendall’s shape space · Procrustes distance · Procrustes superimposition · Shape 
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Introduction

Geometric morphometrics is widely used to analyze bio-
logical shapes in a variety of research contexts, including 
systematics and evolutionary biology, anthropology, the 
biomedical sciences, and increasingly developmental biol-
ogy and genetics (Klingenberg 2010; Zelditch et al. 2012). 
Recent developments in morphometrics and the statistics of 
shape have seen an increasing emphasis on explicit charac-
terization of the multidimensional spaces that underlie geo-
metric morphometric analyses (Small 1996; Kendall et al. 
1999; Dryden and Mardia 2016; Srivastava and Klassen 
2016). Shape spaces are abstract representations in which 
each point represents a specific shape, and in which every 

possible shape is represented by a particular point. Dis-
tances between points in a shape space correspond to the 
magnitude of the difference between the respective shapes. 
Shape spaces are specific to particular classes of shapes, for 
instance, all possible shapes for a given number of land-
marks in two or three dimensions (Small 1996; Kendall 
et al. 1999; Dryden and Mardia 2016; Srivastava and Klas-
sen 2016). The overall structure of a shape space reflects the 
entire possible range of variation in the corresponding class 
of shapes, for instance, all possible relative arrangements of 
a given number of landmarks. The concept of shape spaces 
gives a firm mathematical basis to statistical maneuvers such 
as estimating average shapes or characterizing variation of 
shapes around those averages, which are otherwise not well 
understood (Small 1996; Kendall et al. 1999; Dryden and 
Mardia 2016; Srivastava and Klassen 2016). Yet, because 
statistical maneuvers like these are fundamental to the bio-
logical applications of geometric morphometrics, an under-
standing of shape spaces is critically important for biological 
shape analysis.
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Shape spaces tend to be complex, multidimensional, non-
linear spaces. It is therefore very difficult to gain an intui-
tive understanding of these spaces. Abstract mathematical 
reasoning provides rigorous and powerful inferences about 
shape spaces, but it tends to be very hard to grasp for biolo-
gists. Some attempts have been made to provide graphical 
visualizations of simple shape spaces such as Kendall’s 
shape space for triangles, which happens to be the surface of 
a sphere (Small 1996; Kendall et al. 1999; Rohlf 2000; Slice 
2001; Dryden and Mardia 2016; Klingenberg 2016). Shape 
spaces for configurations with more than three landmarks 
are considerably more complex and difficult to visualize. An 
important aspect of understanding shape spaces is the coor-
dinate system in which a shape space is situated and the way 
it relates to the original data such as landmark coordinates. 
These considerations, in turn, relate to the procedure of the 
Procrustes superimposition and the associated projections, 
which are used to fit empirical data to shape spaces and the 
associated tangent spaces (Small 1996; Kendall et al. 1999; 
Rohlf 1999; Dryden and Mardia 2016).

This paper aims to provide a more intuitive appreciation 
for shape spaces by extensively using graphical visualiza-
tions of Kendall’s shape space for triangles. By explicitly 
enumerating the shape and non-shape components of the 
coordinate system of landmark data, it also becomes clear 
how the Procrustes superimposition and shape tangent space 
relate to the landmark coordinates. Throughout the paper, 
the focus is on the shape analysis of triangles in two dimen-
sions, but I also examine how the insights gained from tri-
angles apply to more complex configurations of landmarks.

Shape Distances and Shape Spaces

The shape of a landmark configuration (or of another object) 
is defined as all its geometric features, except for its size, 
position and orientation (Dryden and Mardia 2016). Fol-
lowing this definition, there is a separation between aspects 
of a landmark configuration that are part of shape and other 
aspects that are not part of shape. The non-shape compo-
nents of size, position and orientation are easy to understand. 
What constitutes shape is harder to grasp, but proportions, 
angles and the relative arrangement of parts are geometric 
features that belong into this category. Shape distances and 
shape spaces must reflect the same distinction and include 
only those aspects of landmark configurations that are part 
of shape. The shape distance between two configurations 
differing only in size, position and orientation must be zero 
because they have the same shape. Therefore, those two con-
figurations will also fall onto the same point in shape space.

Shape spaces are multidimensional spaces. The number 
of dimensions relates to how many different ways there are to 
make a small change to any given shape. The dimensionality 

of any particular shape space depends on the number of 
landmarks and whether 2D or 3D data are used. It can be 
calculated as the number of landmark coordinates minus 
the number of non-shape components, which are features of 
variation that are not part of the shape space. For 2D data, 
each landmark has two coordinates, so that the total number 
of coordinates is twice the number of landmarks. From this, 
one dimension must be subtracted for size, two for transla-
tion, and one for rotation. Therefore, the shape dimensions 
for 2D data is twice the number of landmarks minus four. 
For 3D data, each landmark has three coordinates, and one 
dimension has to be removed for size, three for translation, 
and three for rotation (because there are separate rotations 
around the three coordinate axes, corresponding to the nau-
tical terms of pitch, roll and yaw). Accordingly, the dimen-
sionality of the shape space for 3D data is three times the 
number of landmarks minus seven. As a consequence, shape 
dimension is high for configurations with more than three 
landmarks and the corresponding shape spaces are impos-
sible to visualize directly.

In principle, it would be possible to define a wide range of 
different shape distances, resulting in different shape spaces 
(Rohlf 2000). In practice, however, the shape distance that 
is used by far the most widely is Procrustes distance. It is 
based on a procedure for separating shape from non-shape 
aspects of variation in configurations of landmarks, called 
Procrustes superimposition (Dryden and Mardia 2016). This 
section discusses this procedure as well as the shape distance 
and the shape spaces that follow from it.

Ordinary Procrustes Superimposition: Comparing 
Two Shapes

The basic idea for Procrustes superimposition was first pre-
sented by Boas (1905) and a detailed description of the algo-
rithm was provided by Sneath (1967) and subsequently by 
many other authors (Rohlf and Slice 1990; Goodall 1991; 
Kent 1994; Bookstein 1996; Rohlf 1999; Zelditch et al. 
2012; Dryden and Mardia 2016; Klingenberg 2016). The 
task is to compare the shapes of two landmark configura-
tions and to quantify the shape difference between them. 
The method does this by changing the non-shape features of 
one configuration to fit it as closely as possible to the other 
configuration, which is often called the target configuration.

The procedure usually starts by scaling both configura-
tions to unit size (Fig. 1a). The size measure most widely 
used for this purpose is centroid size, the square root of the 
sum of squared distances of each landmark from the centroid 
of all landmarks (Dryden and Mardia 2016). The x and y 
coordinates of the centroid (also called the center of gravity) 
are obtained by averaging, respectively, the x and y coordi-
nates of all the landmarks. Centroid size is best understood 
as a measure of spread of the landmarks around the center of 



336 Evolutionary Biology (2020) 47:334–352

1 3

the configuration. A landmark configuration is scaled to unit 
centroid size by dividing all the landmark coordinates by the 
centroid size of that configuration; after this step, the cen-
troid size of the scaled configuration is 1.0. By scaling both 
landmark configurations to centroid size 1.0 in this manner, 
the procedure eliminates any size differences between them.

As the second step, differences in position are removed by 
shifting the scaled landmark configurations so that their cen-
troids are in the same point (Fig. 1b). This can be achieved 
simply by subtracting the x and y coordinates of the centroid 
from the x and y coordinates of each landmark of the respec-
tive configuration. After this step, the two configurations are 
in the same overall position.

In the third and final step, one configuration is rotated 
around the common centroid until its landmarks are as 
closely matched to those of the target configuration as it is 
possible (Fig. 1c). After this rotation, the two landmark con-
figurations have the same orientation. The criterion for the 
matching of landmarks is the sum of the squared distances 
between corresponding landmarks in the two configurations. 
The choice of this criterion also explains the matching of 
positions by centroids in the second step of the procedure.

These three steps successively remove the non-shape 
components of variation from the landmark configurations. 
Therefore, only shape variation remains. Because none of 
these steps changes shape, it also follows that the complete 
shape variation remains. Therefore, the coordinates of super-
imposed landmark configurations can be used for further 
analyses of shape.

The procedure outlined above, where both landmark 
configurations are scaled to unit centroid size, has been 
called the partial Procrustes superimposition (Dryden 
and Mardia 2016). This method can be modified slightly 
because the sum of squared distances between correspond-
ing landmarks can be further reduced, and therefore the 
fit between configurations further improved, by scaling 
the configuration that is matched to the target to a slightly 
smaller centroid size (Fig. 2). The scaling factor depends 
on the magnitude of the shape difference between the land-
mark configurations (as can be seen in Fig. 2, the minimum 
is achieved for point F, where the line between the target T 
and fitted configuration F is perpendicular to the line from 
the origin O to the fitted configuration before rescaling, 

(a)

(b)

(c)

Fig. 1  Ordinary Procrustes superimposition of two landmark configu-
rations (from Klingenberg 2015). The superimposition, here shown 
for two fly wings with 15 landmarks each, proceeds in three steps. a 
First, both configurations are scaled to a standard centroid size of 1.0. 

b Second, both landmark configurations are shifted so that their cen-
troids are at the origin of the coordinate system. c Finally, one of the 
configurations is rotated so that the positions of its landmarks match 
those in the target shape as closely as possible
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P). This method, where only the target configuration is 
scaled to unit centroid size, but the other configuration is 
scaled so that it matches the target as closely as possible, is 
called a full Procrustes superimposition (Dryden and Mar-
dia 2016). The scaling step is the only difference between 
the full and partial Procrustes superimposition; the transla-
tion and rotation steps are exactly the same (Dryden and 
Mardia 2016). In practice, the difference between these 
two variants of Procrustes superimposition is usually very 
small for biological data.

Full and Partial Procrustes Distance

In conjunction with Procrustes superimposition, it seems the 
most straightforward measure of shape difference between 
two configurations would be the sum of the squared dis-
tances between corresponding landmarks of the superim-
posed configurations. This is the criterion used for the super-
position, and therefore it reflects exactly those differences 
that cannot be removed by scaling, translating and rotating 
one configuration against the other. Because this is a sum 
of squared distances, however, it is not a direct measure of 
distance. Accordingly, the square root of the sum of squared 
distances between corresponding landmarks is used instead, 
and this measure of shape distance is called Procrustes dis-
tance (Dryden and Mardia 2016).

Depending on whether partial or full Procrustes super-
imposition has been used, the resulting Procrustes distances 
are different and are distinguished from each other by using 
different terms: full Procrustes distance (dF) and partial Pro-
crustes distance (dP). Between shapes that are not identical, 
the full Procrustes distance is bound to be smaller than the 
partial Procrustes distance (Fig. 2), but this difference is 
usually small for biological data. For extreme shape differ-
ences, however, this difference can become noticeable, as 
can be appreciated from the theoretical maximum for the 
two distance measures: full Procrustes distance can range 
up to 1.0, whereas partial Procrustes distance can range up 
to the square root of 2, which is approximately 1.41 (Dryden 
and Mardia 2016).

Because all triangle shapes standardized to unit centroid 
size are bound to lie on an arc of radius 1.0 (Fig. 2), we can 
define yet another measure of distance between the shapes: 
the great circle distance (or geodesic distance) measured 
on that arc (the conventional symbol for this distance is ρ). 
This type of shape distance is known under several differ-
ent names: Riemannian distance (Dryden and Mardia 2016), 
Procrustes distance (without any qualifiers such as “full” or 
“partial”; Dryden and Mardia 1998; Rohlf 1999), and often 
just its conventional symbol is used (Kendall 1984; Rohlf 
1999; Dryden and Mardia 2016). This shape distance can 
range up to π / 2, which is approximately 1.57 (Dryden and 
Mardia 2016). This measure of shape distance is particularly 
important in theoretical considerations.

The relationship between the different shape distances 
is most easily visible in Fig. 2. For a partial Procrustes 
superimposition of a shape (P) onto a target (T), both land-
mark configurations are scaled to centroid size 1.0, from 
which it follows that both these points are at a distance of 1.0 
from the origin of the coordinate system (O). The connec-
tion between partial Procrustes distance and the Riemannian 
distance ϱ is established via the two right triangles O–T–M 
and O–P–M, where M is the midpoint between P and T. For 
each of these triangles, the angle at the vertex O is ϱ / 2, and 

Fig. 2  Relationships between full and partial Procrustes distance and 
Riemannian distance between two triangle shapes (modified after 
Dryden and Mardia 2016). The point O is the origin of the coordinate 
system and T is the target shape. The part-circle through the points 
T, F, and O is a cross-section through Kendall’s shape space, and the 
arc through points T and P is a part of a section through the space 
of landmark configurations aligned to shape T by partial Procrustes 
fit. Points P and F represent the shape fitted to T by partial and full 
Procrustes superimposition, respectively. They differ only in scaling: 
P is scaled to centroid size 1.0 (therefore it is on a circle of radius 1.0 
around O, along with point T), whereas F is scaled to centroid size 
cos(ϱ)
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because the distances between O and both P and T are 1.0, it 
follows that the distances T–M and P–M are both sin(ϱ / 2), 
so that the partial Procrustes distance between P and T is 2 
sin(ϱ / 2). For the full Procrustes superimposition, the shape 
is scaled so that the line from the shape being fitted to the 
target (F–T) is at a right angle to the line to the origin (F–O). 
By considering the right triangle O–F–T and the definitions 
of trigonometric functions, it follows that the full Procrustes 
distance is sin() and also that the optimal scaling factor is 
cos(ϱ). It also is clear from Fig. 2 that ϱ ≥ dP ≥ dF, with 
equality holding if ϱ = 0. All of the relationships among the 
shape distances are fairly simple and completely determin-
istic, which means that it is quite easy to convert a shape 
distance from one of these measures to a different one.

Procrustes distances depend on the number and arrange-
ment of landmarks in the configurations. These relationships 
are relatively complex, because the number of landmarks 
counts both for the number of squared distances that are 
summed up and for the number of landmarks that go into 
the calculation of centroid size for the size standardization. 
In practice, it is therefore preferable to compare Procrustes 
distances only within the context of a single analysis, but not 
between different analyses.

Kendall’s Shape Space

To obtain a geometric representation of all possible shapes 
with a particular number of landmarks, it is possible to build 
a shape space. Every point in a shape space represents a 
shape and the distances between points represent the mag-
nitudes of shape differences between the respective shapes. 
Regardless of whether we use partial or full Procrustes dis-
tance for this purpose, the result is a curved multidimen-
sional space. Accordingly, shape spaces are rather complex.

Because shape spaces are nonlinear, they have some prop-
erties that may appear strange and not even counting dimen-
sions is quite intuitive (in shape analysis, the topological 
dimension is used for shape spaces, not geometric dimen-
sion). For Euclidean (linear) spaces, the dimensionality 
corresponds to the number of coordinates we need to spec-
ify a point in the space or in how many orthogonal direc-
tions points can move in the space. Let’s consider a circle, 
probably the simplest nonlinear space, and ask how many 
dimensions it has. It is tempting to see the Cartesian x and 
y coordinates of the plane in which the circle is embedded, 
suggesting there are two dimensions. But there is a strong 
relation between the x and y coordinates (the squared devia-
tions from the center always add up to the squared radius 
of the circle) and every point on the circle can only slide in 
one direction (along the circle, but not in a radial direction). 
Also, it is sufficient to give a single angle to specify the 
position of a point on the circle (e.g., that it is in a 3 o’clock 
position). Therefore, from this perspective, it clearly appears 

that a circle has only a single dimension. Similarly, the sur-
face of a sphere has two dimensions (a longitude and latitude 
are sufficient to specify a point on a globe). This becomes 
particularly relevant when considering shape spaces for dif-
ferent numbers of landmarks or for 2D versus 3D data.

First, I focus on the case of triangles, landmark configu-
rations with just three landmarks in two dimensions, which 
results in a relatively simple shape space that can be visual-
ized directly. In this case, the shape space is two-dimen-
sional: there are three landmarks with two coordinates each, 
and we need to subtract four dimensions for the degrees of 
freedom lost due to the standardization for size, position, and 
orientation, so that two dimensions remain.

Imagine we have a large sample of triangles of all pos-
sible shapes. Using the ordinary Procrustes superimposi-
tion introduced above, it is then possible to calculate a table 
with all pairwise distances between triangle shapes. From 
this table of distances, we can try to construct geometric 
representation where points represent the triangles, and the 
distances between points correspond to distances between 
the respective triangles. It is possible to do this by princi-
pal coordinate analysis (Gower 1966) or, equivalently, met-
ric multidimensional scaling (Mardia et al. 1979). If full 
Procrustes distances between the triangle shapes are used, 
the points representing the triangles all lie exactly on the 
surface of a sphere of radius 0.5. This sphere is Kendall’s 
shape space for triangles in two dimensions (Kendall 1984; 
Kendall et al. 1999; Rohlf 1999; Dryden and Mardia 2016). 
In practice, using principal coordinate analysis for this pur-
pose is not very convenient because the direction in which 
the shape space is aligned against the resulting coordinate 
system is more or less arbitrary, depending entirely on the 
distribution of triangle shapes in the sample. For this reason, 
I present some considerations below that lead to a more con-
venient coordinate system, one that facilitates understanding 
the geometric aspects of shape variation.

If partial Procrustes distances are used to construct the 
geometric representation, no consistent representation 
results for the complete table of pairwise shape distances. 
If only an incomplete table is used, with only the pairwise 
distances among similar triangles included but without the 
distances between very different triangles, the geometric rep-
resentation of triangles again is similar to Kendall’s shape 
space. A similar problem applies for Riemannian shape 
distance. There is a degree of distortion in either of these 
cases, so that the principal coordinate analysis is not able 
to provide an exact solution—how much distortion there is 
depends on the maximum pairwise distances among shapes 
included in the analysis.

The arrangement of triangle shapes on Kendall’s shape 
space is very specific and can be characterized by compari-
son to a globe (Fig. 3). If an equilateral triangle is chosen as 
the north pole, then a number of regularities emerge. The 
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south pole corresponds to another equilateral triangle that is 
the mirror image to the one corresponding to the north pole 
(for one, the vertices are labelled clockwise and for the other, 
counter-clockwise). The equator contains collinear triangles: 
triangles where all three vertices lie on a single straight line 
(this circle also corresponds to the shape space for triangles 
in a single dimension; Small 1996; Kendall et al. 1999). 
Finally, six meridians correspond to isosceles triangles 
(Fig. 3). For each triangle shape on the northern hemisphere, 
the mirror image shape is located at the same longitude and 
corresponding latitude on the southern hemisphere.

Tangent Space

Because Kendall’s shape space is a non-linear space, com-
putations in it are rather cumbersome and most studies of 
shape variation therefore use only a local approximation of 
the nonlinear space by a flat, linear tangent space (Fig. 4). 
Shape tangent spaces have the same dimensionality as the 
shape spaces they approximate. In the case of triangles, 
therefore, each tangent space has two dimensions and is a 
plane. This tangent approximation is essentially the same 
as the approximation of the curved surface of the Earth 
by a flat map. The tangent space can provide a close lin-
ear approximation of a limited region of the shape space, 
but if there is a relatively large range of different shapes, 

distortions are inevitable. Due to the same effect, world 
maps usually show Greenland and Antarctica with grossly 
distorted shapes, because the map projection is usually 
optimized for the equator and produces distortions for high 
latitudes.

Choosing the tangent point, where the tangent space 
touches the shape space, is an important step in any analy-
sis using a tangent space. The mean shape in a sample is 
usually a good choice for the tangent point because it is 
usually near the center of the distribution, so that distor-
tion tends to be relatively small in all directions, and no 
observations in the sample are expected to suffer dispro-
portionate distortions. Note that the tangent projection 
also entails a slight expansion of centroid size, which in 
turn depends on the magnitude of the shape difference 
from the shape at the tangent point (the points F’ and P’ 
in Fig. 5 are slightly farther from point O than F and P, 
respectively).

Usually an orthogonal projection is used to project 
observations into the tangent space (Dryden and Mardia 
2016). This means that observations are projected in a 
direction that is perpendicular to the shape tangent space. 
This direction is also parallel to the vector from the origin 
to the tangent point, which is usually the average shape 
in sample. An alternative method is stereographic projec-
tion, where each observation is projected along a straight 
line from the origin (Rohlf 1999), but this method leads 
to worse distortions for shapes that are relatively far from 
the tangent point.

Fig. 3  Kendall’s shape space for triangles in two dimensions (Klin-
genberg 2016). The diagram shows the view from the “north pole” 
corresponding to an equilateral triangle (center) onto one hemisphere. 
The outer dashed circle corresponds to the equator and contains the 
collinear triangles, where all three vertices lie on a straight line. The 
six meridians shown as straight dashed lines contain isosceles trian-
gles

Fig. 4  The tangent approximation to Kendall’s shape space for trian-
gles (Klingenberg 2016). A flat space is found that touches the shape 
space at a reference point, such as the mean shape in a dataset, and 
provides a linear approximation to the shape space in the surround-
ings of this point



340 Evolutionary Biology (2020) 47:334–352

1 3

Generalized Procrustes Superimposition: More 
than Two Shapes

The preceding discussion has mentioned average shapes in 
samples of landmark configurations, but has not provided 
an explanation. Therefore, this section presents the general-
ized Procrustes superimposition (or generalized Procrustes 
analysis, GPA), which is the method used for computing 
such average shapes in samples of landmark configurations, 
(Gower 1975; Rohlf and Slice 1990; Goodall 1991; Dryden 
and Mardia 2016). I particularly emphasize how this proce-
dure relates to shape spaces and shape distances. Contrary to 
most previous explanations of this method, it is most helpful 
to view generalized Procrustes superimposition not primar-
ily as a procedure for aligning landmark configurations rela-
tive to one another, but as a method for fitting empirical data 
to Kendall’s shape space.

Generalized Procrustes superimposition is an iterative 
procedure that starts with a sample of landmark configura-
tions. In the first round, one of these configurations is chosen 
arbitrarily as the target, for instance the first one in the data-
set, and every other landmark configuration is fitted to that 
target configuration in turn by an ordinary Procrustes super-
imposition as described above. When this is complete, a con-
sensus configuration is computed by averaging the landmark 
coordinates across all the aligned configurations (including 
the configuration chosen as the target for the first round) and 
rescaling the resulting configuration to unit centroid size. 
This consensus is then taken as the new target configuration 
and all the landmark configurations in the sample are fitted 
to it in a new round of ordinary Procrustes superimpositions. 
The coordinates of the aligned landmark configurations are 
then averaged again, this time without the target configura-
tion (which was the consensus from the previous round, not 
one of the landmark configurations from the input data). 
The resulting average is used as a target configuration in the 
next round of ordinary Procrustes superimpositions, and this 
procedure is repeated until the changes between successive 
rounds become negligible. This is usually the case after just 
two to three rounds—the algorithm tends to converge fast 
for most datasets.

This procedure can use either the full or the partial Pro-
crustes superimposition procedure as described above. 
Therefore, there are two slightly different methods, full GPA 
and partial GPA, that produce slightly different estimates 
of the mean shape in a sample. In full GPA, the procedure 
of rescaling size is used at every step of the iterative fitting 
by ordinary Procrustes superposition. The rescaling is done 
as above, as a function of the shape difference between the 
target and each configuration that is being fitted to it (using 
the factor cos(ϱ); Fig. 2). As a consequence of this, configu-
rations with a shape far from the target tend to be weighted 
less than shapes closer to the target in the calculation of 

the average shape. In partial GPA, by contrast, every land-
mark configuration is included with the unit centroid size 
and is therefore weighted equally. As a result, the two GPA 
methods may have slightly different behavior, particularly 
concerning the treatment of outliers.

When the GPA algorithm converges, the consensus 
configuration provides an estimate of the mean shape and 
all the landmark configurations in the sample are aligned 
optimally to that consensus shape in the 2D or 3D space 
of the original landmark configurations. From the perspec-
tive of multivariate statistics, however, we can also think 
of a different, multidimensional space in which the vari-
ables define the coordinate axes and thus the number of 
dimensions (note that there may or may not be variation 
in every direction in this space). In the context of shape 
analysis, the landmark coordinates serve as the variables, 
and we therefore can envision a multivariate space in which 
every coordinate of every landmark defines a coordinate axis 
and thus a separate dimension. The dimensionality of this 
space is twice the number of landmarks for 2D data and 
three times the number of landmarks for 3D data. To cal-
culate Euclidean distances in multidimensional spaces, we 
can use the multivariate generalization of the Pythagorean 
theorem: the distance between two points in the space is the 
square root of the sum of squared differences between the 
two points along every coordinate axis, summed up over all 
the coordinate axes that make up the space. If we apply this 
calculation to the multivariate space defined by the landmark 
coordinates, it turns out that it is exactly the same as in the 
definition of Procrustes distance given above. Accordingly, 
the distance of every aligned configuration from the average 
shape in this multivariate space is precisely the Procrustes 
distance—full Procrustes distance if a full GPA was used 
or, alternatively, partial Procrustes distance if partial GPA 
was used. The pairwise distances among points in the space 
corresponding to the different configurations in the sample 
approximate the Procrustes distances among the respective 
shapes (as long as shape variation is small, i.e., as long as 
the shapes in the dataset only occupy a relatively small patch 
of Kendall’s shape space). Accordingly, it emerges that the 
arrangement of the points representing the shapes in the 
multidimensional space approximates a limited portion of 
Kendall’s shape space: there are single points representing 
landmark configurations in the multidimensional space and 
the pairwise distances between them at least approximate 
Procrustes distances between the respective shapes.

To understand the situation when shape variation is 
greater, that is, when the shapes in the sample are not all 
similar to each other, it is necessary to consider the global 
structure of the spaces of Procrustes-superimposed shapes 
(Fig. 5). Because the last step in a GPA includes an ordinary 
Procrustes fit of every landmark configuration in the sample 
to the mean shape, the target shape (point T in Fig. 5) should 
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be interpreted as the mean shape in this context. Because 
landmark configurations aligned by partial Procrustes super-
imposition all have centroid size 1.0, points representing 
these configurations all must lie on a spherical surface with 
the radius 1.0. Actually, triangles aligned by partial GPA 
lie on hemisphere of radius 1.0 (Rohlf 1999; Slice 2001). 
By contrast, landmark configurations superimposed by full 
GPA must lie inside this hemisphere because they have been 
scaled to smaller centroid sizes (unless they have the same 
shape as the target configuration). Triangles aligned by full 
GPA are actually in Kendall’s shape space (Fig. 5). The two 
spaces touch at the point corresponding to the shape that 
was used as the target in the last iteration of the cross the 
superposition. Because this point conventionally is used as 
the tangent point for the projection to the tangent space, it is 
the point where all three spaces intersect (point T in Fig. 5).

The shape tangent space for triangles is a plane (appear-
ing as a straight line in the cross-section in Fig. 5). The tan-
gent space has the same dimensionality as Kendall’s shape 
space (two for triangles—the surface of a sphere), but it is 
flat and not curved. The projections of landmark configura-
tions into tangent space are different depending on whether 
a full or partial Procrustes superimposition is used (points 
F’ vs. P’ in Fig. 5), and these differences again depend on 
the amount of shape variation in the sample (more specifi-
cally, on the magnitude of the shape difference of each land-
mark configuration from the consensus shape that is used 
as the tangent point). In the vicinity of the tangent point (T 
in Fig. 5), the tangent space, the hemisphere of triangles 
aligned by partial Procrustes superimposition, and Kendall’s 
shape space are all close together, and the projections onto 
the tangent space will produce only negligible distortions. 
For shape data with limited amounts of variation, as for most 

biological data, the tangent projection therefore provides 
a very good or excellent approximation of both Kendall’s 
shape space and the hemisphere of configurations aligned 
by partial Procrustes superimposition (Marcus et al. 2000).

Specifying the Coordinate System

Now that we understand the relationship between the differ-
ent spaces (Fig. 5), we can use this relationship to explore 
the different components of shape and non-shape variation. 
This section does this first by setting up a coordinate system, 
then by examining how to change between different repre-
sentations of shapes. Again, this section uses triangles as 
the simplest examples of shapes. Extending the reasoning to 
configurations with more than three landmarks is conceptu-
ally straightforward, but may be somewhat tedious (some 
discussion will follow in a later section).

Enumerating the Dimensions of Shape 
and Non‑shape Variation

To set up a coordinate system for triangle shapes in two 
dimensions, we consider the arrangement in Fig. 5. It is 
easiest to start with the non-shape components of variation: 
translation, rotation and size. Each of these effects can be 
characterized as a vector (Δx1, Δy1, Δx2, Δy2, Δx3, Δy3) 
describing changes of the x and y coordinates of the three 
landmarks from the target shape (the point T in Fig. 5). For 
convenience, we standardize the resulting vectors to unit 
length (i.e., so that the squared coefficients sum up to 1.0).

These non-shape changes include translations along 
the x and the y axis, that is, left–right and up–down shifts 
(Fig. 6a,b). The two corresponding vectors are:

In order to standardize position, and to ensure that a land-
mark configuration has zero values for both these compo-
nents, we can used centered landmark coordinates: subtract-
ing the x and y coordinates of the centroid (the averages of 
the x and y coordinates of all landmarks) from the respective 
coordinates of every landmark, which results in shifting the 
configuration so that its centroid is at the origin of the coor-
dinate system.

For the vector that stands for size variation, a little more 
thought is required. In the arrangement of Fig.  5, size 
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the hemisphere of landmark configurations aligned by partial gener-
alized Procrustes superimposition, and the tangent space (modified 
after Rohlf 1999; Klingenberg 2016). The shape corresponding to 
point T corresponds to the mean shape in the sample; it serves as the 
tangent point and also as the target configuration in the last iteration 
of the generalized Procrustes superposition. The points F’ and P’ are 
the tangent projections of F and P, respectively. Otherwise, points are 
labelled as in Fig. 2
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variation near the tangent point T involves shifts from that 
point up toward a larger size or down toward a smaller size, 
thus increasing or decreasing the distance from the origin O. 
This direction corresponds to that of the vector from the ori-
gin O to the tangent point T. The same conclusion also can 
be reached by reasoning that, for increasing the size slightly 
from point T without any other changes, all landmark coor-
dinates need to be multiplied by the same constant slightly 
greater than 1.0, or for reducing the size, all coordinates 
need to be multiplied by the same constant slightly smaller 
than 1.0. Therefore, the vector that stands for the pure size 
changes is proportional to the vector of the centered land-
mark coordinates for the reference shape at the point T. As 
a consequence, in such a size change, the landmarks move 
away from the centroid or towards it (Fig. 6c). Because this 
vector represents a shape, the coordinates are standardized 
to centroid size 1.0, and thus the squared coordinates sum 
up to 1.0, so that no further change in scale is necessary. 
For the purposes of this paper, the entire shape space is of 
equal interest and the reference shape can therefore be cho-
sen freely. Here I have selected an equilateral triangle as the 
reference shape, so the coordinate system specifies the same 
position of the shape space as in Fig. 3, with the equilateral 
triangle as the tangent point. The resulting vector is this:

Finally, we need to find the vector for rotation. For a 
rotation around the centroid, each landmark moves along 
a circular arc around the centroid. For a rotation by a small 
angle, this can be approximated by a shift in a tangential 
direction by a distance that is proportional to the angle and 
to the distance of the landmark from the centroid (Fig. 6d). 
This can be obtained by taking the vector for the centered 
reference shape (i.e., the same vector as for size variation) 
and performing a rotation by 90˚ (note that the arrows in 
Fig. 6d are at right angles to the dashed lines running from 
the centroid to the three landmarks). This rotation can be 
done simply by swapping the x and y coordinates and then 
changing the sign of one coordinate (e.g. the y) for every 
landmark. The resulting vector for the equilateral triangle 
(again, scaled to unit length) is this:
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Fig. 6  Non-shape changes of a 
landmark configuration, in this 
example an equilateral triangle. 
a Translation along the x axis. 
b Translation along the y axis. c 
An increase in size (landmarks 
moving away from the cen-
troid). d The linear approxima-
tion for a rotation around the 
centroid of the configuration. 
This approximation is not 
precise (the landmarks would 
move on circular arcs for an 
actual rotation; here, size also 
increases), but it is sufficient for 
rotations by a small angle. In all 
four diagrams, the changes are 
at the same, arbitrary scale (the 
corresponding vectors of shape 
change have a length of clearly 
less than one unit of Procrustes 
distance). In panels (c) and (d), 
all landmarks move equally far 
because of the symmetry of the 
reference shape (the equilateral 
triangle in this example). In 
general, the landmark displace-
ments due to size change and 
rotation are proportional to 
the distances of the respective 
landmarks from the centroid in 
the reference shape
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These four vectors together span the space of non-shape 
variation in the landmark coordinates of triangles in the vicin-
ity of the reference shape (point T in Fig. 5). Each of these four 
vectors is orthogonal to the shape tangent space. Projecting out 
these four dimensions is a way to remove the non-shape varia-
tion from landmark data and thus a possible alternative to Pro-
crustes superimposition and tangent projection in some situa-
tions, such as simulation studies (again, provided that variation 
is limited, so that nonlinear effects are relatively minor—Pro-
crustes superimposition will be better able to handle those).

For the shape components, there is a choice for the direc-
tions of the coordinate axes. For triangles, there are two shape 
dimensions and therefore two coordinate axes need to be cho-
sen. In principle, any pair of perpendicular vectors in shape 
tangent space will be equally suitable as coordinate axes and 
therefore could be used for this purpose. Here, I select the 
axes of symmetric and asymmetric shape variation about the 
vertical axis of the triangle, which are known to be orthogo-
nal components in shape space and have clear geometric 
interpretations (Mardia et al. 2000; Kent and Mardia 2001; 
Klingenberg et al. 2002; Klingenberg 2015). This is possible 
because the reference shape, the equilateral triangle, is itself 
symmetric about the vertical axis. The symmetric component 
of variation corresponds to the vertical direction in Fig. 3, from 
which it is visible that this component encompasses isosceles 
triangles ranging from broad and flat to tall and narrow (note 
that all these triangles are symmetric about the vertical axis). 
The vector for the corresponding shape change stands for a 
triangle getting taller and narrower in a symmetric way, with 
the landmark at the top moving up (landmark 1) and the two 
landmarks of the base moving towards each other by equal 
amounts along the x axis:

This vector needs to obey a number of constraints because 
it must be orthogonal to all preceding vectors representing 
the non-shape components of variation (e.g., maintaining unit 
centroid size, etc.), and some additional conditions to fulfil 
the symmetry requirements. Finally, the shape change for the 
asymmetry components corresponds to horizontal movement 
off the vertical meridian in Fig. 3. Again, several constraints 
apply that stand for constant size, position, orientation and no 
variation in the symmetric component of shape. The resulting 
shape change features a horizontal shift of the landmark at the 
top and opposite shifts of the two landmarks of the baseline:

Together, these two vectors span the shape tangent 
space. All six vectors, including the four non-shape axes, 
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provide a coordinate system that can characterize the local 
variation of landmark coordinates in the neighborhood of 
the target shape. At a larger scale, these vectors also pro-
vide a coordinate system for all possible triangle shapes, 
where each axis has a particular geometrical meaning. 
This aspect will be used in the subsequent parts of this 
paper.

From Landmark Coordinates to Position in Kendall 
Shape Space

The standard tool for aligning landmark configurations to 
Kendall’s shape space is generalized Procrustes superimpo-
sition, as discussed above. For the purposes of exploring the 
entire shape space, we can simplify this procedure by choos-
ing a target shape arbitrarily rather than estimating the mean 
shape in a sample. In particular, we can choose an especially 
suitable target shape such as an equilateral triangle, which 
results in a convenient alignment of the coordinate system 
and the shape space (Fig. 3). The superimposition procedure 
therefore consists simply of aligning every shape in a data-
set of simulated triangle shapes to the chosen target shape, 
equivalent to the series of ordinary Procrustes alignments 
of landmark configurations to the target shape that is part of 
the last iteration of the generalized Procrustes superimposi-
tion algorithm. If we want to align landmark configurations 
to Kendall’s shape space, we use full Procrustes superim-
position. Alternatively, if we want to fit configurations to 
the hemisphere of aligned preshapes (Fig. 5), we use partial 
Procrustes superimposition. The differences of the triangle 
shapes used in this analysis to the target shape can be arbi-
trarily big; accordingly, this approach can be used to explore 
the entire Kendall shape space.

The coordinates of the aligned triangles will be expressed 
as the x and y coordinates of all three landmarks, so that 
the result will be a vector of six coordinate values for each 
triangle. Yet, from the previous considerations, it is clear 
that points representing the triangles are all embedded in 
just three dimensions (Fig. 5): the two dimensions of the 
tangent space and the additional vertical dimension from the 
origin of the coordinate system (point O) to the target shape 
(point T), which corresponds to the size of vector from the 
preceding section. It is possible to obtain the more compact 
notation in terms of these three coordinate axes by multiply-
ing the vector of six landmark coordinates representing each 
aligned triangle by a matrix composed of the two vectors 
that together span the shape tangent space and the size vector 
(with the vectors taken as a column vectors and assembled 
side by side into a 6-by-3 matrix). The result is the vector of 
three elements, which can be used in ordinary 3D visualiza-
tions and each have geometrically meaningful interpretations 
(Figs. 2 and 5).
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From Position in Kendall Shape Space to Landmark 
Coordinates

For exploring Kendall’s shape space, an equally important 
task is to start with coordinates of points in the shape space 
and to obtain the shapes of the corresponding triangles. For 
doing this, the same coordinate system as above can be used: 
a set of three Cartesian coordinates with the origin at point O 
of Fig. 5, consisting of the two coordinate axes of the shape 
tangent space and the axis from the origin of the coordinate 
system to the point T representing the target shape. Every 
point on Kendall’s shape space, and therefore every possible 
triangle shape, is included in this three-dimensional space. 
The distance of each point in Kendall’s shape space (point 
F in Fig. 5) from the origin O represents the centroid size of 
the triangle after full Procrustes superimposition, reflecting 
the scaling by the factor cos(ϱ) according to the difference 
from the target shape T (Fig. 3).

The transition from the three-dimensional coordinate sys-
tem to the six coordinates of the landmarks in the triangles 
again can be achieved by multiplying the vector of the three 
coordinates of a point in Kendall’s shape space with a matrix 
composed of the two vectors that span the shape tangent 
space and the size vector (this time, the vectors are taken as 
row vectors and stacked on top of each other, resulting in a 
3-by-6 matrix). Conventionally, shapes are visualized with 
a centroid size of 1.0, corresponding to a scaling to point P 
in Fig. 5. This scaling to unit centroid size needs to be done 
jointly for all six landmark coordinates (i.e., so that the vec-
tor of landmark coordinates, which is automatically centered 
if it is computed as described here, has a length of 1.0).

The only exception to this is the antipode to the target 
shape in Kendall’s shape space, the point O itself. This point 
does represent a triangle shape, but in the arrangement of 
Fig. 5, this point is the origin of the coordinate system and 
has coordinates (0, 0, 0). Therefore, this point needs special 
treatment to be transformed into the appropriate shape. In 
the situation explained here, this would be the equilateral 
triangle that is the mirror image of the target shape.

With these methods, it is possible to go back and forth 
between triangle shapes and positions in Kendall’s shape 
space. We can make use of this to explore the structure of 
the shape space in more detail.

Walking on Kendall’s Shape Space 
for Triangles

To obtain some intuitive understanding of Kendall’s shape 
space for triangles, and therefore also more generally of the 
nature of shape variation at a large scale, a useful exercise 
is to imagine taking a walk around the shape space. If we 
choose a starting shape and repeatedly apply the same small 

shape change to it, the resulting path is a straight line on 
the surface of the sphere or, more exactly, a great circle. 
This reasoning leads to the surprising conclusion that, by 
applying the same shape change to a starting triangle shape 
over and over, the same shape should eventually result again. 
This is equivalent to the thought experiment of taking an 
airplane and flying around the Earth in an exactly straight 
line—in the end, due to the curvature of the Earth, the air-
plane should return to the starting position. Examining the 
sequence of triangle shapes along such a route of travel on a 
great circle in Kendall’s shape space can help to develop an 
intuitive grasp of shape variation at a large scale.

Walking on a Meridian

The first walk on Kendall’s shape space is on the great cir-
cle that appears as the vertical meridian in Fig. 3, starting 
at the position of the equilateral triangle corresponding to 
the north pole, which also serves as the target shape for the 
Procrustes superimposition. Figure 7 shows the sequence 
of triangle shapes along this great circle (the view is from 
the left side in Fig. 3). Because this particular great circle 
corresponds to the component of shape variation symmetric 
about a vertical axis, all shapes along this path are isosce-
les triangles. In clockwise direction from the start at the 
equilateral triangle (Fig. 7, top), triangles become taller and 
narrower as the vertices on the baseline move towards each 
other: the baseline vertex on the right side (dark grey) moves 
toward the left and the vertex on the left (light grey) side 
moves toward the right (in clockwise direction in Fig. 7). On 
the equator of Kendall’s shape space (3 o’clock in Fig. 7), 
the two baseline points coincide, so that the triangle is col-
linear. As the path continues beyond this point, the baseline 
vertices cross over as each of them maintains its respective 
direction of movement, so that the one that started out on 
the right side (dark grey) is now on the left, and vice versa. 
As a result, the triangles at corresponding distances above 
and below the equator are mirror images of each other. Also, 
as a second consequence, the triangles become broader and 
flatter again with increasing distance from the equator. This 
trend continues for a half-circle (to 9 o’clock in Fig. 7). At 
the position of the equilateral triangle that is the antipode 
and mirror image of the target shape (6 o’clock in Fig. 7), the 
orientation of the triangles changes by a rotation of 180° due 
to the Procrustes superimposition to the triangle at the north 
pole (actually, the triangle at 6 o’clock is drawn in an arbi-
trary orientation because its orientation is not defined by the 
Procrustes superimposition). The trend of triangles broaden-
ing, with the baseline points diverging relative to the height 
of the triangle, continues to the equator where the triangle 
is collinear because all three vertices lie on a single straight 
line. At this point, we cannot continue to describe the trend 
in this way because the triangle is already maximally broad 
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and flat. Accordingly, we need to find a different characteri-
zation of the same shape change. We can observe that, as 
part of the trend of triangles flattening, the vertex opposite 
to the baseline (black) started from a position some distance 
below the baseline (just past 6 o’clock in Fig. 7) and has 
gradually been moving up towards the baseline. This aspect 
of the shape change is continuing across the equator of Ken-
dall’s shape space up to the equilateral triangle that is the 
target shape and was used as the starting point for this walk 
around the shape space (top of Fig. 7).

The reasoning above has repeatedly applied a shape 
change that led along a great circle all the way around Ken-
dall’s shape space. The change of the description at the sec-
ond crossing of the Equator, however, raises the question 
whether it really was a single shape change or whether the 
shape change itself changed (at the 9 o’clock position in 
Fig. 7). Here is helpful again to use the analogy of the air-
plane. If the airplane departs at any point on the Earth and 
flies due north, it can keep doing so only until it reaches the 
north pole, but at that point it can no longer fly further north. 
Instead, the description needs to be changed: the airplane 
must cross the north pole in a straight line and afterwards 
fly due south. This new description works until the airplane 
reaches the south pole, where the description again needs to 
change. The airplane must cross the south pole in a straight 
line and then fly north to the point of departure. Chang-
ing the description of the course the airplane is taking over 
the Earth does not mean it is deviating from a great circle. 
In just the same way, switching the description of shape 

changes does not deviate from a great circle on Kendall’s 
shape space (as long as the descriptions of the shape change, 
each focusing on different aspects of the change, are correct 
in themselves).

Walking Around the Equator

The second example is a walk around the equator of Kend-
all’s shape space for triangles (Fig. 8), the great circle that is 
at equal distances between the two equilateral triangles that 
correspond to the poles (the equator appears as the outer-
most circle in the view of Fig. 3). The equator is somewhat 
special because it contains only collinear triangles: triangles 
with all three vertices on a straight line. As far as they apply 
to collinear triangles, other aspects of the structure of the 
shape space still hold. For instance, the symmetric com-
ponent about the left-right axis corresponds to the vertical 
meridian in the view of Fig. 3, which intersects the equator 
in two points. These correspond to those two triangles that 
are both collinear and symmetric about the vertical axis: 
a completely flat triangle with one vertex in the middle 
between the two others (12 o’clock position in Fig. 8, black 
vertex in the center) and a triangle where the baseline has 
vanished so that the two vertices of the baseline are on top 
of each other (6 o’clock position in Fig. 8, with the light and 
dark grey vertices coinciding).

If we start at 12 o’clock in Fig. 8 and move clockwise, 
the black vertex moves toward the dark grey one, and goes 
past it at the 2 o’clock position. The order of vertices has 

Fig. 7  Walk on a meridian 
in Kendall’s shape space for 
triangles. The meridian chosen 
here is the one that appears as 
a vertical line in Fig. 3. The 
triangle shapes are shown in 
the orientations according to 
a Procrustes superimposition 
using the equilateral triangle at 
the 12 o’clock position as the 
target configuration, except for 
the mirror-image equilateral tri-
angle at the 6 o’clock position, 
which is shown in an arbitrary 
orientation (its orientation is 
undefined; see the main text for 
further explanation)
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therefore switched from light grey—black—dark grey 
to light grey—dark grey—black. The black vertex keeps 
moving to a more and more extreme position relative to 
the other two vertices, until there is a limit at the 6 o’clock 
position, where the black vertex is at one end of the land-
mark configuration and the light and dark grey vertices are 
in the same position on the opposite end. At this position, 
therefore, we need to change the description of the shape 
change. An alternative description for the change from the 
2 o’clock position on is that the dark grey vertex shifted its 
relative position away from the black vertex and toward the 
light grey one. Under this description, the dark grey vertex 
goes past the light grey one at the 6 o’clock position and 
continues to a more and more extreme relative position, 
until it reaches the limit at the 10 o’clock position. At that 
position, we can return to the original description of the 
shape change, that the black vertex shifts toward the dark 
grey one. At the 10 o’clock position, the black vertex goes 
past the light grey one and then moves gradually further 
away from it, reaching the midpoint at the 12 o’clock posi-
tion. This completes the walk around the equator of the 
shape space.

Walking on a General Great Circle

The preceding two walks followed great circles that were 
aligned in special ways with the coordinate system adopted 
here for Kendall’s shape space: a meridian going through 
the two poles of the equilateral triangles and the equator of 
collinear triangles. The next walk is not on such a special 
route, but is a great circle that is at oblique angles to the 
equator and meridians. Accordingly, it must have two points 
where it intersects the equator and also an intersection with 
every meridian. As a consequence, we expect two collinear 
triangles and a total of six isosceles triangles along this great 
circle, but the majority of triangles are not expected to be 
special in any such way (Fig. 9).

The great circle that this final walk follows is inclined by 
45° relative to plane of the equator (and thus also makes a 
45° angle with the axis between the two poles). It intersects 
the equator at two points defining a line that goes from the 
lower left to the upper right in Figs. 3 and 7 at an angle of 
45° (i.e., the third diagram following the positions of 12 
o’clock and 6 o’clock, when counting clockwise on the outer 
circle in Fig. 3 or in Fig. 8). These intersection points are 

Fig. 8  Walk around the equator 
of Kendall’s shape space for 
triangles. Accordingly, the 
triangles are all collinear, with 
all three vertices on a single 
straight line. The arrangement 
is essentially the same as on 
the peripheral circle of Fig. 3, 
with the configurations aligned 
by Procrustes superposition 
to the equilateral triangle (the 
resulting differences in orienta-
tion are irrelevant in the context 
of shape analysis)
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taken as the 12 o’clock and 6 o’clock positions in Fig. 9. The 
great circle rises above the equator toward the lower-right of 
Fig. 3 and dips below the equator in the upper-left side (note 
that shapes below the equator are not shown in Fig. 3, but 
they are the mirror images of the shapes above the equator). 
The point with the highest latitude, of 45°, is shown in Fig. 3 
on the inner dashed circle, toward the lower right (the third 
diagram, counted either clockwise form 3 o’clock or coun-
terclockwise from 6 o’clock). In Fig. 9, this point is in the 3 
o’clock position. The point with the lowest latitude, where 
the great circle dips deepest to 45° below the equator, is in 
the upper-left direction in Fig. 3 (the corresponding shape 
is not shown in that figure, but its mirror image is shown on 
the inner dashed circle). In Fig. 9, this point is shown in the 
9 o’clock position. None of the triangle shapes in Fig. 9 is 
exactly an isosceles triangle, because none of them is pre-
cisely at the intersection of the great circle with one of the 
respective meridians (Fig. 3). Because it does intersect with 
all six of those meridians, however, a total of six isosceles 
triangles exist on the great circle (this is the case for every 
great circle that is not itself a meridian, i.e., does not go 
through the two poles).

If we start the walk at the 12 o’clock position and proceed 
clockwise (Fig. 9), we therefore depart at the level of the 
equator and ascend to a latitude of 45° above the equator (3 
o’clock), then descend back to the equator (6 o’clock), con-
tinue down to a latitude of 45° below the equator (9 o’clock), 
and finally return to the equator. The shape changes along 
the path do not have an obvious or simple interpretation, 
and several alternative descriptions could be found for the 
observed pattern. From the 12 o’clock position (Fig. 9), the 
dark grey vertex moves down and away from the line con-
necting the other two vertices and first toward, but eventually 
beyond the position of the light grey vertex. Simultaneously, 
the angle at the light grey vertex of the triangle expands, 
slowly up to about the 3 o’clock position and more rapidly 
after that, so that it reaches 180° at the 6 o’clock position (at 
the equator, corresponding to a collinear triangle). From that 
position, as we cross the equator, the order of vertex labels 
of the triangles reverses (this is related to the fact that mir-
ror-image triangles are located in corresponding locations 
on opposite hemispheres). A shape change that continues 
past the 6 o’clock position is the shift of the light grey vertex 
away from the dark grey vertex toward the black vertex. In 

Fig. 9  Walk on a great circle on 
Kendall’s shape space for tri-
angles that is at oblique angles 
to the equator and meridians. 
The diagrams at the 12 o’clock 
and 6 o’clock positions show 
the shapes at the intersections 
of the great circle with the 
equator (these triangle shapes 
are therefore collinear). The 3 
o’clock position is the point of 
the highest latitude (45° above 
the equator) and the 9 o’clock 
position is the point of lowest 
latitude (45° below the equator). 
The triangle shapes are shown 
in the orientations according to 
a Procrustes superimposition 
using the equilateral triangle as 
the target configuration
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addition, the light grey vertex starts to move away from the 
edge connecting the other two vertices and the angle at the 
light grey vertex starts to decrease again. Both of these fea-
tures are reversals of the trends so far and both become more 
and more extreme toward the 12 o’clock position.

The shape changes along this walk around the shape 
space are inherently more complex and more difficult to 
understand than the ones in the previous two examples. 
The reason is that those concern a meridian of isosceles 
triangles, where all triangles are symmetric, or the equator, 
where there are only collinear triangles; because of those 
special conditions, the shape changes are relatively simple. 
But of course, the majority of triangle shapes do not belong 
to those special categories. Yet the strategy of understand-
ing the changes throughout the sequence of shapes along a 
great circle by combining a chain of smaller-scale changes 
also works in this general case. The continuity of the great 
circle corresponds to a continuity in the changes among the 
triangle shapes that occur on it in Kendall’s shape space. The 
walks on great circles in shape space show that repeatedly 
applying the same shape change eventually results in the 
triangle shape from which the walk started. At first, this may 
seem surprising and counterintuitive, but thinking through 
a few of these walks may develop a new sense of intuition 
on this kind of space that curves in on itself and is closed 
in this manner.

Shape Spaces for More than Three 
Landmarks

Shape spaces for configurations with more than three land-
marks are more complex and have more dimensions than the 
shape space for triangles (Small 1996; Kendall et al. 1999). 
They are more complex because they can have features such 
as singularities, which can be viewed as the equivalent of 
ridges or spikes on two-dimensional surfaces. Because of the 
higher dimensionality, these shape spaces are also more dif-
ficult to visualize. This section is an attempt to provide some 
ideas of how insights from the shape space for triangles can 
be carried over to the more complex situations as they under-
lie the vast majority of morphometric analyses in biology.

Enumerating Dimensions

The first and most straightforward step when considering 
shape spaces is to set up the coordinate system, following 
the reasoning outlined above for triangles. For 2D landmark 
configurations with more than three landmarks, the vectors 
that characterize the non-shape components can be enumer-
ated in the same way as for triangles. The vectors for transla-
tion contain equal shifts of either the x or the y coordinates 
of all landmarks. The vector for size variation is the centered 

target shape (often the mean shape in a sample). Finally, the 
vector for rotation is the same as the target shape rotated 
by 90°, which can be obtained by taking the centered tar-
get shape vector, swapping the x and y coordinates of each 
landmark and changing the sign of one coordinate of each 
landmark (e.g., every y coordinate). The shape components 
are more complex for landmark configurations with more 
than three landmarks, and there may be many reasonable 
choices for coordinate systems. For a 2D configuration with 
k landmarks, there are 2k – 4 dimensions in the shape space 
as well as in its tangent space.

For 3D data, the non-shape vectors can be constructed in 
an analogous manner, but there are seven non-shape vectors. 
There are three translation vectors, one each for the x, y and 
z coordinate. The size vector, as for 2D data, is the same as 
the centered target shape. There are also three rotation vec-
tors, which are obtained from the target shape by pairwise 
swapping of coordinates and changing signs of one of them, 
for each of the combination of the x with y, x with z, and y 
with z coordinates (in each of these combinations, the third 
coordinate of every landmark is left unchanged, and is the 
axis of the respective rotation). For a 3D configuration with 
k landmarks, there are therefore 3k – 7 shape dimensions.

All the shape coordinates need to be orthogonal to the 
vectors of non-shape variation described above. This can 
be achieved by generalized Procrustes superimposition and 
projection to the tangent space. Alternatively, the shape 
variation can be extracted by projecting out the non-shape 
vectors from the data using some tools from matrix algebra: 
Y = X(I – NNT), where Y is the matrix of shape coordinates 
from n specimens, X is the matrix of landmark coordinates, 
I is an identity matrix, N in the matrix composed of the 
four or seven non-shape vectors above (written as column 
vectors and assembled side by side into a matrix), and the 
superscript “T” denotes the matrix transpose. X and Y are 
n-by-2k matrices for 2D data and n-by-3k matrices for 3D 
data, I is 2k-by-2k for 2D data and 3k-by-3k for 3D data, and 
N is 2k-by-4 for 2D data and 3k-by-7 for 3D data. Because 
the projection procedure is based on linear operations, it 
works only for data where the variation is sufficiently small 
(including rotations, etc.). In practice, therefore, generalized 
Procrustes superimposition is the more reliable approach.

An important special case are landmark configurations 
with object symmetry, that means, if a line or plane of sym-
metry runs through the configuration and divides it into left 
and right halves that are mirror images of each other. This 
applies to many biological structures (e.g. the heads of most 
animals, elements of the axial skeleton in vertebrates, and in 
plants many leaves and flowers) and adds further constraints 
to the possible variation of landmarks. The Procrustes pro-
cedure for configurations with object symmetry ensures that 
the overall mean shape, which is used to define the shape 
tangent space, is perfectly symmetric, and the shape space 
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can be subdivided into orthogonal components of symmetric 
shape variation and asymmetry (Mardia et al. 2000; Kent 
and Mardia 2001; Klingenberg et al. 2002; Klingenberg 
2015). In this case, there are two kinds of landmarks: single 
landmarks in the median line or plane and landmarks that 
occur as pairs on the left and right sides. The two compo-
nents of variation entail different constraints for these two 
types of landmarks. The single median landmarks can move 
within the line or plane of symmetry for the symmetric com-
ponent, but only in a lateral direction (perpendicular to the 
median axis or plane) for the asymmetry component. For 
paired landmarks, the constraint is that the relative move-
ments in landmarks of each pair are in the same anatomical 
direction (anterior/posterior, medial/lateral and superior/
inferior) for the symmetric component and in opposite ana-
tomical directions for the asymmetry component. For either 
component, the relative movements in the two landmarks 
of each pair are perfectly correlated. As a result of these 
constraints, it is possible to enumerate the degrees of free-
dom for each component to calculate the dimensionality of 
the corresponding subspace of Kendall’s shape space (Klin-
genberg et al. 2002; Klingenberg 2015). For 2D data, both 
components have the same dimensionality. For 3D data, the 
dimensionalities depend on the numbers of paired and single 
median landmarks: paired landmarks contribute equally to 
both components, but for each median landmark, there are 
two degrees of freedom for the symmetric component (ante-
rior/posterior and superior/inferior movements), but only 
one degree of freedom for the asymmetry component (lat-
eral movement only; Klingenberg et al. 2002; Klingenberg 
2015). With object symmetry, therefore, there is a structure 
of the shape space that can be used for distinguishing dif-
ferent aspects of shape variation. But with more than three 
landmarks, each of these components usually has multiple 
dimensions (not just one each as for triangles). For types 
of symmetry other than bilateral symmetry, such as radial 
symmetry, similar decompositions of the shape space exist, 
but are more complex (Savriama and Klingenberg 2011).

Apart from their partition into different components 
of variation due to object symmetry, there is no obvious 
way to characterize the structure of shape spaces for con-
figurations with more than three landmarks. A possibility 
is the thin-plate spline decomposition of all possible shape 
changes from a reference shape into principal warps and par-
tial warps and uniform components (Bookstein 1989, 1991; 
Rohlf 1993). If the reference shape for the thin-plate spline is 
set equal to the target shape for the Procrustes superimposi-
tion and the shape tangent space, the complete set of partial 
warps and uniform components of shape change will provide 
a set of coordinate axes for the shape tangent space. Nev-
ertheless, it is not obvious how this decomposition relates 
to other geometric considerations, such as symmetry (it is 
plausible that there is a connection if a perfectly symmetric 

reference shape is used for the thin-plate spline), nor is it 
clear what the biological relevance of such a purely geomet-
ric decomposition may be.

In practice, the Procrustes superimposition and tangent 
projection take care of separating the shape and non-shape 
aspects of variation. This provides a local linear approxima-
tion of the small region of shape space in the neighborhood 
occupied by the data at hand. If the landmark configurations 
have object symmetry, it is important to use analyses that 
take this into account and generate symmetric and asymme-
try components of variation, depending on the context of the 
study (Klingenberg et al. 2002; Klingenberg 2015). For most 
contexts, when asymmetry is of no interest, the symmetric 
component of variation provides an optimal characterization 
of shape variation, with approximately half the dimensional-
ity of the entire shape space. When asymmetry itself is the 
focus of attention, of course the asymmetry component is the 
appropriate component of variation to consider. Explicitly 
distinguishing these levels can provide considerable insight 
and analytical power for biological studies (Klingenberg 
et al. 2012; Klingenberg 2014). Apart from these choices, 
there is no need to specify a coordinate system for shape 
analyses in empirical morphometric studies. Multivariate 
analyses such as principal component analysis, multivariate 
regression, partial least squares analysis or canonical vari-
ate analysis will automatically provide coordinate systems 
for the shape tangent space that are optimal for the specific 
question each of these analyses aims to answer.

Global Structure of Shape Spaces

The global structure of shape spaces for configurations with 
more than three landmarks is difficult to grasp. Such spaces 
are multidimensional and non-linear spaces, and therefore 
very hard to visualize. Whereas much about the overall 
structure of shape spaces cannot be understood intuitively, 
it is possible and important to consider some questions, in 
particular as far as they relate to fitting a tangent space to 
the shape space.

The main question in this context is whether all shape 
spaces are like the shape space for triangles, which is a 
sphere, and therefore is locally smooth in the neighborhood 
of every possible triangle shape. Fortunately, this is also the 
case for all shape spaces for configurations with more than 
three landmarks in two dimensions (Le and Kendall 1993). 
This means that the tangent projection can be used to obtain 
a local linear approximation of the shape space, not just for 
triangles, but also generally for 2D data from configurations 
with more than three landmarks.

For 3D data, however, things are more complicated 
because shape spaces contain singularities (Le and Kendall 
1993; Small 1996; Kendall et al. 1999), which are abrupt 
local changes: think of them as the equivalent of the sharp 
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ridges, spikes or edges we are familiar with from curved 
2D surfaces. Singularities in Kendall shape spaces for 3D 
configurations occur in situations when all the landmarks in 
a configuration are aligned along a single straight line (Le 
and Kendall 1993; Small 1996). For these configurations, 
we can apply a rotation around the axis along which the 
landmarks are aligned, and regardless of the angle of the 
rotation, the landmark configuration is unchanged. These 
collinear configurations are also the only situation where 
singularities occur for 3D data, whereas the remainder of 
the shape spaces are non-singular (Le and Kendall 1993; 
Small 1996).

To get an intuitive idea of a singularity in a shape space, 
consider the space of triangles in 3D. Because we can flip 
over triangles (i.e., apply a rotation by 180° around an axis 
that lies in the plane of the triangle), the shape of each tri-
angle and its mirror image is the same in 3D. This is funda-
mentally different from the considerations about in the pre-
ceding sections triangles in 2D, where the option of flipping 
over the triangle is not available (flipping uses a rotation 
through the third dimension). As a consequence, the shape 
space for triangles in 3D is a hemisphere and not a sphere, 
as for triangles in 2D. The entire shape space for triangles 
in 3D is the same as the hemisphere visible in Fig. 3 (which 
is half the shape space for triangles in 2D). The opposite 
hemisphere, corresponding to the mirror images of the trian-
gles visible in Fig. 3, can be viewed as being pushed in and 
glued against the hemisphere that is visible in the figure, so 
that each triangle shape and its mirror image are in the same 
point. As a result, the equator of collinear triangles (which is 
the locus of all triangles that are identical with their mirror 
images) forms a sharp edge where the hemisphere ends or 
abruptly folds in from convex to concave. This sharp edge 
is a singularity. It is clear that, at this edge, a tangent plane 
is not fully determined (it can be rotated freely around the 
local direction of the edge at the tangent point of interest).

The conclusion is that the approach of tangent projections 
fails at singularities. Away from singularities, however, the 
tangent space approximation works also for 3D shape analy-
ses (Small 1996).

Tangent Space Approximation to Shape Spaces

The main practical role of the shape space is to provide infor-
mation on the variation of shapes through the arrangement 
of the data points in the neighborhood of the average shape. 
The shape tangent space provides a linear approximation and 
therefore makes it possible to use standard approaches from 
multivariate statistics in the context of shape analysis. The 
most important question concerning the global structure of 
shape spaces is therefore whether they consistently provide 
the conditions for using this strategy with actual biological 
data, or whether different approaches are required instead. 

In essence, this boils down to the question whether shape 
spaces are sufficiently smooth in the neighborhood of the 
mean shape for the tangent projection to be a satisfactory 
approximation. The answer to this question is yes, as long 
as the shape space in the vicinity of the mean shape contains 
no singularity (Le and Kendall 1993; Small 1996; Kendall 
et al. 1999).

This raises the question whether singularities are to be 
expected in biological data. As outlined in the preceding 
section, singularities in shape spaces occur only under quite 
restrictive conditions: if all the landmarks are aligned along 
a single straight line, and only for 3D data. These conditions 
are rarely met for biological data and easy to diagnose, so 
that this should not be a serious problem in practice. Mor-
phometric data usually do not consist of landmarks aligned 
along a single line. There is no need to worry about struc-
tures that are just long and slender: as long as the range of 
variation does not include the situation where the landmarks 
are actually aligned along a straight line, the conditions for a 
singularity are not met. If the data indeed include this “sin-
gle file” arrangement of landmarks, then analyses in two or 
even a single dimension (Small 1996) avoid the problem of 
singularities in the shape space and are likely to fit the data 
at least reasonably well (if the landmarks are all on a straight 
line, they occupy just one dimension).

How well the tangent approximation works for actual bio-
logical data can be assessed by comparing Procrustes distances 
and tangent distances in empirical datasets. The problem here, 
if there is any, is not about singularities in the shape space, 
but about the scale of variation in the data. The expectation is 
that this will be unproblematic for data with a relatively small 
amount of shape variation, so tests that examine biological data 
at large taxonomic scales are particularly valuable. The study 
by Marcus et al. (2000) has done this for skull shape across all 
orders of mammals and found an excellent overall agreement 
of shape distances even at this very large scale, with corre-
lations exceeding 0.999 for both full and partial Procrustes 
superimposition. Nevertheless, the tangent distances of speci-
mens to the most outlying taxon, the common dolphin, were 
consistently slightly less than the partial Procrustes distances 
for the same pairwise comparisons, suggesting that there was 
some subtle effect of the distortion due to tangent projection 
for the extreme comparisons. In recent years, a number of 
studies have computed similar correlations between pairwise 
Procrustes and tangent distances among landmark configura-
tions in diverse organisms and consistently found that these 
correlations were extremely close to 1.0 (Pretorius and Scholtz 
2001; Polly 2002; Frost et al. 2003; Fontaneto et al. 2004; 
Lockwood et al. 2004; McNulty 2004; Viscosi and Cardini 
2011; Bai et al. 2012; De Meulemeester et al. 2012; Renner 
2012; Neustupa 2013; Siver et al. 2013; Ullmann et al. 2017; 
Manacorda and Asurmedi 2018). Rohlf (1999) commented 
that he was not aware of any reports of biological datasets 
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where the tangent projection did not provide a satisfactory 
approximation (with the exception of inadvertent inclusion of 
reflected specimens in the data). The same still appears to be 
the case from today’s perspective.

Conclusions

This paper has explored Kendall’s shape space for triangles 
by travelling around it on paths that are great circles on its 
spherical surface. The observation that taking an initial tri-
angle shape and repeatedly applying the same shape change 
eventually results in a return to the starting shape highlights 
the fact that the shape space is closed and curving in on itself. 
Initially, this may appear counterintuitive, but it is an important 
insight for thinking about shape variation. The curved nature 
also extends to shape spaces for configurations with more than 
three landmarks.

Because the curvature of Kendall’s shape space or the space 
of preshapes aligned by partial Procrustes superimposition can 
produce complications for subsequent multivariate analyses 
of shape, the data are usually projected into a shape tangent 
space that touches Kendall’s shape space at the mean shape. 
The tangent projection provides a local linear approximation 
to Kendall’s shape space. It appears that the tangent approxi-
mation is very good in most biological datasets where it has 
been examined, including datasets at large taxonomic scale. In 
principle, singularities of shape spaces for configurations with 
more than three landmarks could be problematic for the tan-
gent space approximation or invalidate it altogether. Theoreti-
cal considerations of the conditions when singularities occur 
on shape spaces indicate that this is unlikely for biological 
shapes. Therefore, the method to approximate shape space in 
the vicinity of the mean shape by a linear tangent space is valid 
for the great majority of biological applications of geometric 
morphometrics. It is important, however, to keep in mind that 
certain constraints apply to the patterns of variation that are 
possible within the shape tangent space.
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