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Abstract
Good empirical applications of geometric morphometrics (GMM) typically involve several times more variables than speci-
mens, a situation the statistician refers to as “high p/n,” where p is the count of variables and n the count of specimens. 
This note calls your attention to two predictable catastrophic failures of one particular multivariate statistical technique, 
between-groups principal components analysis (bgPCA), in this high-p/n setting. The more obvious pathology is this: when 
applied to the patternless (null) model of p identically distributed Gaussians over groups of the same size, both bgPCA and 
its algebraic equivalent, partial least squares (PLS) analysis against group, necessarily generate the appearance of huge 
equilateral group separations that are fictitious (absent from the statistical model). When specimen counts by group vary 
greatly or when any group includes fewer than about ten specimens, an even worse failure of the technique obtains: the 
smaller the group, the more likely a bgPCA is to fictitiously identify that group as the end-member of one of its derived 
axes. For these two reasons, when used in GMM and other high-p/n settings the bgPCA method very often leads to invalid 
or insecure biological inferences. This paper demonstrates and quantifies these and other pathological outcomes both for 
patternless models and for models with one or two valid factors, then offers suggestions for how GMM practitioners should 
protect themselves against the consequences for inference of these lamentably predictable misrepresentations. The bgPCA 
method should never be used unskeptically—it is always untrustworthy, never authoritative—and whenever it appears in 
partial support of any biological inference it must be accompanied by a wide range of diagnostic plots and other challenges, 
many of which are presented here for the first time.

Keywords Between-group principal components analysis · Ratio of variables to cases · High-p/n data sets · Discriminant 
function analysis in high dimensions · Factor analysis and discrimination · The Marchenko–Pastur theorem · Geometric 
morphometrics · Predictable mistakes in biometric data analysis · Effects of varying group size · Alternatives to canonical 
variates analysis

Introduction

Figure 1 shows two scatterplots based on analyses of the 
same simulated data set of 30 specimens divided into three 
groups of ten each. The specimens are modeled as having 

been “measured” on a total of 300 variables, for instance 
the Procrustes shape space for 152 landmarks and semilan-
dmarks in two dimensions, but the distribution I am simu-
lating for these 300 dimensions is the most uninformative 
possible: 300 independent Gaussian (normal) variables of 
the same mean (here, zero) and the same variance (here, 
1.0) for each of the thirty simulated cases, which have been 
grouped entirely arbitrarily (the first ten specimens, the 
second ten, the third ten). The scatterplot on the right is 
the usual display from a partial least squares (PLS) analy-
sis of group against the 300-variable observation vector; 
that on the left is the similarly conventional display from a 
“between-group principal components analysis” (bgPCA) 
of the derived sample of three group means in the same 
300-dimensional space. In either panel, the printed symbol 
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corresponds to the imputed group index, which is 1, 2, or 3. 
Keep in mind that these groups are arbitrary subsamples of 
simulated specimens that were in fact identically distributed 
independent of group.

These are evidently the same scatterplot. Furthermore, 
they are described by equivalent figures of merit—the 
quantities listed in their subtitles. For bgPCA, on the 
left, these are the eigenvalues (net variance explained) of 
the only two principal components of those three group 
means; each is a component of the total of mean squares 
over all the variables, which is about 300. For PLS, on the 
right, these are the total “squared covariances explained” 
between the same vector of 300 simulated measurements 
and a 3 × 30 matrix of group dummy variables each of 
mean 1

3
 and variance 2

9
 . (Such a redundant basis leaves 

the PLS unchanged but is more symmetric than any cor-
responding rank-2 block of contrasts.) The two pairs of 
entries have the same ratio, about 1.12 to 1, and their ratio 
of 2.803 from right to left is precisely 3 ×

(
29

30

)2
, the count 

of groups times the undoing of the factor that my statistical 
software package applies when it computes variances. That 
bgPCA and PLS against a group dummy are algebraically 
the same has been known for a while (see, e.g., Boulesteix 
2005). The figures to follow will invoke whichever one 
offers the simpler explanation of the pathology that is my 
main topic in this section.

That pathology, already evident in Fig. 1, can be quan-
tified by an application to this small-group setting of 
the celebrated Marchenko–Pastur theorem (MPT) that I 

reviewed in a previous publication in this Journal (Book-
stein 2017). The MPT sets out a formula for the limiting 
distribution of all the nonzero eigenvalues of a data set 
of p identically distributed standard Gaussian variables 
(mean 0, variance 1) on n specimens as both numbers tend 
to infinity in a fixed ratio y = p∕n. The theorem states a 
limit for the maximum of these eigenvalues, (

√
y + 1)2, 

and a similar-looking limit (
√
y − 1)2 for their mini-

mum. The two limits average 1 + y. These formulas apply 
“asymptotically,” as the statisticians say. The analysis in 
“Why are We Seeing This?” section will show that to 
apply the formula to the scenario in Fig. 1 we drop the 
+1 , substitute the value 300

30
= 10 for y, and then raise this 

slightly to 10.82, a result close to the observed eigenvalue 
of 11.28 printed in the left panel of the figure. The sum 
of the two numbers there is 21.35, whereas the total vari-
ance of the three group mean 300-vectors is expected to 
be 20 (see, again, “Why are We Seeing This?” section), 
likewise a good match.

Then the essence of this first pathology leaps to the eye 
here. While the variances of the group means themselves 
total about 20, the variance of any direction within a group 
remains near the value of 1.0 that characterizes almost every 
projection of this 300-dimensional scatter onto a line. So the 
group means must be separated by about four times their 
within-group standard deviation; in other words, the scatters 
must be perfectly separated by group. But there is no such 
separation in the model we are simulating—the groups were 
drawn from identical high-dimensional distributions. The 
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Fig. 1  A typical manifestation of the pathology that is the topic of 
this note: the completely fictitious production of group separations 
when either of two equivalent techniques—bgPCA or PLS against a 
group dummy array—is applied to the same completely uninforma-
tive data set of 300 identically distributed Gaussian variables on 30 
simulated “specimens.” Plotting characters 1, 2, 3 correspond to the 

(entirely arbitrary) group index assigned to the thirty “specimens” in 
three sets of ten. The group separation is indeed startling and would 
be assessed as hugely significant by any statistical maneuver that was 
unaware of the ordination’s actual origin in a data set of 300 variables 
identically distributed over 30 specimens. Thus to infer a group sepa-
ration from this shared scatterplot is clearly a mistake
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separations were produced solely by the bgPCA machinery 
itself. This seems like a serious, indeed fatal, mathematical 
error for any technique that is ever employed in a context of 
ordination.

Some hints in this figure will concern us in the sequel. For 
instance, the triangle of the centroids of the three groups in 
the figure appears to be oddly close to equilateral. We can 
check this hunch by repeating the simulation a dozen times. 
As Fig. 2 shows, we always get precisely the same “answer”: 
three groups cleanly separated with centroids forming a 
nearly equilateral triangle, larger eigenvalue usually 10.0 
or a bit above, the pair of them always totalling about 20, 
and the within-group variances still hovering around 1.0. 
The equilateral triangle of centroids appears to spin on the 
page because inasmuch as the eigenvalues of such a shape 
are always nearly equal, the computed principal axes will be 
uniformly distributed with respect to the centroids that were 

their data. And the triangle’s orientation (clockwise or coun-
terclockwise) is unstable because PCA does not constrain 
the signs of the extracted components.

Let us explore a little further. Figure 3 presents the 
same analysis as in Fig. 1 but for four groups of ten speci-
mens each, instead of three, and a total of count of vari-
ables likewise multiplied by 4

3
, to 400, so that the value 

y = p∕n remains at 10. Now we see a large-scale quadri-
lateral of group-specific scatters, still with within-group 
variances around 1 and still perfectly separated but now 
no longer quite so symmetrically placed on the plot. But 
that is because we have projected down onto only two 
dimensions. When there are four groups the space of the 
bgPC’s is actually three-dimensional, as in Fig. 4, and the 
third eigenvalue is not negligible with respect to the first 
two. When we plot all three of these dimensions, we see 
that indeed the group centroids fall at the vertices of an 

−6 −4 −2 0 2 4

−
6

−
4

−
2

0
2

4

1

1
1

1

1

1
11

1 1

2

2
2

2

2
2

22
2 2

3
3

3

3

3

3
3

33

3

bgPCA 1 vs 2
 eigs  10.227 ,  8.675

−4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

1

1
1

11

1

1

11

1

2
2

2

2
2

2
2

2
22

3

33
3 33

3
3

33

bgPCA 1 vs 2
 eigs  12.729 ,  10.649

−4 −2 0 2 4

−
2

0
2

4
6

1 1

1

1
1

1

1

1 1

1

2
2
2

222
22

2
2

33

333
33

3

3

3

bgPCA 1 vs 2
 eigs  9.627 ,  8.24

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4
6

1

11

1

11
1

1

1

1

2

2

2
2

2
2

2 2

22

3

3
3

3 3

3
3

33
3

bgPCA 1 vs 2
 eigs  10.592 ,  9.734

−4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4

1
1

1
11

1

1

1 1
1

2
2
2
22

2

2

2

2

2

3
3

3
3

3
3

3 3

3
3

bgPCA 1 vs 2
 eigs  9.973 ,  9.102

−6 −4 −2 0 2 4

−
4

−
2

0
2

4
6

1

1

1

1 1

1

11
11

2
22

2

2
2

2

2
22

3

3
3

3

3

3
33 3

3

bgPCA 1 vs 2
 eigs  10.911 ,  9.592

−4 −2 0 2 4

−
2

0
2

4
6

1 1

1
11

1

1

1
1

1
2

2
22

2222
2

2

3
3

3
3

3

3

3

3

3

3

bgPCA 1 vs 2
 eigs  9.949 ,  8.561

−4 −2 0 2 4

−
4

−
2

0
2

4

1

11

11 1 11 1

1

2

2 2
22 22

2

2
2

3 3

3

3

3
3

3

3

3
3

bgPCA 1 vs 2
 eigs  10.312 ,  9.194

−4 −2 0 2 4 6 8

−
4

−
2

0
2

4
6

1 11
1

1
1

1

1

1 1

2

2

2

22
2

2 2 22

3

3
3

3

3

3

3
3

3

3

bgPCA 1 vs 2
 eigs  10.251 ,  8.549

−6 −4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

1

1
1

1
1

1

1
1

1

1

2
2
2

2
2

22 2
2

2

33 33

3

3
3
3

3

3

bgPCA 1 vs 2
 eigs  11.117 ,  9.739

−6 −4 −2 0 2 4

−
4

−
2

0
2

4
6

8

11
1

11
1

11
1

1

2
22 2

222

2

2

2

3
3

3
3

33

3
333

bgPCA 1 vs 2
 eigs  10.861 ,  9.931

−6 −4 −2 0 2 4

−
6

−
4

−
2

0
2

4

1

1

1
1

1
1

1 1 1

1

2
2 22 2
2 2

2
2 2

3 3
3
3

3

3

3 3

3 3

bgPCA 1 vs 2
 eigs  10.019 ,  9.584

Fig. 2  Twelve replications of the simulation in Fig. 1. The result is always a separation of the “groups” with eigenvalues of the bgPCA analysis 
nearly equal, their total always about 20, and within-group variances always about 1.0; hence, always, the fiction of perfect separation
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equilateral tetrahedron, and the eigenvalues remain very 
nearly equal and total approximately 30, which is the trace 
of the expected variance-covariance matrix of the corre-
sponding quartet of group means.

Similarly we can explore the dependence of this pathol-
ogy on the ratio y = p∕n of variables to cases. Raising this 
ratio to 40, for instance, while remaining with four groups of 
ten specimens each, results in the three-dimensional scatter 
of Fig. 5, which continues to be the display of an equilateral 
tetrahedron. The three eigenvalues remain nearly equal but 
now their total is very nearly 120, four times what it was for 
Fig. 4, as there are four times as many simulated variables of 
unit variance. Back in the setting of just three groups, Fig. 6 
repeats the analysis of Fig. 2 for twice the count of vari-
ables, noticing, again, that the equilateral triangle has twice 
the eigenvalue total and therefore higher group separations 
(since the within-group variances remain around unity), 
while the configuration itself continues to appear just to spin 
(with reflection).

A brief history. In view of these persistent, potentially 
devastating problems, I admit with some embarrassment that 
of the two analytic dialects here, the PLS version seems 
apparently to be mine, published originally without any 
citations to precursors in a paper with McIntosh (1996) 
for which the domain of application was positron emis-
sion tomography (PET) imaging. But priority goes to an 
earlier presentation in the language of bgPCA, Yendle and 

MacFie (1989),1 who named their technique “discriminant 
principal components analysis” (DPCA) and recommended 
it when “the number of variables exceeds the number of 
samples” (i.e., when p∕n > 1 ). Section 9.1 of Jolliffe (2002), 
a standard textbook of PCA, situates the bgPCA approach 
(via this Yendle–MacFie citation) within a spectrum of vari-
ously “prewhitened” versions of canonical variates analysis 
(CVA). Ironically, even though Yendle and MacFie note that 
“under certain conditions the discrimination achieved by 
CVA may be totally spurious,” they do not even hint at the 
MPT-related problems that are my topic here, which render 
some discriminations potentially achieved by their DPCA 
likewise “totally spurious.”

In either presentation, bgPCA or PLS by group, the logic 
of this arithmetic is straightforward. It was intended for set-
tings where the elements of a vector classifier (for PET, the 
positron emission densities voxel by voxel; for GMM, the 
Procrustes coordinates of an arbitrarily long list of land-
marks and semilandmarks) were too numerous for their 
covariance matrix to be invertible, were subject to exact lin-
ear constraints that likewise render the covariance matrix 
noninvertible, or were too intercorrelated for that inverse to 
be stable over sampling. In such settings, linear discriminant 
analysis and canonical variates analysis have well-known 
pathologies; the purpose of bgPCA was simply to circum-
vent those. For a didactic review (originally well-cited but 
now obsolete) of this technique in the context of the diffi-
culties it was intended to circumvent, see Mitteroecker and 
Bookstein (2011).

Recently Norm Campbell directed me to a considerably 
more elementary characterization of bgPCA published 
(though not in these words) by C. R. Rao in the remarkably 
early year of 1948: up to rotation in its space of g − 1 dimen-
sions, the bgPCA projection uniquely maximizes the sum of 
squared Euclidean distances of all the observations to all the 
group centroids, whether matching or not (Rao 1948, p. 188, 
with the matrix S in his formula there set to the identity). 
As applied to a three-group analysis under the null model, 
bgPCA results in the greatest sum of squared edge-lengths of 
the triangles of centroids in diagrams like Fig. 2 here. As the 
within-group variance of these projections is locked at 1.0 
per bgPC under the null model, this means that the bgPCA 
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Fig. 3  Analogous simulation for four groups of ten specimens each 
and likewise ten times as many variables as specimens, now a total of 
400. The techniques of bgPCA and PLS are still identical, and like-
wise the fictitious “finding” of perfect separation, but the symmetry 
of the plots in Figs. 1 and 2 appears to be broken

1 I am ignoring an intercalated algebraic step of theirs, a standardiza-
tion of each measured variable by its within-group standard deviation. 
In GMM applications, standardization is instead by the Procrustes 
metric that all the shape coordinates share. Incidentally, Yendle and 
MacFie might also be cited as the first to notice the identity of the 
PLS and PCA approaches to this computation when, in a closing 
comment, they noted how their analysis can be implemented using 
“an algorithm such as NIPALS.” That acronym stands for “nonlinear 
iterative partial least squares,” the original name put forward by Her-
man Wold and his son Svante Wold for what was soon to be given a 
shorter moniker, PLS. 
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figures offer the greatest possible apparent clustering, which 
is to say, the maximum possible misinformation in this situ-
ation, or, in the language of Cardini et al. (2019), the greatest 
possible bias in the visual impression of separation. For four 
groups under the null model, bgPCA yields the greatest pos-
sible sum of squares of the intercentroid edge-lengths in dia-
grams like Fig. 5, and so on. As the origin of this insight Rao 
cites his “Appendix 5” (actually Appendix 4) in Mahalanobis 
et al. (1949). In this extended sense the technique of bgPCA, 
pathologies and all, may be as old as multivariate anthropo-
metrics itself. Of course, in 1948 eigenanalyses with p > n 
were impossible—indeed, they became “very laborious” as 
soon as p reached the value of 8.

In the days before we biometricians stumbled across 
the MPT, the error embraced by this biometrical approach 
was forgivable. It seemed like a good idea to maximize 
the strength of a grouping signal over linear combinations 
of measurements, and so we needed a quick, easily pro-
grammed, preferably linear fix that permitted interpretation 
via prior knowledge of within-group factors or selection gra-
dients. None of us carried out simulations extensive enough 
to recognize either of the fatal flaws examined in this paper. 
But with the passage of time the conditions conducive to 
these pathologies have become more common. For instance, 
the first of these pathologies is the huge instability of PCA 
and related techniques whenever the ratio y of variables to 
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group principal component. The symmetry of the configuration 
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specimens is much larger than 1 and there is substantial 
commensurate measurement error or other independent vari-
ation in most variables separately. But the commensurability 
of nearly independent measurement errors over variables 
characterizes the isotropic Mardia–Dryden distribution that 
lies at the core of many approaches to landmark data analy-
sis in GMM, and with the widespread adoption of the R 
programming language it is now possible to apply the usual 
tools of multivariate analysis to hundreds or even thousands 
of shape coordinates at once. (See “A Potential Defensive 
Resource: Integration Analysis” section for a workaround.) 
And in many of the fields accustomed to high-p/n data sets, 
wide variation of subgroup sample sizes has become a com-
monplace, as in recent studies of species of Homo, partially 
bgPCA-driven, by, among others, Chen et al. (2019), Détroit 
et al. (2019), and Mounier and Lahr (2019). Yet variability 
of subgroup size when the p/n ratio is high is the requisite 

for this paper’s second main pathology, the automatic align-
ment of the first one or two bgPCA axes with contrasts of the 
grand mean against the smallest one or two subgroups only.

For these and other reasons, the frequency with which 
bgPCA analyses appear in peer-reviewed articles has been 
increasing even as its underlying flaws remained unsus-
pected. A scholar.google.com retrieval finds the 
counts of recent articles that mention bgPCA to be as fol-
lows2: articles published in 2013, 8; in 2014, 13; in 2015, 
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Fig. 6  Analogue of Fig.  2 for twice as many variables, 600 instead 
of 300, hence y = p∕n = 20. The configuration of group centroids 
remains equilateral even as the visual separation of the groups 

increases in proportion to the square-root of the eigenvalues (here 
reported as PLS totals of explained squared covariance)

2 I strongly urge all the authors of all 135 of these articles to revisit 
their multivariate inferences by more skeptical methods, such as those 
to be introduced in this essay, that are capable of checking for the 
pathologies of the bgPCA approach that their publications originally 
may have exploited. The upward trend of these counts makes that 
advice ever more urgent. Regarding the scientometrics of misinfor-
mation in general, see O’Connor and Weatherall (2018).
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21; in 2016, 14; in 2017, 21; in 2018, 24; in 2019, through 
September 21, 34.

The present note is a companion piece to Cardini et al. 
(2019), which arrives at the same diagnosis as mine of 
the first pathology, that of fictitious clustering, somewhat 
less formally, without invoking the MPT but with several 
more realistic simulations and simpler algebra. The two 
approaches, one more biomathematical and one less so, end 
up offering the same advice: the technique of bgPCA should 
never be used with GMM data that have sufficiently many 
shape coordinates to represent the form evocatively—in 
other words, data sets consisting mostly of closely spaced 
semilandmarks: exactly the GMM data sets that sustain 
today’s most seductive visualizations. More technically, 
bgPCA should never be applied to data sets where the count 
of shape coordinates is more than a small fraction of the 
count of specimens. (The recommendation in Mitteroecker 
and Bookstein 2011 that ignored this restriction of appli-
cability is hereby countermanded by the second of its two 
authors.) And there is an even deeper flaw: in the presence 
of sufficiently many dimensions of unpatterned shape coor-
dinate noise, the ordering of the axes extracted by a bgPCA 
is inverse to subgroup size, in the sense that the first axis 
is typically some contrast of the subgroup of largest count 
against that of the smallest, the second an analogous con-
trast of the largest subgroup against the second-smallest, 
and so on. Underlying both pathologies is a fallacy shared 
generally across the tools of multivariate morphometrics: the 
unfounded presumption that maximizing variance or covari-
ance over linear combinations of huge numbers of shape 
coordinates is a reliable source of biological insight.

The purpose of this article is to discuss both of these 
newly uncovered pathologies of the bgPCA technique, some 
potential diagnostics, and a range of appropriate responses 
by any interested disciplinary community. “Introduction” 
section has already demonstrated the first of the pathologies, 
the misrepresentation by unambiguously distinct clusters of 
high-dimensional Gaussian data that are actually independ-
ent of group. “Why are We Seeing This?” section reviews 
the underlying pathologies of this paper’s many examples 
in terms of the governing theorem, the MPT, that accounts 
for them in quantitative detail. “Factor Models” section 
shows how these pathologies persist through an enrichment 
of the null model of totally noninformative Gaussians here 
to incorporate the factor structures that render the statistical 
models in organismal applications far more realistic. “Tools 
for the Skeptic” section is concerned with tools that permit 
the evaluation of bgPCA models from the point of view of 
a disinterested coauthor, principled skeptic, or manuscript 
reviewer. Two standard classes of diagnostic tools, permu-
tation tests and crossvalidation approaches, are rejected; in 
the course of this second rejection, that second pathology 
of the bgPCA method is uncovered, the pathology induced 

by varying subsample counts, which in many paleoanthro-
pological applications is even more catastrophic than the 
hallucination of clusters. The final “Concluding Observa-
tions” section summarizes the critique by a list of seven 
pointed recommendations that every user of bgPCA should 
consider before drawing any scientific inferences from its 
computations.

Several topics are omitted from this outline because they 
are covered in the companion paper by Cardini, O’Higgins, 
and Rohlf. These themes include simulations driven by com-
putational designs abstracted from real mammalian data 
instead of the arbitrarily scaled factor models I’ve exploited 
here, and a detailed examination of the behavior of the first 
pathology when the count p of variables is at least as great 
as the count g of groups even if it is smaller than the count 
n of specimens. The companion piece also suggests two fig-
ures of merit that are less abstract than the bgPCA eigen-
values here and thus more likely to support interpretations 
in empirical biological contexts: a helpfully intuitive index 
O of group overlap based on examination of distances to all 
the group centroids, and a statistic of �2 type, notated there 
as an R2

iso
 , for the fraction of net variance explained by the 

group centroids in the bgPCA plane or hyperplane. (The 
subscript “iso” stands for “isotropy,” an assumption of the 
model constraining the variances used in the formula.) The 
simulations of Cardini et al. were much more numerous than 
those here, resulting in performance charts that explicitly 
calibrate the risk taken on by users of the bgPCA technique 
who have not been persuaded by my arguments to abandon 
it ab initio. Thus these two papers, one by a mathematical 
statistician and the other by three biologists, should be read 
as a pair, not as a choice between alternatives.

Why are We Seeing This?

Where, then, do these formulas come from that the simula-
tions in “Introduction” section exemplify? The argument in 
this article and its companion piece is not merely an authori-
tative collaborative critique of an inadequately tested, insuf-
ficiently theorem-driven method prematurely adopted by a 
few applied communities. Instead it is meant to convey an 
important new fact about “megavariate data analysis” that 
is fundamental to the geometry of these data spaces and 
so might be of interest more generally to evolutionary and 
developmental biologists who deal with huge data sets like 
these. The MPT itself is too deep for biologists to apprehend 
without a struggle, but its application to the bgPCA method 
is straightforward. Here is how that goes.

Let me standardize notation for this application of the 
theorem as follows. Set down the bgPCA algorithm in five 
steps:
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1. Collect a data set of p variables over n specimens 
divided a priori into g subgroups. Assume for simplic-
ity that each of the g subgroups has the same count m of 
specimens. (I return to this assumption in “A Pathology 
Arising from Inconstancy of Group Specimen Counts” 
section.)

2. Compute the mean p-vector for each of the subgroups. 
This gives you g new p-vectors.

3. Extract the g − 1 principal components of that set of g 
p-vectors.

4. Impute principal component scores for all n of the origi-
nal specimens using the formulas for those g − 1 princi-
pal components.

5. Plot the resulting principal component scores and help-
fully interpret the patterns of the first two or three prin-
cipal component loading vectors or the contrasts implied 
by the phylogenetics or the experimental design of the 
groups as they align with these axes.

The MPT (Marchenko and Pastur 1967) is a theorem funda-
mental to the probability theory of random processes. For 
an intermittently accessible exposition, see Bookstein 
(2017). The theorem states that if X is a data matrix of p 
standard Gaussians (mean 0, variance 1) over n cases, then 
in the limit of p and n both tending to infinity at fixed ratio 
y = p∕n, the distribution of the nonzero singular values of 
the p × p matrix X�X∕n—the full list of the conventional 
“explained variances” of all p uncentered principal 

components of X, taken together—approaches one specific 
family of distributions that are a function only of y: probabil-
ity is nonzero only between a = �1 −√

y�2 and b = (1 +
√
y)2 

with probability density p(x) = 1

2�xy

√
(x − a)(b − x) over 

that interval, where x is the general eigenvalue of such a list. 
The problems I highlighted in Bookstein (2017) arise from 
the unbounded nature of the ratio of maximum to minimum 
over this range when y is near 1. The present note is con-
cerned only with the higher end of the range, the values 
(
√
y + 1)2 and their transformation into expected bgPCA 

eigenvalues, for diverse values of y mostly much greater than 
1.

Even before we examine the way this theorem implied the 
catastrophic performance of bgPCA as sketched in my first 
six figures, it is worth sketching its effect on ordinary PCA of 
null-model simulations similar to those there. As Fig. 7 dem-
onstrates, the behavior of PCA under high-p/n conditions is 
not at all what one has been taught to expect. The example 
is now of 60 cases on 600 independent and identically dis-
tributed standard Gaussian variables, hence y = p∕n is still 
equal to 10. The example no longer concerns any grouping 
variable; nevertheless the same theorem applies. The upper 
left panel shows a random sample of 25 pairwise scatters. 
If the data set were usefully described by explanatory fac-
tors, at least some of these distributions would appear to be 
noncircular ellipses, but here their visual diameter is quite 
homogeneous and their circularity apparent. (The median 

Fig. 7  Illustration of the effect 
of the MPT on an ordinary (not 
between-group) PCA of too 
many spherically distributed 
variables. The simulation here 
is of 600 independent Gauss-
ians on 60 cases, so p∕n = 10 . 
(upper left) A random sample 
of 25 scatterplots of pairs of 
variables shows homogeneity 
of these pairwise relation-
ships. The labels, readable in 
the on-line version, simply 
state the pairing. (upper right) 
Conventional scree plot of the 
59 nonzero eigenvalues. (lower 
left) Scatter of the two PC’s 
of greatest variance. (lower 
right) The same for the last two 
PC’s. The circle in either panel 
of the lower row has radius 2; 
it approximates the covering 
circle of any of the scatters in 
the panel at upper left
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absolute correlation among all 600 × 599∕2 = 179700 pos-
sibilities is only 0.0887.)

At upper right is the conventional scree plot of the eigen-
values from a standard principal component analysis—the 
explained variances of the 59 nonzero centered principal 
components here. On the conventional null model for infini-
tesimal p/n, the directions of a “random” rotation should 
have the same variance as any of the 600 variables involved. 
But in the high-p/n setting the PCA is far from a random 
rotation, as each PC is limited to the (n − 1)-dimensional 
span of the centered specimens themselves, not the full 
space of directions among the p variables involved. In this 
example, then, the PC’s are restricted to a 59-dimensional 
subspace, avoiding all 541 dimensions of precisely zero vari-
ance, and yet they must “explain” the total variance of all 
600 measurements, which will be about 600. So the PC’s 
must average variance just over 10, which matches their 
median in the scree plot.3 The Marchenko–Pastur distribu-
tion is evident in the transposed-ogive form of this scree 
plot, steeper at both extremes than in its central region. 
Scree plots of this general form, having nonzero values far 
above the average variance of the contributory variables 
throughout their whole length, cannot arise in textbook 
examples with small p/n ratios. The nonzero eigenvalues 
in this specific simulation range between 5.07 and 17.18, 
comfortably close to the limits from the theorem’s formula 
of (

√
10 ± 1)2 = 17.32 and 4.68.

Then the problem induced by the Marchenko–Pastur phe-
nomenon for large y is plain from the panels in the lower 
row, which scatter the first two and last two PC scores, 
respectively. Over each panel I have superimposed a circle 
of radius 2, which one expects to cover most of the varia-
tion in any of the scatters at upper left. Instead the spread 
of the PCA scores is enormously inflated with respect to 
the underlying variability of these projections, which, recall, 
were in fact completely arbitrary (because the dimensions of 
the model that they purport to summarize are actually uncor-
related). The gap between the first and second eigenvalues 
here is not meaningful by the stepdown test of Bookstein 
(2014, p. 324), but the visual separation in the upper right 
panel would nevertheless tempt us to interpret the formula 
for PC1 anyway; and the segregation of the smallest eigen-
values far away from zero is not part of any of the standard 
protocols for checking on the realism of PC extractions in 
the course of GMM analyses or anywhere else in biometry. 
Hence the meaninglessness of this particular PCA is not 
accessible to the typical user of PCA software unless that 

user is fully informed of the consequences of its huge p/n 
ratio. (In fact, for p/n ratios near 1, the minimum eigenvalue 
in the theorem’s distribution formula approaches zero, disa-
bling the separation critique I have touched on here. That 
infinitesimality leads to a wide range of problems of its own, 
the central point in my earlier discussion of the MPT, Book-
stein 2017.)

Although the MPT is exact only in the limit of very large 
values of both p and n, nevertheless I’m invoking it in the 
small-sample case, indeed the smallest possible sample: just 
two dimensions being eigenanalyzed. This is what you get if 
you take g = 3 in the notation above. Consider, then, g = 3 
groups of, say, m = 10 specimens each, thus a total sample 
size of n = 30, and a collection of p = 300 “shape coordi-
nates” that are independent identically distributed standard 
Gaussians (mean 0, variance 1). I also need a grouping vari-
able, which I take simply to be the first ten, second ten, and 
last ten of the thirty cases (except for Fig. 14, where this 
ordering is systematically permuted before being cut into 
thirds). It will be important in the sequel that the count of 
these combinations is 30!∕(3! ⋅ (10!)3) = 925166131890 — 
call it a trillion.4 So step 1 above is done.

For this random subgrouping, compute the g = 3 300-vec-
tor group means, and assemble them in a “data” matrix, 3 
rows by 300 columns. That completes step 2.

Proceed with step 3, the principal component analysis of 
the three group means as if they were three ordinary single 
specimens. This is the usual “mean-centered” PCA, meaning 
that there are actually two dimensions of variation around 
the grand mean 300-vector. In the general case, this is g − 1 
dimensions.

Then compute step 4, the imputed scores for each of the 
original m = 30 cases, and step 5, their scatterplots. In those 
plots, I have numbered the groups, but there is no point yet 
in numbering the individual cases. (We will need those indi-
vidual specimen numbers in connection with some of the 
later figures.)

To ease the application of the MTP’s asymptotic formu-
las in this setting of only g − 1 = 2 dimensions, replace the 
range (1 ±

√
y)2 from the MPT by its midrange, which is 

1 + y , where in this application y is huge—300∕2 = 150 in 
the example in Fig. 1, for instance. The interquartile width 
of that range is less than 2

√
150, only about one-sixth of 

its midrange. (But see the corresponding adjustment in the 
next paragraph.) When y is this large it is reasonable to omit 
the “1+” term so as to arrive at a simpler approximation, 
that ratio y = p∕(g − 1) itself. But this was the formula for 
the PC’s of the theorem’s set of variables of unit variance, 
while our means are of groups of m, so we have to multi-
ply the MPT expectation y by the variance of those means, 

3 Scree plots like the one at upper right here should always be exam-
ined before conclusions are drawn from any PCA, whether between-
groups or not. Researchers and readers alike must attend not just to 
the first two or three eigenvalues but to the full list. 4 Current usage, 1012, not the former British usage, which meant 1018.
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which is 1/m. So the expectation of our PC variances is now 
p∕m(g − 1).

Now for two final adjustments. The PCA that I’m apply-
ing the MPT to is of the centered group means. That reduces 
the variance of each of the p incorporated dimensions by a 
further factor of (g − 1)∕g . Multiplying gives a preliminary 
expectation of how the bgPCA method should work for this 
class of simulations: the eigenvalues should be distributed 
tightly around

What a simple formula! The expected value of those bgPCA 
variances is approximately y = p∕n, a new value of y that is 
the ratio of the count of variables to the count of specimens 
(instead of the count of groups, minus 1). In the simulations 
of Fig. 2, then, the eigenvalues of the PCA’s inside the 
bgPCA should run about p∕n = 300∕30 = 10. And in the 
panels of Figs. 1, 2, 3 and 4 that is what they do. Note that 
group size m no longer appears in this formula. And, finally, 
an adjustment for the range 

(√
p

g−1
± 1

)2

 with which this 

cascade of formulas began. Estimating the larger eigenvalue 
as halfway between the midrange and the maximum, we cor-
rect p/n by a factor of 

(
1 +

√
g−1

p

)
. (The factor preceding 

that final expression should actually be 2(g−2)
g−1

, in accordance 
with the last adjustment; for simplicity of typography I 
ignore this detail.) For p = 300, n = 30, g = 3 this ends up 
as 10 × 1.082 = 10.82, versus any of the bgPC1 eigenvalues 
printed on Figs. 1 or 2.

Now the origin of the pathology of the bgPCA method 
in these null models at high p/n has become explicit: the 
unexpected similarity of the scaling of the axes in Figs. 1 
and 2 to their scaling in the lower left panel of Fig.  7. 
Eigenvalues of the first g − 1 principal components of the 
simulated data will be approximately bounded above by the 
function (1 +

√
y)2 of the design parameter y = p∕n speci-

fied by the MPT as modified for this bgPCA setting, while 
all g − 1 of the nonzero eigenvalues of the bgPCA will be 
approximately equal to this same y. The ratio of these is 
(1 +

√
y)2∕y = (1 + 1∕

√
y)2 , independent of the group sam-

ple size. For y = 10 , the value in these simulations, that ratio 
is 1.3162 = 1.73, which closely matches the ratio of 1.718 
between the first eigenvalue in Fig. 7 and the typical bgPCA 
eigenvalue of 10 in Fig. 2. For the example in Fig. 5, with 
y = 40, the match is even closer: 40 for the average bgPCA 
eigenvalue of group averages, versus an expected maximum 
eigenvalue of (1 +

√
40)2 ∼ 53.6 for the underlying data set 

in extenso, for a ratio of 1.34.
This near-equality is unexpected. In ordinary univari-

ate statistics, the variance of a group mean is reduced from 
the variance of any single observation by a factor of m, the 

p

m(g − 1)

g − 1

g
=

p

gm
=

p

n
.

group’s sample size. But on our high-p/n null model, the 
variance of the nonzero principal components of the group 
means is commensurate with the variance of the corre-
sponding first g − 1 PC’s of the original data, without any 
division by m. Even when y is as low as 1.0, this factor 
(1 + 1∕

√
y)−2 is reduced only to 0.25, more than double 

the “expected” sample size correction 1/m whenever group 
sizes average 10 or more. The counterintuitive surprise here 
can be expressed in words instead of algebra this way: the 
variance within groups (which, keep in mind, remain com-
pletely independent of the “measurements” in this class of 
null models) has dropped drastically from Fig. 7 to Fig. 1 
even as the variance of the group centroids has dropped by 
a much smaller factor—this paradox lies at the core of the 
pathology of the bgPCA method. As far as we know, the 
present paper, along with the companion piece by Cardini 
et al., is the first acknowledgement of this counterintui-
tive and extremely inconvenient mathematical fact in any 
printed scientific communication. The companion piece’s 
Table 3 confirms via averages over 10000 simulations that 
the sum of the variances of the bgPC’s is indeed the total p 
of the variances of the underlying N(0, 1) variables, while 
the within-group variance in plots like Fig. 1 or 2 remains 
locked at precisely 1.0 as averaged over the two directions 
on the diagram. We are shown two such sets of simulations, 
one for p = 20, m = 40 and one for p = 80, m = 10, both 
for g = 3 groups (i.e., y = 1

6
 and y = 8

3
 respectively).

The other main pathology highlighted in this paper fol-
lows as well from considerations of sample size when it 
varies across the groups of a single analysis. When all spec-
imens have the same mean, the averages of smaller sub-
samples have a higher variance than the averages of larger 
subsamples on every measured (or simulated) variable. The 
mean vectors of smaller subsamples are thus thrown farther 
from the grand mean than the mean vectors of the larger 
samples—the variance of the subsample averages is, after 
all, proportional to the reciprocal of subgroup sample size. 
Because bgPCA is an unweighted analysis of those mean 
vectors, the principal components it produces are much 
likelier to be aligned with the outlying subsample averages, 
which are those arising from the smaller samples. In other 
words, the smaller groups are far likelier to be the end-mem-
bers of the between-group principal components. Such a bias 
of reportage is, of course, inappropriate in any context of 
ordination, whether evolutionary or not—it confounds the 
biometric signal with the human difficulty of finding group 
members as they vary in terms of geography, taphonomy, or 
geological epoch. As far as I know, this paper is likewise the 
first acknowledgement of this additional most inconvenient 
mathematical fact, which is of particular salience to studies 
of human evolution.
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Factor Models

The pathology I am reviewing is not limited to the com-
pletely null case, the completely patternless setting, that has 
characterized the simulations to this point. It also applies to 
severely distort ordinations in settings where there is a valid 
dimension or two combined with unstructured noise among 
a count p − 1 or p − 2 of residual variables that continues 
to greatly exceed the sample size n. This section considers 
three such settings, the first two characterized by a single 
a-priori factor and the third by two factors.

The version of factor analysis invoked in this essay is 
not the formative version ably reviewed by Reyment and 
Jöreskog (1993) but instead the reflective version set down 
recently in Malinowski (2003), where factors are patterns of 
path coefficients that validly represent shared causal entan-
glements. This is the version of factor analysis put forward 
by Sewall Wright, for instance, in his celebrated excursus on 
“general and special size factors,” Wright (1954) (cf. the exe-
geses in Bookstein 2014, 2018). In the following examples, 
following Malinowski’s chemometric school, I model one 
or two true factors in one of two ways: as within-group fac-
tors with coefficients known to be consistent across groups, 
corresponding to shared causal processes at some level of 
reductionist understanding; or else as processes that system-
atically shift the group means of all the component indica-
tors of an analysis, likewise corresponding to shared causal 
processes across the roster of indicators. The tie between 
this class of models and the tools of this article resides in 
the structure of the errors around these factor regressions, 
which are presumed to represent a morphometric subspace 
composed of the same type of array—independent, nearly 
identically distributed Gaussians—that I have hitherto been 
invoking here for the full morphospace. In factor-analytic 
language, this is a model for the unique variances down the 
diagonal of the reconstructed covariances. See in general 
Malinowski (2003, Ch. 4).

Simulated Data with a Single Factor, Possibly 
with a Real Example

A data set can have a group structure superimposed over a 
single biological factor that may, in turn, either be constant 
within groups or else show some sort of graded phenomenon 
(such as allometry) there. To say there is only a single factor 
implies that the residuals from this factor are structureless 
noise. Then the MPT should apply with its full weight to 
the multivariate analysis of these residuals. Figure 8 shows 
how unfortunately persistent this implication is: 12 differ-
ent simulations correctly detecting a true factor (modeled 
here as constant within groups and with the factor score for 

group 2 midway between those for group 1 and group 3). 
The variation of this true factor is precisely as shown along 
the horizontal axis of these bgPCA plots. The variance of the 
fictitious second factor (which is indeed uncorrelated with 
values of the true factor) is exactly what one would expect 
from the analysis in Fig. 1, since reducing p from 300 to 299 
will not affect the implications of the MPT.

Figure 9 shows a somewhat different geometrical set-
ting for this same pathology. Now each group has vari-
ability on this factor—variability that is correctly mod-
eled here—but also groups 1 and 2 have the same average 
factor score. Nevertheless, as in Figs. 1 and 2, bgPCA 
analysis imputes a wholly fictitious second factor in order 
to separate groups 2 and 3 while “explaining” the same 
extent of variance as it did in Fig. 8.

The panels of this figure reminded me of a diagram 
from a paper published in this Journal several years ago: 
Figure 4 of Mitteroecker and Bookstein (2011). Figure 10 
here shows the match after the bgPCA model is tuned to 
match the p/n ratio and the within-group bgPC1 variance 
of the earlier computation. It thus serves as a realistic 
example exemplifying this second version of the pathol-
ogy for an example involving three taxonomic components 
of the genus Pan. In that example, group 3 was separated 
from groups 1 and 2 but the latter two groups overlapped. 
The 2011 text near that figure emphasized how much more 
appropriate an ordination this was than one afforded by 
CVA, in which groups 1 and 2 separated perfectly. But 
today the comparison would probably replace the phrase 
“more appropriate” by a double negative like “less inap-
propriate.” Back then we did not consider the possibil-
ity that the displacement between the means of these two 
subspecies of Pan troglodytes might itself have been an 
artifact of the bgPCA method just as their perfect separa-
tion (shown in another panel of the same original figure) 
was an artifact of CVA. In this example, p was 86, a little 
less than the total sample size of 104,  meaning that the 
crucial parameter y is only 0.83—the MPT does not yet 
apply with full force.

Figure 11 combines the designs of Figs. 8 and 9 in a 
configuration of four groups of ten specimens character-
ized by factor scores set at four equally spaced values (a 
reasonable data design for an allometry study in insects, 
for instance) in a simulation involving 400 variables (so 
the value of p/n continues to be 10). Now bgPCA imagines 
there to be two fictitious factors in addition to the “true” 
ordination dimension reconstituted as bgPC1. The result-
ing growth trajectory is parodied as a space cubic over the 
true (horizontal) axis. The curving cubic trajectory of this 
factor’s manifestation in morphospace is entirely artifact. 
Yet the amplitude of its implied polynomial dependence is 
far from trivial—were it not for our prior knowledge that 
the p/n ratio is so large, we would certainly be tempted 
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to interpret it as a true nonlinearity of allometry. In the 
rightmost panel of the figure you see a projection of the 
same regular tetrahedron that was forced by the MPT in 
Fig. 2 (note that the second and third eigenvalues here are 
nearly equal).

Simulated Data with Two Factors

Figure 12 combines the examples in Figs. 9 and 11 to incor-
porate two true factors distributed over 400 variables in four 
groups in a balanced 2 × 2 design. The value of y driving the 
MPT remains at 10. Again the bgPCA reports three dimen-
sions (one fewer than the count of groups), but instead of the 
cubic curve in Fig. 11 we see a twisted band in morphospace 
where there should have been a flat rectangle instead. The 

twist, as you see, is a complete 90° rotation from bgPC2 to 
bgPC3 between the extremes of the range of bgPC1.

In my travels I once encountered a perfectly ordinary 
object having precisely this form (but in three dimensions 
instead of 400): a KLM coffee stirrer given to my wife and 
me on an anniversary trip to Vienna some years ago. See 
Fig. 13.

Tools for the Skeptic

The remarks in this section are intended equally for 
researchers, reviewers, readers, and professors. All parties 
to a report of a bgPCA should be skeptical of its inferential 
force.
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Fig. 8  Twelve replicate simulations agreeing on the implications of 
the bgPCA pathology for a situation with a real (biologically mean-
ingful) factor. The theorem applies nevertheless to the residuals from 
this factor, pulling out a fictitious second factor with exactly the vari-

ance predicted by the MPT, over and over again. The reader can find 
the details of the models here in the “Appendix: Parameters of the 
Factor Models” section to this article



283Evolutionary Biology (2019) 46:271–302 

1 3

Nothing in the standard textbooks trains biometricians 
to recognize these pathologies as pathologies instead of as 
publishable empirical pattern analyses. The formal statistical 
literature of multivariate analysis (e.g. Mardia et al. 1979) 
considers only the context of fixed p as n tends to infinity, 
and likewise all the morphometric textbooks prior to 2018 
(e.g., Reyment et al. 1984; Bookstein 1991) deal only with 
this same conventional large-sample limit. (Reyment’s work 
elsewhere deals with a great many problems of covariance 
interpretation, including outliers, but not with this issue of 
huge counts of variables.) The first mention in the morpho-
metrics literature of PCA’s potentially catastrophic misrep-
resentations of multivariate reality in the high-p/n context 
apparently was my warning of 2017, and the combination of 
the present note with its companion piece by Cardini et al. 
is intended to focus our community’s attention on the sin-
gle worst case of this pathology, the bgPCA algorithm, the 

visibility of which, alas, is rising. The time is appropriate, 
then, to explicitly review tools that might protect a suitably 
skeptical quantitative biologist from claiming a separation 
to be real or a projection of an unclassified specimen to be 
informative that actually might have arisen from a null data 
set purely by virtue of its huge variable count. The ordinary 
machinery of multivariate statistical challenges—Wilks’s 
Lambda, the Hotelling’s Trace statistic, and the like—is 
inapplicable to the evaluation of multivariate ordinations 
like these, where misleading claims of separation are built 
into the very foundations of the bgPCA matrix algebra and 
where whenever p > n Gaussian assumptions cannot be con-
verted into likelihoods using any of the standard formulas. 
This section proceeds instead by a survey of tools helpful 
for the task of assessing which aspects, if any, of a bgPCA 
analysis actually might correspond to real aspects of the 
organismal biology under study, versus those that, like the 
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Fig. 9  Twelve runs of a modification of the preceding model with two 
different group means of the true factor score instead of three, along 
with within-group variance of this score. In every panel the vertical 

axis is completely fictitious. For the details of these models, see the 
“Appendix: Parameters of the Factor Models” section
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appearance of group separations, may actually be expressing 
only the pathologies of the method.

Thus the five subsections to follow all deal with specific 
problems of bgPCA, but while some apply rather generally 
across the range of high-p/n applications, others are specific 
in one way or another to GMM studies per se. “Permutation 
Distributions: The Clusters, or the Axes?” and “Crossvali-
dation” sections explore a fundamental issue at the root of 
many standard methods for “testing” apparent patterns in 
high-p/n settings, namely, that the standard logic of null-
hypothesis significance testing fails disastrously, along with 
some of its most familiar tools, when the arithmetic applying 
to the variation of axis stability and the arithmetic applying 
to the variation of sample ordinations within the derived 
space(s) are totally incompatible the way they are here. The 
role of the null model has to be reversed in this domain: only 
tests that support a model can be believed. “Permutation 

Distributions: The Clusters, or the Axes?” section shows 
how permutation tests of separations completely miss the 
point of axis instability, and vice versa, while “Crossvalida-
tion” section shows how the standard types of crossvalida-
tion not only fail to control the biases of bgPCA’s type of 
high-dimensional pattern analysis but actually make them 
worse. Put concisely, extracted axes (vectors of loadings) 
may (or may not) have a confidence region (in this context, 
that would be a hypercone), but group separations don’t. 
In these extremely high-dimensional settings, separations 
just don’t have a parameterization, that is, a plus-or-minus 
around some estimate of a “true value.”

“A Pathology Arising from Inconstancy of Group Speci-
men Counts” section expands on a typical contingent aspect 
of evolutionary applications of bgPCA, the substantial varia-
bility of group sizes, noting how strongly biased the reported 
bgPCA axes of highest apparent signal become in respect 
of a tendency to contrast the groups of lowest frequency 
with the others. This bias extends to the actual formula for 
the between-group covariance matrix whose eigenanalysis 
actually drives the bgPCA technique. Regarding this matrix, 
two traditional statistical tactics are flatly incompatible: the 
betweeen-group sums of squares and crossproducts that need 
to be weighted by group size for the classic manova-type 
formulas of likelihood analysis in the p < n domain instead 
need to be unweighted for ordination, which here in our 
high-p/n domain of concern is the only surviving analytic 
target. “Some Aspects of Truth Persist in Spite of the Pathol-
ogies” section shows how the within-group factor models 
illustrated in “Factor Models” section often serve to visual-
ize the failures of a bgPCA analysis in a biologically help-
ful way, by preserving the appearance of the same within-
group variability that the bgPCA was ostensibly designed to 
ignore but does not destroy. Finally, “A Potential Defensive 
Resource: Integration Analysis” section shows a similarly 
protective spirit for the multiscale methods I have been rec-
ommending to high-p/n analysts for several years now. The 
conclusions that researchers, reviewers, or readers should be 
drawing from all these new approaches are collected in my 
closing “Concluding Observations” section.

Permutation Distributions: The Clusters, 
or the Axes?

Remember that each simulation in Fig. 2 is of a random 
subdivision of the n = 30 cases into three groups of ten. 
So, leaving the 30 points in 300-space unchanged, produce 
new random subdivisions, over and over, as in Fig. 14. From 
these unrelated subdivisions you always get the same appar-
ent bgPCA scatter (the same bgPCA eigenvalues, the same 
separations), albeit variously situated within their square 
plotting frame. But the axes of these plots are unrelated—
there is nothing stable about the plane they span.
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Fig. 10  A one-factor model with p∕n = 0.83 (above) that nicely 
matches the published two-dimensional analysis (below) of Mitter-
oecker and Bookstein (2011). The explanatory power of the second 
decimal quantity in the header is less than that in Fig. 1 because the 
value of p/n is much less than the values of 10 or more in my earlier 
examples. Key to the lower panel: gray circles, Pan paniscus; black 
circles, Pan troglodytes verus; open circles, Pan troglodytes troglo-
dytes. For the details of the model in the upper panel, see the “Appen-
dix: Parameters of the Factor Models” section
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You can repeat this randomization as many times as you 
like—the result is always the same. I mean, repeating the 
subgrouping: there is no reason ever to bother repeating the 
simulation of those 300 standard Gaussians. You always 
get a projection of the original 300-dimensional space onto 
a Euclidean plane for which the projected points coalesce 
into three grossly separated nearly circular clusters of radius 
about 1.0 each at unvarying separation. Think of each one 
of these as the footprint in sand of some equilateral tripod 
beach stool. A permutation test of the “significance of axis 
1,” for instance, would show an enormous significance 
level for the axis-by-axis ordination actually encountered, 
in view of the nearly unconstrained tumbling of the bgPCA 

directions themselves. And this is certainly the wrong 
answer, as for virtually every change of grouping the cosines 
of the angles the two axes of the new bgPCA makes with the 
plane of the data-based “bgPC1” and “bgPC2” are nearly as 
far as they can be from unity. (For the simulation with three 
groups of ten cases over 300 variables, the median absolute 
value of these cosines appears to be about 0.17, just a little 
bit less than 

√
1∕30 .) Then no matter what interpretation a 

biologist might propound for the axes of the “true” (unper-
muted) bgPCA computation, the permutation distribution 
of the same data set will appear to fail to replicate it, even 
though the only salient feature (the equilaterality of that tri-
angle of group centers) is replicated almost perfectly.
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Fig. 11  A variant of the single-factor model in Fig.  8 results in the 
completely misleading appearance of a cubic dependence of form on 
factor score in this 400-dimensional morphospace. Now there are two 

fictitious factors instead of one. For the details of this model, see the 
“Appendix: Parameters of the Factor Models” section

bgPCA 1

bg
P

C
A

 2

0 5 10

−
5

0
5

10

1

1 1
1

1

1
1

111

22
2

2

2

2

2

2
22

3

3

3

3

3

3
3

3 33

4

4

4

4
4

4 4
44
4

bgPCA 1

bg
P

C
A

 3

0 5 10

−
5

0
5

10

1
1

1

1

1

1

1 11
1 22

2
2
2

22

2
2

2

3

3 33

3

3

3

3
33

4
4

4 4
44

4
4

4

4

40 cases, 4 groups,  400 vars, 2 factors
 PLS d2’s 9.699 , 2.856 , 2.681

bgPCA 2

bg
P

C
A

 3

−4 −2 0 2 4

−
4

−
2

0
2

4 1

1

1

1

1

1

111

1
22

2

2
2

2 2

2
2

2

3

3 33

3

3

3

3
33

4

4

4 4

4
4
4

4

4

4
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To circumvent this paradox—that every permutation 
gives an equally strong signal in an entirely unrelated two-
dimensional subspace—would require a specially designed 
permutation test for uniformity of tumbling as inspected 
via equilateral separation along with unvarying group con-
centration per se. No permutation test protocol unaware of 
the pathologies of the bgPCA method would be capable 
of assessing the “fit” of this three-group “separation” cor-
rectly. Of course there could also be intermediate situations. 
For instance, a test of the bgPC directions for the analysis 
in Figs. 8 or 9 would need to be subdivided: the direction 
of bgPC1 should be stable, whereas that of bgPC2 should 
not be. Analogously, in Fig. 11, bgPC1 should be stable, 
whereas the plane of bgPC2–bgPC3 should be tumbling 
as wildly as the corresponding plane of bgPC1–bgPC2 in 
Fig. 3 (since in fact they are distributions of almost exactly 

Fig. 13  The KLM coffee stirrer, given to me with the compliments 
of the purser. It is a straightened version of half a Möbius band: the 
three-dimensional realization of the factor model in Fig.  12. The 
twisting, which here serves a mixed hydrodynamic/aesthetic purpose, 
is meaningless in the biological context (Photo by the author)
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Fig. 14  A permutation test of the group code per se for our usual sim-
ulation of 30 specimens on 300 uninformative Gaussians leaves the 
geometry of the usual bgPCA scatterplot unchanged except for rota-
tion and/or reflection, whereas the parameter that has actually been 

randomized, the plane of the scatter itself, goes unrepresented in the 
graphic. The random reassignment of specimens to groups is clear in 
the scrambling of their sequence numbers (1 through 30) in all these 
replicate plots
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the same form, random planes tumbling in some 28- or 
29-dimensional subspace).

But let me back away a bit from the context of statisti-
cal testing to consider the actual algebra of those permu-
tations we are using for purposes of “testing.” Recall that 
there were a trillion of these (10,10,10) subgroupings! 
So there must be a trillion such tripod footprints for the 
single simulation of 30 300-vectors. (Figure 14 showed 
twelve out of the trillion.) Evidently these are all the same 
scatterplot, randomly rotated and with the case numbers 
jumping totally patternlessly between the clusters. In effect 
there are two ways to manage this permutation test, depend-
ing on whether one examines the plane spanned by the two 
bgPCA’s or instead the pattern of the group centroids, and 
only when the null model is understood correctly do they 
yield consistent inferences: the geometry of the centroids 
is a fixed artifact of the algorithm, whereas the plane of the 
bgPCA’s is effectively unrestricted in distribution over the 
appropriate high-dimensional manifold. Such a construction 
goes completely unmentioned in the standard textbooks of 
permutation analysis, e.g. Good (2000).

The argument extends in the obvious way to 
studies with more than three groups. There are 
40!∕(4! ⋅ (10!)4) = 1.96 × 1020 (200 million trillion) different 
permutations of the assignment of 40 cases to four groups 
of 10 in Fig. 5, and they all will result, likewise, in the same 
three-dimensional scatter, up to orientation and reflection. 
So this four-group permutation test could concern itself 
either with the three-dimensional subspace spanned by the 
bgPCA’s jointly or with the location of the group centroids 
within this volume, and again both these approaches, when 
interpreted correctly, affirm the same null distribution.

This is a spectacularly counterintuitive fact about 
300-dimensional or 400-dimensional Euclidean geometry, 
comparable in its import to Gavrilets’s (2004) insights 
into the dynamic effects of the geometry of edges on high-
dimensional surfaces of selection. Indeed it should shock 
the intuition of any trained biometrician however compe-
tent, a shock commensurate with the analogous comment 
that opens Chapter 3, the chapter on variability of random 
walks, from Feller’s great undergraduate probability text (it 
was mine back in 1963—I still have my copy from then, still 
bearing its original list price of $9.75). Feller (1957, p. 65) 
noted that his readers might

encounter theoretical conclusions which not only are 
unexpected but actually come as a shock to intuition 
and common sense. They will reveal that commonly 
accepted notions concerning chance fluctuations are 
without foundation and that the implications of the law 
of large numbers are widely misconstrued.

The situation here is shocking along many of the 
same lines. The existence of nearly a trillion equivalent 

tripod-footprint projections, all yielding scientific non-
sense, for a wholly signal-free distribution of 30 cases in 300 
spherically symmetric Gaussian dimensions is outrageously 
unexpected, not to mention inconvenient, especially nowa-
days when it is so easy for the naïve user to produce such 
megavariate data sets from off-the-shelf imaging software. 
With respect to this setting the ranges of validity of all the 
classical exact formulas or approximations to significance 
levels (Hotelling, Bartlett, Wilks) are simply inaccessible—
there are no asymptotics to guide us beyond the MPT as it 
applies to our familiar canons of multivariate data analysis. 
One can only conclude that for purposes of inference in this 
context of GMM with high p/n ratios (in fact, I would argue, 
in any multivariate context) permutation tests should be used 
only to accept hypotheses, not to reject them.5

Crossvalidation

The preceding argument, while phrased in a way specific 
to permutation testing, serves more generally as a critique 
of the standard logic of crossvalidation by a variety of  
resampling techniques (regarding which in general see 
Efron 1987). Before we can apply it to “test” findings in this 
domain of high-p/n morphometrics, we need to decide what 
specific aspect of the arithmetic it is our concern to validate. 
Is it the exploitation of the classification arithmetic that is 
our central purpose, or the furthering of our understand-
ing of the ordination by its conversion into an explanatory 
scheme of empirically stable dimensions that will eventually 
be interpreted as factors? In other words, is the scientific 
deliverable of the analysis that led to figures like Fig. 1 the 
production of the scores or instead the production of the 
scientific explanations, whatever they might be, suggested 
by the alignment of the bgPCA axes? (The problem is not 
specific to the bgPCA context, but arises whenever a biplot 
or the singular-value decomposition driving it is invoked 
in the course of any empirical data analysis.) The litera-
ture of bgPCA is silent on this question. Yendle and MacFie 

5 I am arguing that high-p/n divisions of organismal biology like 
GMM should restrict statistical significance testing to what Meehl 
(1967) called its “strong version”: tests intended not to contradict but 
instead to support the inference that your null distribution model is at 
least approximately true. Stated as an aphorism: in the highly multi-
variate context of high-dimensional (e.g., semilandmark-rich) GMM, 
statistical significance testing should be applied only when the null 
model is likely to suit your data, exactly or closely enough. Meehl 
argues that physics exploits the strong version of significance test-
ing, psychology, alas, the weak version only. In its logic of inference, 
organismal biology ought to resemble physics more than psychology. 
To be relevant to assessments of a high-dimensional morphomet-
ric hypothesis, p-values should fall in the range of 0.1 to 1.0, not the 
range of vanishingly small fractions that the statistics textbooks usu-
ally highlight with pride. See in general Bookstein (2014).
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(1989, p. 589), for instance, set their discussion of what they 
call DPCA as a tool for performing “a supervised pattern 
recognition,” the production of “factors that describe the 
between-group variation most effectively.” It is left unclear 
whether that most effective pattern description deals with 
the scores or instead with the axes.

In my view, our concern as users of GMM must be with 
the axes, not the scores. To note that group 1’s scores in 
Fig. 1 average 3.9 on axis 1, or that group 3 is halfway 
between group 1 and group 2 in that direction, or that 
groups 1 and 2 have the same average on axis 2, would not 
be helpful observations. This is because we are working in 
a context of megavariate analysis, where there is no theory 
governing the scientific meaning of the specific selection of 
variables—there is no answer to the question, “3.9 on what 
scale?” No, the individual and average scores, arising as 
they do from a theory-free list of shape coordinates, have no 
numerical meaning in and of themselves. As I have argued in 
some detail in Bookstein (2019), intellectual progress under 
such circumstances mandates an analytic rhetoric taking the 
form of some sort of explanation. The foundational litera-
ture of PLS was occasionally quite explicit on the topic, 
under the rubric of the “reality of latent variables” (see, e.g., 
Bookstein 1982). The PLS analyst’s attention focuses on the 
interpretation of the axes in Fig. 1 not as principal compo-
nents of anything (even though that is how they are usually 
computed) but as “latent variables,” quantities that should be 
interpreted as if someday they would be capable of explicit 
measurement.

Here in 2019 the battle between these two thrusts in 
contention, exploitation of scores versus interpretation of 
axes, is over, thanks to the enormously successful new dis-
cipline of machine learning (see, e.g., Hastie et al. 2009). 
The current silicon-intensive approaches—kernel smooth-
ing, support vectors, neural nets, and many others—have 
jointly rendered linear classification methods obsolete as a 
component of any competent contemporary empirical natu-
ral science. In these high-p/n settings, canonical variates 
analysis and its special case, linear discriminant analysis, 
are no longer worth teaching absent strong prior theory that 
arbitrary linear combinations of the measured variables can 
serve as meaningful empirical scores and that all groups 
have the same within-group covariance structure: assump-
tions that are awkward to defend even in potentially favora-
ble cases. (See Bookstein 2016, 2018.) Rather, the claims 
that need crossvalidation are those related to interpretation 
of the entire plane or hyperplane spanned by the axes in the 
figures here, not to quantifications of the group assignments 
entailed. Then the versions of crossvalidation that apply to 
high-p/n settings would be search algorithms through data 
sets near the instant data set in a variety of localized or 
regionalized respects, not any global formulation or enve-
lope test of net signal strength or likelihood.

I think the first example of such an application to the pre-
sent analytic setting (this one a bootstrap, as the context was 
not one of subgroup analysis) may have been one of mine of 
three decades ago, Sampson et al. (1989), although the idea 
was already nascent in a much earlier chemometric explora-
tion, Weiner et al. (1974), at Sect. 4.7.2. Briefly, jackknifing 
is the recomputation of analyses n times, leaving out each one 
of the n specimens in turn, while bootstrapping is the indefi-
nite reanalysis of subsamples of the same total count n made 
up by resampling n items from the original data set “with 
replacement,” meaning that individual specimens can appear 
more than once. The purpose of either is the estimation of 
the standard error of a parameter from the true model: for 
further background consult Efron (1987). In either context, 
while typically a permutation test is aimed at showing a range 
of reanalyses that fail to agree with the “true” computation, 
a crossvalidation approach is intended to show a range of 
reanalyses, or even a complete census of them, that instead 
agree—that result in almost the same pattern claim.

Thus to apply any crossvalidation technique to an investi-
gation to which the null hypothesis of sphericity is relevant 
we must decide on a criterion for when two or more analy-
ses are “almost the same.” When equality of eigenvalues is 
a possibility, two eigenanalyses can be said to “match” if 
either set of eigenvectors can be rotated (with or without 
reflection) onto the other. (This was actually the application 
for which the psychologists invented Procrustes analysis in 
the first place, as in discussions of the invariance of the pen-
tadimensionality of personality scales. See Hurley and Cat-
tell 1962.) When modified by invocation of the Procrustes 
procedure in this charming non-GMM context, the fictitious 
production of an equilateral structure of cluster centers in 
Figs. 1, 2, 3, 4, 5 and 6 proves most unfortunately robust. 
The pathology explicit in Fig. 2, in other words, would be 
misinterpreted as a confirmation of the original ordination.

Figure 15 is a typical example of jackknifing on our meg-
avariate null model. The thirty frames here arise from thirty 
separate analyses of the same simulated data set, each one 
omitting one of the original thirty specimens of the usual 
300-vectors of independent Gaussians but then, in order 
to control the spinning so apparent in Fig. 2, rotating each 
of the resulting configurations to the original bgPCA of all 
thirty specimens using the rotational part only of the stand-
ard Procrustes algorithm (e.g., no centering, no rescaling, 
thus only one degree of freedom exploited instead of the 
usual four). You see how stable the fiction is against this 
type of challenge.6 The jackknife formula for the standard 

6 Note this is not the usual approach to leave-one-out crossvalidation 
(Lachenbruch 1967), which classifies the omitted specimen accord-
ing to projections on the axes derived from the remaining specimens. 
Instead, the concern is the explicit jackknifing of those directions 
themselves, which are evidently helpless against the basic bgPCA 
pathology even under the leave-one-out maneuver.
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error of a parametric summary of this type declares it to be 
the standard deviation of the parameters over the jackknifed 
resampling. In terms of the axes of the diagram these derived 
standard errors are 0.124, 0.040, 0.057, 0.164, 0.071, 0.184. 
So these cluster locations, and presumably the correspond-
ing organismal interpretations of whatever contrasts the 
underlying plane of dimensions invokes, would be inferred 
to be stable against accidents of specimen sampling. Ironi-
cally, that inference is correct—the computed geometry of 
the group centers is that of an equilateral triangle, tetra-
hedron, etc—but this is a property of the algorithm per se 

rather than an empirical finding saying anything about actual 
biological data.

Applying an alternative standard resampling approach, 
bootstrapping, to bgPCA analyses in this null setting proves 
interesting. The example in Fig. 16 concerns a scheme of 
60 specimens over 600 Gaussian variables completely unin-
formative about the grouping of the data into three groups 
of 20. The standard bgPCA (left panel) shows precisely the 
usual fictitious group separations expected when p∕n = 10.

In the center panel is an inappropriate analysis, a stand-
ard bootstrap (resampling specimens with replacement): 
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Fig. 15  Applying the classical “jackknife” technique to the scenario 
in Figs. 1 or 2. Each panel is the analysis of one of the 29-specimen 
subsets from the usual simulation of totally uninformative Gaussian 

noise on 300 measurements over 30 specimens. Printed numbers are 
specimen numbers matching from panel to panel
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inappropriate because the bootstrapped version has intrin-
sically different symmetries. The clusters that had been cir-
cular are now strongly stretched in a radial direction, and 
the stretching seems entirely due to the specimens that have 
appeared more than once in the resampling (here, printed 
with jitter so they appear to be in heavier type). In a PCA-
like context like this one, sampling with replacement is inap-
propriate, as any specimen appearing twice in the resample 
has twice the weight of the nonduplicated specimens in the 
analysis, three times the weight if it is tripled, four times if 
it is quadrupled. All such reweightings diminish the vari-
ance reduction of the group average and thus increase the 
leverage the specimen in question has upon the variance of 
the bgPC’s (as represented in these scatters by distance from 
the centroid, hence the elongation of the clusters that were 
circular in earlier figures). This accidental entanglement of 
the logic of bgPCA with the logic of bootstrapping does 
not affect the fictitiousness of the inferences here even as 
it proceeds to destroy one of the symmetries of the MPT-
constrained plot in the left panel.

In the right-hand panel of Fig. 16 is a more appropri-
ate resampling method that suppresses the overweighting 
of those repeated specimens: a decimation analysis that 
randomly deletes a substantial fraction of the sample. I’ve 
realized it here simply by deleting duplicates from the boot-
strapped samples; for groups of 20, this is very nearly the 
same maneuver as analysis using half the original sam-
ple. Unexpectedly, up to rotation and reflection this does 
not seem to blur the quantitative structure of the resulting 
geometry of group centers at all—in a high-p/n application 
like this, the effect on apparent precision of proportionately 

reducing sample size on an unchanging variable count p is 
less than the “improvement” dictated by a corresponding 
increase in the p/n ratio. This stochastic invariance leads to 
even more strongly misleading equilateral expected circular 
separations spinning in exactly the same meaningless way. 
Notice that in both Figs. 15 and 16 the role of the crossvali-
dation, whether jackknifed, bootstrapped, or decimated, is 
to support the hypothesis embodied in the simulation model, 
not to reject it. (In other words, the decimation approach is 
a tool of skepticism, not estimation.)

A Pathology Arising from Inconstancy of Group 
Specimen Counts

When “Why are We Seeing This?” section introduced the 
formulas that account for the simulations of this paper, it 
noted that “for simplicity” I would set all groups to the same 
sample size. It is convenient here to return to that assump-
tion, because the effect of varying group size is identical 
to the effect of varying individual specimen weight in the 
bootstrapping approach that was just highlighted in Fig. 16. 
Consider one such example in which sample size varies 
realistically: a total of 130 specimens of which 10 are from 
group 1, 30 from group 2, and 90 from group 3, “measured” 
on 650 standard Gaussians independent of group, so that 
y = p∕n = 5. As you can see from the usual bgPCA scat-
terplot, Fig. 17 (left), the smaller the group, the farther its 
projected bgPCA average score from the grand mean, just as 
in the central panel of Fig. 16. The most obvious symmetry 
of the bgPCA analysis for a null model has been broken 
merely by accident of sampling design.
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Fig. 16  Bootstrapping destroys one of the symmetries of a high-p/n 
null bgPCA, but sample decimation does not. (left panel) bgPCA of 
a simulated data set of 60 specimens on 600 variables. (middle panel) 
bgPCA of a bootstrapped resampling, with duplicates randomly jit-
tered to increase visual weight. Notice the change of scale from the 
first panel. The inappropriate weighting assigned to the duplicated 

specimens is clear here. (right panel) Replacement of the bootstrap by 
a simple decimation (here, by half) yields not the customary reduc-
tion of precision but instead a modest intensification (note the scale 
change of these axes) of the original cluster center separations at left 
owing to the concomitant doubling in the value of p/n from 10 to 20
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One might attempt to fix this problem by resampling 
each of the larger groups down to the sample size of the 
smallest, much as was done (approximately) in the right-
hand panel of Fig. 16. (The resampling would need to be 
done repeatedly if there is some possibility of heteroge-
neity within the larger groups.) But such a jury-rigged 
adjustment to bgPCA fails in the presence of the even 
more severe inequality of group sizes that are typical of 
studies combining extant and extinct species, or Homo 
with other extant primate genera, or human populations 
sorted geographically from samples of burials or from 
museum collections. At the right in Fig. 17 is the bgPCA 
analysis of a simulation of four imbalanced groups of sizes 
40, 10, 7, and 3 on 300 wholly uninformative “measure-
ments” (so the p/n ratio is still 5). In paleoanthropology, 
for instance, such a range of group sizes is typical for stud-
ies that combine samples of H. sapiens with other species 
of Homo or with genera of extinct anthropoids. In this 
setting, under the usual null model the smaller groups will 
typically dominate every reported between-group princi-
pal component, in order of group size—here the (ficti-
tious) contrast of group 1 with the smallest group, group 
4, drives bgPC1, while that of group 1 with the next small-
est group, group 3, drives bgPC2. It would be fallacious 
to argue that group 4 embodies some sort of apomorphy 
based on its position here when that position is explicitly a 
function of our failure to locate more than three specimens 

of that group beforehand. Surely no such analysis deserves 
to be described as an ordination at all.

Recall the formula from “Why are We Seeing This?” sec-
tion that the factor by which bgPCA inflates the variance of 
a bgPCA component over its expected attenuated value is 
roughly (1 + 1∕

√
y)2 . For y = 1, this is 4.0. Then for there to 

be any degree of validity in subsequent inferences, the size 
of the groups whose positions are the topic of inference in 
bgPCA scatters from such data designs should be more than 
double this correction factor, or about 10, whenever the p/n 
ratio is 1.0. For higher p/n this stricture will be even more 
severe. For instance, for group 4 to lose its misleading domi-
nance in the right-hand panel of Fig. 17, the eigenvalue of 
bgPC1 would need to drop below that of bgPC2 here, which 
approximates the design parameter y = p∕n = 10 of the sim-
ulation. To shift the mean of group 4 so that its contribution 
to the variance in this direction no longer swamps that basic 
effect of high p/n, it would have to move left to a position 
of roughly 4 on the abscissa instead of 10. This requires an 
increase of sample size by a factor of about 

(
10

4

)2 . But some-
where along this path of increase in sampling frequency it 
will cease to be the smallest group, and axis bgPC1 will 
jump to some other alignment instead.

Figure 18 explores such an evolution in more detail by 
extending the preceding simulation in order to systemati-
cally vary the ordering of subgroup sizes. Here the three 
largest subgroup sizes from the right-hand panel of Fig. 17 
are preserved, but the count of group 4 is modified in five 
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Fig. 17  The effect of variations in group size is exactly analogous to 
the effect of multiple appearance in a bootstrapped analysis. (left) A 
bgPCA of 650 standard Gaussians for a sample of 130 specimens in 
three arbitrary groups of sizes 10, 30, and 90 throws each group aver-
age to a distance from the grand mean (the large filled disk) propor-

tional to the inverse square root of its group size, thereby breaking 
one diagnostic symmetry of the bgPCA critique here. (right) Even 
more extreme disproportions lead to further pathologies of a bgPCA 
report, here, from samples of size 40, 10, 7, and 3, respectively. See 
text
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steps, one that reduces it from 3 specimens to 2 and four 
others that increase it to 5, 10, 15, or 30 specimens, respec-
tively. Each simulation is of the appropriate total count of 
specimens (from 59 to 87) on five times as many totally 
uninformative standard Gaussian measurements. At size 2 
(upper left) the alignment of bgPC1 with group 4 is even 
more unequivocal than in Fig. 17, while bgPC2 continues 
to be closely aligned with the second-smallest group, which 
here is group 3. Note also that the distance of group 4 from 
the grand mean is roughly twice that of group 3, correspond-
ing to the square-root of the ratio of subgroup counts. At 
upper center, the size of group 4 is nearly the same as that 
of group 3, and so the distances of the subgroups from the 
center of the bgPC1–bgPC2 scatter are nearly equal, and 
likewise their leverage on the first bgPCA axis pair. In the 
simulation at upper right, the size of subgroup 4 has been 
set to 10, which is no longer the smallest, and so bgPC1 has 

jumped to an alignment with group 3 instead. But as now all 
of the subgroups except for group 1 have roughly the same 
specimen count, the bgPCA becomes the projection of a 
tetrahedron onto the face opposite group 1, with the largest 
group at the center (actually, it’s an end-member on bgPC3, 
not shown) and all three of the other groups as vertices of 
the projection. At lower left the count of group 4 is now 15, 
breaking the symmetry with group 2, so the bgPC1–bgPC2 
axes are now a rotation of the displacements from group 1 to 
group 2 and to group 3 at roughly 90°; in comparison with 
the panel above, the role of group 4 has been supplanted by 
that of group 2. Finally, at lower center is a simulation with 
group 4 set to 30 specimens. Groups 3 and 2 continue to 
determine bgPC1 and bgPC2, respectively, and groups 1 and 
4, the two largest, project on top of one another here because 
their contrast determines precisely the direction of bgPC3, 
which is scattered against bgPC1 in the lower right panel.
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Fig. 18  The pathological effect of subgroup sample size variability as 
demonstrated by a systematic manipulation of one group size out of 
the four. Large filled dot: grand mean of the bgPC1 – bgPC2 scat-

ter. Every ordination in this set of panels is fictitious, in particular the 
apparent separations of the clusters in every panel. See text
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Hence the bgPCA scatterplot of a high-p/n simulation 
of the null model over groups that differ widely in sam-
ple count can be predicted almost exactly from those group 
counts alone, independent of every bit of information in 
the simulated “measurements” except for the value of the 
ratio y = p∕n. No such scatterplot could possibly contribute 
to any valid inference unless and until this null model, or, 
more likely, its combination with within-group factors, is 
unequivocally rejected.

A comment on weighting. In this context of discrepant 
sample sizes and their effect on the bgPCA arithmetic it 
is appropriate to consider a seemingly minor divergence 
between this manuscript’s formulas and those in the com-
panion piece by Cardini et al. The crossproduct matrix 
whose eigenanalysis supplies the loadings for the bgPC’s 
in this article is unweighted, ignoring differences in the 
sample sizes of the subgroups; but in the analogous for-
mula for the matrix A in the companion piece, each sub-
sample’s dyadic contribution (x̄ − ̄̄x)(x̄ − ̄̄x)t is weighted by 
its subgroup sample count ni. That doesn’t matter for the 
examples in the companion piece, as the subsample n’s are 
set equal in all its examples, but it matters in the simula-
tions of this paper at Figs. 17, 18, 19 and in the advice that 
followed from those simulations.

The discrepancy between the formulas can be traced 
back to the founding documents of the bgPCA method. 
In Rao (1948), Section 9, the matrix being eigenanalyzed 
is the sum of unweighted dyadic products of the vector 
differences of each subgroup mean from the grand mean, 
every group having the same weight; but in Yendle and 
MacFie (1989), eq. (16), as in Cardini et al., each contri-
bution to the pooled crossproduct matrix is weighted by 
subgroup size.

The implications of the discrepancy here are not subtle. 
For purposes of statistical testing when p < n, the context 
in which covariance matrices can be inverted, the weighted 
version of this formula is the version that accommodates the 
exact distribution of loglikelihoods on various hypotheses—
see, for instance, Mardia et al. 1979, Sects. 4.1.1, 5.2.1. But 
once the null model is rejected, it is the Rao approach, group 
centroids weighted equally, that must be the appropriate tool 
for biological understanding, as usually the ni are not proper-
ties of the groups per se (except in ecology, which is a differ-
ent sort of science than that in which these bgPCA methods 
are typically applied).

In the p > n context that is the principal concern of this 
paper, the empirical covariance matrix of the observed data 
cannot be inverted, and so there is no access to the clas-
sic likelihood formulas, vitiating this singular justification 
of the weighted method. And whenever a bgPCA analysis 
is deemed meaningful (possibly by the prophylaxis to be 
detailed in “Concluding Observations” section), the user 

must compute the relevant eigenanalysis all over again, this 
time without the weighting, in order to arrive at the correct 
loading vectors for ordination of additional samples.

This is no small “adjustment,” but instead a major 
revision of the scatterplots and their interpretations that 
normally convey the import of a bgPCA to bioscientific 
audiences. Consider Fig. 19, a simulation of p = 480 inde-
pendent identically distributed Gaussian scores on n = 120 
cases divided into four groups numbered 1, 2, 3, 4 and hav-
ing subsample sizes 81, 27, 9, and 3, respectively.

On the null model we expect the squared distance of any 
group centroid from the zero vector to be the quotient of a 
�2 on 480 degrees of freedom by the group’s sample size. 
With so many degrees of freedom it is harmless to replace 
that chisquare by its mean. When the sizes are all the same, 
so are these mean chisquares, leading to the equilaterality 
in Figs. 2 or 4. For drastically unequal group counts, each 
group’s distance from zero will be very nearly proportional 
to the inverse of its sample size, and on the independence 
hypothesis the expected squared Euclidean distance between 
any pair of group centroids in our scenario of group sizes 
81, 27, 9, 3 will be proportional to the sum of the reciprocals 
of the sample sizes, which, multiplied by 81, make up the 
matrix

The expected unweighted bgPCA of such a data set is the 
principal coordinate representation of these distances, which 
comprises the eigenvectors of the matrix −HD2H∕2 where 
H is the centering matrix 

The top row of Fig. 19 plots the scores of our four groups 
on the three nonzero eigenvectors of −HD2H∕2, scaled to 
their explained variances, against each other in pairs. The 
eigenvalues here are proportional to 35, 10, and 3, and so the 
principal coordinate axes are quite well-defined. They con-
firm the analysis of discrepant subgroup sizes that was illus-
trated in Figs. 17 and 18: axis 1 is the contrast of the small-
est group against the others and axis two slightly oblique 
to the contrast of the second-smallest. The unweighted 
bgPCA (middle row) of one particular instantiation of this 
n × p = 120 × 480 data set confirms this expectation: bgPC1 
is the contrast of the smallest group against the other three 

D2 =
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and bgPC2 essentially the contrast of the second-smallest 
group against the pool of the other three, while groups 1 and 
2, the largest groups, separate only on the last bgPC.

Now consider the panels in the lower row, an analysis of 
precisely the same simulated data except that the between-
groups crossproduct matrix has been weighted by subgroup 
size. Different simulations result in entirely different ordina-
tions of this sort; no longer do we see any of the diagnostic 
features that I have argued should be used to cast suspicion 
on the bgPCA approach. In this particular example, the first 

pair of weighted bgPC’s (wbgPC’s) appear to be a 45° rota-
tion of an arbitrary pairing of the groups—4 versus 3 on 
one axis, 1 versus 2 on another at 90°—while the plot of 
wbgPC2 against wbgPC3 appears to be a reflected rotation 
(again arbitrary) of the theoretical bgPC1–bgPC2 plot at left 
center except that groups 1 and 2 are nearly distinct rather 
than fused. In none of the hundreds of these simulations I 
have run has the first weighted between-groups PC ever been 
the contrast of group 4 with the other three groups, although 
that configuration is among the clearest signals of the null 
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Fig. 19  Unweighted versus weighted versions of bgPCA. (top row) 
The expected unweighted bgPCA (“Why are We Seeing This?” sec-
tion of this article) for analysis of a null model on 480 independent 
Gaussians over 120 cases divided into four subgroups of sizes 81, 
27, 9, and 3, computed as a principal coordinates analysis of the 
expected squared intergroup distance matrix D2 in the text (Book-
stein 2014, 2018) (middle row) Unweighted analysis of the simulated 
data, evidently matching the expected scheme. (lower row) By com-

parison, the weighted analysis is far less well-structured and hence far 
less legible as a true signal of the meaninglessness of the bgPCA in 
models like these. Both analyses (middle and lower rows) are of the 
same simulated data set, in which there are no differences at all in 
the distributions of the 120 cases; the only difference is in respect of 
whether the between-groups covariance matrix of the group means is 
unweighted (middle row) or weighted (lower row)
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model in factor-free situations like these. In other words, 
the weighting has destroyed the legibility of the null model 
signal in p > n data sets like this one.

In general, the goal of a weighted analysis is to combine 
multiple estimates of the same parameter that have known 
but different error variances. Possibly this notion is mean-
ingful for a model where within-group covariance structures 
are the same, under the (biologically absurd) assumption 
that covariance structures in different groups are estimating 
the same multidimensional biological quintessence, while 
using the sample sizes as weights embraces the equally 
absurd assumption that error variance is inverse to sample 
size for every single element of the covariance matrix. But 

no analogous logic can apply to the between-groups matrix, 
the matrix B of Yendle and MacFie or Cardini et al. since, 
on the alternate hypothesis, the difference vectors among 
the groups aren’t estimating the same thing (or else there 
would only be one group). So whenever the null is rejected, 
the sum of these weighted dyadic products over the sample 
has no biological meaning.

In other words, the idea of a pooled weighted between-
groups matrix driving a bgPCA in the p > n setting is logi-
cally incoherent from the very beginning. If the groups are 
different, there is no shared parameter vector to pool; then 
the weighting is a nonsense. Perhaps Rao suspected as much 
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Fig. 20  True factor models can coexist with the pathological sepa-
rations implied by a high-p/n bgPCA. (upper row) Two different 
bgPCA simulations of three 10-specimen groups on 300 Gaussian 
variables that also reflect a single underlying factor, everything inde-
pendent of group. In either, bgPCA tries but fails to pull apart the 
groups on bgPC1, the valid ordination dimension, but succeeds with 
the fictitious bgPC2. (lower row) The same for a single simulation 
of four ten-specimen groups over 400 variables, now with two valid 

factors, likewise everything independent of group. Now bgPC1 and 
(bgPC2 – 0.5 × bgPC3) are both valid factors, while (bgPC3 + 0.5 
× bgPC2) is a 2D projection of the usual 3D fiction. The equality of 
the model’s group means notwithstanding, the bgPC2 – bgPC3 panel 
separates these (identically distributed) groups distressingly well. For 
the details of this model, see the “Appendix: Parameters of the Factor 
Models” section
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when he omitted the factor ni from his computations with 
Mahalanobis in the 1940’s.

Some Aspects of Truth Persist in Spite 
of the Pathologies

When applied to a high-dimensional null distribution, the 
fictitious group clusters that bgPCA creates resemble Gauss-
ian disks or balls. Scatters in which the group clusters are 
elongated, then, are unlikely to be expressing solely the 
bgPCA fiction; the elongation would instead correspond to 
factors in some true model other than the model of purely 
spherical Gaussian variation of very high dimension. Fig-
ures 9 and 10 already showed examples where these Gauss-
ians were shifted by a single factor whose scores varied both 
within and between groups. In Fig. 20 we explore two vari-
ants of this approach, in both of which there continues to 
be at least one true within-group factor, but now without 
any group differences in distribution. When the signal from 
the true factor(s) is strong enough, the bgPCA algorithm 
produces scatters consistent with the existence of such a fac-
tor or factors and with the overlap of true scores by group. 
Unfortunately it also produces fictitious factors of group 
separation as well.

The upper row of the figure shows the bgPCA analyses 
for two single-factor simulations that modify our standard 
p = 300, n = 30 simulation by a single additional factor 
with loadings Gaussian of variance 1.0 around 0.0. Compo-
nent bgPC1 of the simulation at upper left correlates 0.95 
with the actual simulated factor score here, and (correctly) 
fails to separate the groups, while as usual there is a com-
pletely fictional bgPC2 suggesting a separation. Similarly, 
the score on bgPC1 from the simulation at upper center 
correlates 0.83 with the actual simulated factor score, and 
likewise correctly fails to separate the groups, whereas once 
again component bgPC2 is wholly fictional. Note the strik-
ing similarity of the panel at upper center in this figure to 
the lower right panel of Figure 1 of Cardini et al. (2019), a 
three-group analysis based on a real GMM data set, although 
likewise with wholly fictional groups.

The lower row of the figure reports a single simulation 
of four groups, now in a p = 400, n = 40 design driven by 
two factors, the first with loadings Gaussian with variance 
1.0 around zero as in the simulations of the upper row, the 
second with a quarter as much variance. The first bgPCA 
component again correctly reflects the lack of separation of 
the groups on this pair of dimensions, correlating 0.96 with 
the simulated factor score. The corresponding first eigen-
value is too large to have arisen from the null distribution 
discussed in “Why are We Seeing This?” section.

But the bgPC2–bgPC3 scatter (lower right panel in the 
figure) once again succumbs to the bgPCA algorithm’s 
relentless confabulation of group separations. The first of 

these directions seems roughly aligned with a real factor, but 
not the second; the separation concocted by the bgPCA algo-
rithm in this panel confounds the two in a fictitious ordina-
tion that rotates the direction of bgPC2 away from the actual 
factor direction as modeled. Because this bgPC2 evidently 
was computed to accommodate the (fictitious) separation 
of group 2 from group 4, it correlates only 0.73 with the 
actual modeled factor score, thereby invalidating the device 
of projecting an unknown specimen onto the left-hand panel, 
the bgPC1–bgPC2 panel, as any sort of valid inference of 
affinity. Inasmuch as the lower left panel of Fig. 20 gener-
ally resembles Extended Data Figure 6 of Chen et al. (2019) 
except for the plots’ aspect ratios, it would have been appro-
priate for that paper to have displayed the scatters of all pair 
of bgPC’s, not just the first pair, in order that readers might 
check for this possible hidden confound induced by bgPCA’s 
tendency to generate fictitious separations.

A comparison of these panels to those in Fig. 10 sug-
gests the following two simple, if crude, generalizations: 
bgPCA clusters aligned with apparent within-group factors, 
and thereby less likely to show group separations, are more 
reliable than those orthogonal or oblique to such within-
group dimensions; and bgPCA dimensions showing high 
within-group variance are likelier to be aligned with true 
within-group factors. This is, of course, exactly the oppo-
site of the reason for adopting approaches like bgPCA in 
the first place—the suppression of “bias” deriving from that 
within-group factor structure—and likewise disrespects the 
logic driving classical approaches such as Mahalanobis dis-
tance, the formula for which downweights the dimensions 
of largest within-group variance instead of paying special 
attention to them in this way. One might say, again risk-
ing overgeneralization, that analyses of group average dif-
ferences that fail to attend to within-group variability are 
not likely to sustain sound biological inferences in high-p/n 
settings such as GMM. It would follow, likewise, that the 
tests for stability of any “real” factors, like those that show 
directional enhancement of variance in Fig. 20, would need 
to be separate from the tests for stability of the dimensions in 
which the clusters by group appear not to be stretched (I have 
already mentioned this ramification in the comment preced-
ing Fig. 14). This further supports the claim in footnote 5 
that statistical significance testing is appropriate in high-p/n 
biological sciences only in the vicinity of a true model, that 
is, after you know nearly everything about how your hypoth-
esis relates to your data except possibly the values of a few 
decimal parameters.

A Potential Defensive Resource: Integration Analysis

In addition to low-dimensional factor models, there are 
other promising approaches that exploit practical experi-
ence to constrain the nature of the GMM variability being 
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summarized. Some replace the null model of spherical 
Gaussian symmetries by an alternative in which the struc-
ture of empirical shape variation, whether or not the groups 
are real, is represented by a range of patterns at one or more 
distinct spatial scales. There is a taxonomy of these scaled 
approaches in Bookstein (2019).

One of these, the approach via loglinear rescaling of the 
BE–PwV (bending energy – partial warp variance) plot, is 
illustrated here in Fig. 21. The figure is based on a single 
simulation of 30 specimens in the usual 10–10–10 sub-
grouping from an isotropic Mardia–Dryden distribution of 
150 landmarks in two dimensions (hence our usual count of 
300 shape coordinates) based on a template that is a perfect 
15 × 10 grid. Each of four different bgPC1–bgPC2 scatters 
is presented next to the grid for its bgPC1 as graphed by its 
effect on the template at Procrustes length 1. At upper left 
is the result of the standard bgPCA dataflow from “Why are 
We Seeing This?” section: the same fictitious equilateral 
triangle we have seen many times already. The group separa-
tion is perfect, as always, but the corresponding bgPC1 grid 
is clearly biological nonsense. (Mitteroecker and Bookstein 
2011 used this same graphical strategy to mock the analo-
gous vector output from a CVA.) The pair at upper right 
presents the same bgPCA scatter and bgPC1 grid interpreta-
tion after the simulated data set has been deflated by a slope 
of − 0.5, as defined in Bookstein (2015)—this might be the 
equivalent of mis-analyzing a data set comprised mainly of 

semilandmarks as if they were landmarks instead, as dis-
cussed by Cardini (2019).

The pair of panels at lower left represents the situation 
after deflation at slope − 1.0, the case of self-similarity (the 
null model in Bookstein 2015). For these self-similar data 
the bgPCA algorithm continues to pull the group means 
apart, but the clusters now fail to separate, and after smooth-
ing to this degree of realism the grid seems reminiscent of 
phylogenetic applications in its offering of diverse potential 
characters at a diversity of geometric scales. The figure’s 
final pair of panels, lower right, corresponds to deflation at 
slope − 2, the maximum degree of integration seen in real 
growth data. Now the basic bgPCA pathology on which 
this paper centers is almost gone—the degrees of freedom 
are no longer close enough to spherical7 for bgPCA to have 
much success in pulling apart the “group” means—and the 
bgPC1 grid now resembles actual published grids for growth 
gradients such as were exemplified in Bookstein (2019). 
In summary, the more integrated the shape variation, the 
lower the effective number of variables contributing to the 
MPT formula, the lower the fictitious group separation in 
bgPCA scatterplots, and the smoother and more realistic the 
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Fig. 21  Effect of changing an integration dimension on the fictitious bgPCA plot and the corresponding transformation grid for bgPC1 in a 
simulated data set of the usual design (30 specimens in three meaningless groups, 300 variables). See text

7 After deflation, the partial warp variances, summed over their two 
Cartesian components, range over more than six orders of magnitude. 
Multiplied by 1010, they go from 11.8 for the first partial warp, 6.7 for 
the second, 1.1 for the third, ..., down to 0.000004 for the last 25 or 
so. This is clearly incompatible with any representation of the ortho-
normal basis they would need to be on the model of Fig. 1 ff.
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corresponding transformation “factors.” For an analogous 
point referring to principal components rather than factors, 
see the companion to this article by Cardini et al.

In another approach, the low-rank scenario (linear or 
quadratic terms dominant), the dimensionality of the valid 
factors present is low enough, and the sum of the variances 
of the potentially spherical-Gaussian residuals diminu-
tive enough, that the count of true factors contributing to a 
bgPCA scatterplot is only 1 or 2 regardless of the number 
of additional dimensions of noise. This variant is illustrated 
via an evolutionary example (the variation of mammalian 
skulls) in Figures 7 through 10 of Bookstein (2019).

In terms of the typology of integration laid out in Book-
stein (2019), comparisons along a series of deflations with 
increasingly negative slopes would leave a bgPCA essen-
tially invariant if its effect were at very large scale—a 
growth-gradient, for example, would be analogous to the 
single-factor models illustrated in the top row of Fig. 20—
but would efface group separations at small scale should 
they have been fictional after the manner simulated in this 
isotropic Mardia–Dryden distribution. (Thus the defla-
tion technique suggests itself as an explicit analytic tool 
for exploring a hypothesis of heterochrony in a high-p/n 
data set.) Deflation greatly attenuates the signal strength of 
small-scale findings, but so does any other version of PCA; 
so a search for discriminating “characters” at small scale 
would not proceed well by any version of today’s GMM, 
but requires functional or evo-devo arguments instead, fol-
lowed by the explicit construction of both the loadings and 
the scores of any hypothesized factors.

The critique of this section can be tersely summarized 
as follows: the technique of bgPCA is basically untrustwor-
thy, that is, far from ready for general adoption, even by 
disciplinary communities that have been taught tools from 
the early twentieth century such as principal components 
analysis that are mathematically well-characterized already 
in applications to studies involving far fewer variables than 
specimens. The bgPCA method has never been subjected to 
close examination of its remarkably unfortunate tendency 
to exaggerate or simply invent apparent distinctions under 
conditions of high variable count, high variation of group 
size, confounding with within-group factors, and the like. 
This will be the first in the series of summary mantras that 
are the gist of the concluding section of this article.

Concluding Observations

Readers should consider Fig. 10 very thoughtfully. That 
second dimension in the upper panel is not part of the 
model—it is wholly an artifact of the bgPCA method. Then 
the second dimension of the published example below it 
could itself have been entirely a methodological artifact as 

well, a software-hallucinated pattern claim unrelated to any 
evolutionary-biological truth about the genus Pan. If a sin-
gle-factor model on 86 variables for 104 cases can match so 
closely and saliently a bgPCA of the same structure claiming 
the existence of two real factors, a bgPCA that I myself co-
published as recently as eight years ago, clearly something 
is drastically wrong with our toolkit for inferences from mul-
tivariate analysis of data sets of even higher p/n ratio—after 
all, this was a p/n ratio of only 0.83. Likewise the ANOVA 
model in Fig. 12, or its realization as a real object in Fig. 13, 
should be consternating. We should be very chary of analy-
ses that, when applied to classically meaningful explanatory 
structures, give rise to graphics as ludicrous as this match 
of an interaction-free analysis of variance to an airborne 
coffee stirrer.

I offer several weapons (or, in what might prove a bet-
ter metaphor, prophylactics) for our community to wield in 
defending against this class of problems.

1. The bgPCA method can no longer be regarded as just 
another “standard tool” that can be used routinely by 
nonexperts and justified merely by a rote citation to 
earlier publications by me or any other tool developer. 
There are simply not enough theorems of adequate 
depth about how it operates in today’s typically high-
p/n settings. Associated with its many pathologies are 
too many requirements for confirming plots, resampling 
strategies (including deflation), and appropriate chal-
lenges to the inappropriately attractive explanations it 
routinely proffers without adequate justification. Papers 
should no longer appear that, like Détroit et al. (2019), 
Chen et al. (2019), or Mounier and Lahr (2019), simply 
cite Mitteroecker and Bookstein (2011) or some other 
single earlier article as authority for presentation of one 
or more standard bgPCA scatterplots without any of the 
quantitative challenges or alternative interpretations just 
reviewed in “Tools for the Skeptic” section. No further 
bgPCA analyses should be published anywhere without 
being subject to the challenges reviewed in this article, 
followed by the imprimatur of an appropriate multi-
variate expert, and the technique should not be used 
in dissertations or other student work. It is not like the 
other multivariate techniques that our graduate curricula 
teach—even most experts do not yet understand what it 
gets predictably, disastrously wrong.

2. Every published example of a PCA on a data set char-
acterized by more variables than cases must include 
explicit declarations of the values of p and n and their 
ratio. This requirement should be enforced by reviewers 
and journal editors alike. When a previously published 
example is cited as an empirically factual supporting 
argument, the citing sentence should extract the p/n ratio 
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from the text being cited and print it alongside the actual 
citation.

3. Every published example of a bgPCA or the equivalent 
PLS in a high-p/n setting must include challenges to the 
claimed findings that acknowledge a-priori these MPT-
related pathologies. Such challenges must supersede the 
ordinary casewise crossvalidations or permutations of 
group assignment, instead extending to the constructions 
in “Some Aspects of Truth Persist in Spite of the Pathol-
ogies” and “A Potential Defensive Resource: Integration 
Analysis” sections.

4. Analyses that find near-equality of the first two or three 
eigenvalues of a high-p/n PCA or bgPCA should be 
regarded not as evidence for biologically meaningful 
structure of the corresponding ordinations, but con-
trariwise as hints of an underlying sphericity (pattern-
lessness) in the data driving the multivariate analysis. 
(My point here is complementary to the conventional 
proscription against interpreting principal components 
separately, a caution emphasized by many authorities 
from Reyment (1991) to the present.) This advice is 
especially important should group centroids (if grouping 
is the topic) prove to be suspiciously close to equilateral 
in their ordination space. Conversely, if within-group 
factors are apparent in the bgPCA output the analysis 
should be repeated and fictitious sphericity and separa-
tions of clusters checked again after these factors have 
been identified, estimated, and then partialled out of the 
data.

5. As demonstrated in Fig.  17, bgPCA should never be 
used, even by experts, when the range of group sizes is 
wide or when any of the groups are truly tiny. I would 
suggest requiring a count of at least 10 for the smallest 
group before a bgPCA can even be contemplated, let 
alone published.

6. Generally speaking, ordinations by linear models like 
PCA, bgPCA, and PLS should be trusted only to the 
extent that the dimensions they highlight prove to be 
factors, meaning, biological causes or effects of which 
the relevant branches of the biosciences were previously 
aware. Such factors can be expected to persist into the 
bgPCA plots even though the algorithm was designed 
to ignore them. Group separations in high-p/n settings 
that emerge only after factors emerge, after the manner 
of Fig. 20, should be viewed with particular suspicion. 
In particular, claims that axes of separation of group 
averages in GMM analyses are good factors or biologi-
cal explanations require far stronger, geometrically more 
specific prior hypotheses than have been exemplified 
hitherto in our textbooks and our peer-reviewed citation 
classics, and need to be visualized as thin-plate splines 
after they have been computed and sample scores scat-
tered.

7. (This comment is specific to the context of GMM.) Any 
PCA-based technique of mixed landmark/semilandmark 
analysis needs to be recomputed after restriction to only 
the Cartesian coordinates perpendicular to the sliding 
constraints—the coordinates that have not been relaxed 
by the sliding algorithm. Also, any analysis of an ana-
tomical configuration that combines semilandmarks 
with a reasonable number of reasonably distributed 
landmarks needs to be confronted by the parallel analy-
sis that involves only the landmarks, as in Fig. 5.73 (p. 
447) of my 2018 textbook. When the two analyses gen-
erate substantially similar ordinations, then the higher 
the ratio of the larger count of variables to the smaller 
count, the greater the additional confidence in the infer-
ences that follow from the pair.

I am aware of the consequences that would ensue if this 
critique of the bgPCA method ends up widely accepted. The 
trend of increasing evocation of bgPCA in applied papers 
from whatever disciplinary context would be reversed and 
then drop to nearly zero. A substantial number of peer-
reviewed empirical claims that invoke bgPCA as one of their 
analytic tools, such as those three well-publicized announce-
ments of 2019 about human evolution that I named near the 
end of my Introduction, may need to be reargued or weak-
ened, and some dissertation chapters abandoned, and also 
there might need to be a substantial extent of “unlearning” 
by colleagues who have relied on methods such as permuta-
tion testing to assert “statistical significance” for claims of 
biological significance based in high-dimensional pattern 
analyses like those pilloried here. But such costs must be 
paid, because our disciplinary community is responsible for 
having accepted bgPCA into its toolkit of routine methods 
without a proper vetting.

We must not continue to be so naïve about the limits 
of our intuition regarding these high-dimensional “data 
reduction” techniques. Let me put this as bluntly as I can: 
covariance structures on a mere 30 cases in 300 dimensions, 
or any other high-p/n data design, do not resemble scatter 
ellipses on paper in any manner relevant to empirically valid 
explanations of organismal form. In these high-dimensional 
spaces the desideratum of maximizing “explained variance” 
makes no biological sense, not when we can’t even explain 
the list of variables with which we’re working, and likewise 
the notion of valuing more highly the pairs of linear com-
binations that happen to be uncorrelated; and likewise, too, 
the strategy of analyzing group means without attending to 
the structure of multidimensional within-group variability, 
including the standard error of the mean vector that is the 
link to the bgPCA arithmetic.

To my knowledge, prior to my textbook of 2018 no vade-
mecum of applied multivariate statistics for biologists, how-
ever sophisticated, ever warned its readers about the pitfalls 
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of high-p/n PCA as reviewed in Bookstein (2017), of which 
the bgPCA technique dissected here is a particularly blatant 
case. It is not unthinkable that PCA itself no longer makes 
sense in organismal applications now that our data sets can 
comprise such huge numbers of variables. After all, as Jol-
liffe (2002, p. 297) wisely noted,

PCA has very clear objectives, namely finding uncor-
related derived variables that in succession maximize 
variance. If the [phenomena to be explained] are not 
expected to maximize variance and/or to be uncorre-
lated, PCA should not be used to look for them in the 
first place.

The sciences of organismal form are among those for which 
neither maximizing variance nor enforcing noncorrelation 
makes much sense in any megavariate context, whether 
GMM or another—this is probably the formal justification 
of the awareness common to most methodologists (though 
not, perhaps, their colleagues) that scientific interpretations 
should hardly ever be associated with principal components 
of organismal samples. And Jolliffe’s statement applies as 
well to bgPCA as to any other application of PCA in the 
course of analyzing organismal form.8

The scenario in Fig.  1 is an artifice, but those in 
Figs. 8, 10,  11, 20, and 21 are realistic. In the light of 
examples like these, why would any applied biometrician 
of organismal form spend time constructing projections 
optimizing unrealistically symmetric figures of merit like 
“explained variance” or “explained covariance,” instead 
of postulating factor models a-priori, based on established 
biological theories or replicated experimental findings, and 
then testing them against data that were newly accumulated 
for the specific purpose of testing those theories? The sym-
metries of multivariate statistical method are no match for 
the subtleties of organismal form as we currently understand 
its structured variability, its vicissitudes, and its genetic and 
epigenetic control mechanisms. For a much deeper discus-
sion of these matters, including deconstruction of numerous 

historical precursors, see my extended commentary in Book-
stein (2019). If the examples in Figs. 10 or 20 are repre-
sentative, the only reliable dimensions of a bgPCA analy-
sis are those showing the largest within-group variances, 
even though that is the information that the bgPCA method 
was explicitly designed to ignore. Then quite possibly the 
explicit purpose of bgPCA analysis, the study of group aver-
age differences without referring to within-group variability, 
is self-contradictory in GMM and similar high-p/n settings.
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Appendix: Parameters of the Factor Models

This Appendix collects details of the factor models that 
drove six of the figures in this paper for readers who wish to 
explore their parameterization or their variability.

Figure 8. To the standard simulation of 300 i.i.d. Gauss-
ians on three groups of ten cases each are added 0.5 to each 
variable for cases in group 1, 1.0 for each case in group 2, 
and 1.5 for each case in group 3. The method of analysis is 
now PLS because the variables no longer have mean zero. 
As the figure shows, beyond the single real factor modeling 
the position of group 2 midway between groups 1 and 3, 

8 As Yendle and MacFie (1989) noted in the earliest announcement 
of the bgPCA method, when treated as an unweighted sample of 
group averages the components produced by a bgPCA are uncorre-
lated. Such a claim would seem irrelevant to any actual morphoge-
netic argument. In fairness, it must be noted that the journal in which 
their article appeared was aimed at chemists, not biologists—perhaps 
chemists do prefer their factors to be uncorrelated. (Are there any 
-omic fields where between-group associations reliably and numeri-
cally express the interactions of a small number of theoretically 
meaningful causal factors, as in molecular quantum chemistry?) It 
should also be noted that in the first of the two examples of the Yen-
dle–MacFie article, group sizes are identical across the groups, and in 
their second example the subsample counts vary only between 8 and 
12, so the second fatal pathology identified in “A Pathology Arising 
from Inconstancy of Group Specimen Counts” section does not apply.

http://www.biorxiv.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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bgPCA produces in addition a completely fictitious second 
factor that purports to contrast group 2 with the pool of 
groups 1 and 3.

Figure 9. To the standard simulation of 300 i.i.d. Gauss-
ians on three groups of ten cases each are added scores 
of .5+N(0,  1) for groups 1 and 2 and double that (i.e., 
1.0+N(0, 4)) for group 3, where N is a Gaussian of mean 
zero and variance 1 (for groups 1 and 2) or variance 4 (for 
group 3) over the 30 cases of the simulation. As the figure 
shows, beyond the single real factor varying both within 
groups and between group 3 and the other two groups, 
bgPCA produces in addition a completely fictitious second 
factor.

Figure 10 (top). In a rough imitation of the Mitteroe-
cker–Bookstein figure reprinted at bottom, the simulation 
here involves 86 i.i.d. standard Gaussians on a total of 105 
specimens assorted into three arbitrary groups. In parallel 
with the preceding simulation, these 86 measures are all 
incremented by 0.7+N(0, 1) for each case in either of the 
first two groups of 35 and double that for each case in the 
third group of 35.

Figure 11. To the standard simulation of 400 i.i.d. Gauss-
ians on four groups of ten cases each are added 0.5 to each 
variable for cases in group 1, 1.0 for each case in group 2, 
1.5 for each case in group 3, and 2.0 for each case in group 
4. As the figure shows, bgPCA now produces two fictitious 
factors, one quadratic in the group number and one cubic in 
that number, in addition to the single true factor driving the 
simulation.

Figure 12. To the standard simulation of 400 i.i.d. Gauss-
ians on four groups of ten cases each are added factor scores 
as follows: to each variable for each case in groups 3 and 
4, the value 0.5; to each variable for each case in groups 
2 and 4, the value 0.1. As the figure shows, in addition to 
detecting this true first factor, the bgPCA arithmetic splits 
the second factor into two orthogonal dimensions—the true 
factor score plane, with the group means at the corner of a 
rectangle, is represented instead as a twisted surface after 
the fashion of Fig. 13.

Figure 20. In the panels of the upper row, the setting is 
our standard simulation of 300 i.i.d. Gaussians over thirty 
cases assorted arbitrarily into three groups of ten. To the ith 
case of the jth variable is added the value fi × gj where f, a 
single factor score, is a standard Gaussian on 30 cases and 
g, a standard Gaussian on the index of 300 variables, is the 
vector of factor loadings. In the second row, the setting is 
our standard simulation of 400 i.i.d. Gaussians over forty 
cases assorted arbitrarily into four groups of ten. Now to the 
ith case of the jth variable are added values f1i × g1j and 
f2i × g2j, where f1, distributed as a standard Gaussian, is 
the score on factor 1 and f2, 0.5 times a standard Gaussian, 
is the score on factor 2, while g1 and g2 are the correspond-
ing factor loadings distributed each as samples of 400 from 

N(0, 1) as before. As the upper row of the figure shows, the 
single-factor simulation correctly detects the single factor 
along which the groups overlap, but also produces a ficti-
tious second factor separating the groups, while the two-
factor simulation correctly detects a first factor that fails to 
separate the groups, but rotates the true second factor into 
an oblique plane that partly visualizes the correct model 
(overlap of all factor scores across the groups) yet offers, 
in an arbitrary direction orthogonal to that factor, the usual 
completely fictitious group separations.
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