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Abstract
Purpose  Antimalarial drug resistance is a global public health problem that leads to treatment failure. Synergistic drug 
combinations can improve treatment outcomes and delay the development of drug resistance. Here, we describe the imple-
mentation of a freely available computational tool, Machine Learning Synergy Predictor (MLSyPred©), to predict potential 
synergy in antimalarial drug combinations.
Methods  The MLSyPred© synergy prediction method extracts molecular fingerprints from the drugs’ biochemical struc-
tures to use as features and also cleans and prepares the raw data. Five machine learning algorithms (Logistic Regression, 
Random Forest, Support vector machine, Ada Boost, and Gradient Boost) were implemented to build prediction models. 
Implementation and application of the MLSyPred© tool were tested using datasets from 1540 combinations of 79 drugs and 
compounds biologically evaluated in pairs for three strains of Plasmodium falciparum (3D7, HB3, and Dd2).
Results  The best prediction models were obtained using Logistic Regression for antimalarials with the strains Dd2 and HB3 
(0.81 and 0.70 AUC, respectively) and Random Forest for antimalarials with 3D7 (0.69 AUC). The MLSyPred© tool yielded 
45% precision for synergistically predicted antimalarial drug combinations that were annotated and biologically validated, 
thus confirming the functionality and applicability of the tool.
Conclusion   The MLSyPred© tool is freely available and represents a promising strategy for discovering potential synergistic 
drug combinations for further development as novel antimalarial therapies.
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SOMTE	� Synthetic minority over-sampling 
technique

RUS	� Random undersampling
RFE	� Recursive Feature Evaluation
AUC ROC	� Area under the curve receiver 

operating characteristic
TPR	� True Positive Rate
FPR	� False Positive Rate
MLSyPred©-Mal3D7	� Machine learning synergy predic-

tor’s best model for P. falciparum 
strain 3D7

MLSyPred©-MalDd2	� Machine learning synergy predic-
tor’s best model for P. falciparum 
strain Dd2

MLSyPred©-MalHB3	� Machine learning synergy predic-
tor’s best model for P. falciparum 
strain HB3

MLSyPred©-Antb	� Machine learning synergy pre-
dictor’s best model for E. coli 
antibiotics

Introduction

Malaria is considered the most devastating parasitic disease 
in the world. Antimalarial drug resistance is a global public 
health problem that is responsible for the failures of both 
individual malaria treatment and global malaria control. The 
loss of sensitivity to commonly used drugs has resulted in an 
alarming increase in morbidity and mortality [1]. Resistance 
to first-line antimalarial drugs such as chloroquine, other 
quinolines, and artemisinin has caused increasing morbid-
ity and mortality in children worldwide [2]. A common and 
fundamental strategy to overcome drug resistance is the use 
of drug combination therapies, such as artemisinin combi-
nation therapies (ACTs), to slow the development of drug 
resistance [2].

The increasing burden of multidrug-resistant organisms is 
a reality and a global problem, not only for malaria but also 
for multiple microbes. Alarmingly, antimicrobial resistance 
in bacteria, parasites, viruses, and fungi infections is one 
of the most severe global public health threats, resulting in 
increasing cases and deaths, and is predicted to cause 10 
million deaths worldwide per year by 2050 [3]. As an exam-
ple, tuberculosis is projected to become the leading cause 
of death worldwide due to the increasing drug resistance 
of Mycobacterium tuberculosis to approved treatments [4]. 
The MLSyPred© tool described here can be used to predict 
synergistic combinations to improve treatment and prevent 
the development of drug resistance in these diseases.

Drug combinations offer a promising strategy to 
extend the useful lives of drug components and tackle the 
emergence of drug resistance. More importantly, drug 

combinations can exhibit synergism, where the efficacy of 
the combination is greater than the sum of the effectiveness 
of individual drugs [5–8]. Computational methods can pre-
dict synergistic drug combinations prior to laborious and 
expensive wet lab validation with the candidate drugs. There 
are two main types of computational methods for predict-
ing synergistic drug combinations: mechanistic methods 
and machine learning (ML) models [5, 9–18]. Mechanistic 
methods are based on biological processes centered on the 
input–output relationship. In contrast, ML-based methods 
use algorithmic approaches to categorize data or predict 
an outcome. Both computational methods can use diverse 
datasets, such as chemical structures, biological network 
interactions, and omics data. An example of a mechanis-
tic method includes the Ranking-system of Anti-Cancer 
Synergy (RACS), which ranks cancer-related drug pairs on 
drug targeting networks and transcriptomic profiles [19]. 
The Drug-induced genomic residual effect (DIGRE) is a 
mechanistic tool that creates models based on drug response 
curves and gene expression changes after drug treatment to 
predict drug combination effects [14]. DrugComboRanker 
is another tool that ranks potential synergistic drug com-
binations based on genomic information using a Bayesian 
non-negative matrix factorization approach. Some examples 
of ML-based methods include DeepSynergy, a deep learn-
ing approach to predict synergy using chemical fingerprints 
of the drugs and gene expression profiles of a cell line of 
interest as an input [20]. In addition, Cuvitoglu et al. (2019) 
developed an ML classification model to predict drug syn-
ergy pairs using transcriptomic data from cancer cells and 
biological network analysis [21]. Meanwhile, others, such 
as DrugComb [22] and the Probability Ensemble Approach 
[23], predict synergism using the structural composition of 
chemical compounds. However, many available tools have 
only been tested in specific cell lines, types of cancer, or 
specific diseases [24].

Despite the availability of several computational methods 
for predicting drug synergy, there is currently no flexible 
tool that allows the integration of different data types and 
methods to create synergistic predictive models. Mason et 
al. 2017 and Mason et al. 2018 described Combinations 
synergy estimation (CoSynE), which is a  ML method that 
uses compound chemical structures and experimental com-
bination screening data to predict synergistic drug pairs [25, 
26]. The CoSynE tool has been used to predict antimalarial 
and antibiotic drug combinations, but is not widely avail-
able [25, 26]. Due to the limitation of accessing CoSynE, 
we implemented the freely accessible MLSyPred© tool to 
predict antimalarial drug combinations.

Herein, this paper describes MLSyPred©, a data science-
based tool that creates ML-based models to successfully pre-
dict antimalarial drug combinations to be further evaluated 
as treatments. This tool is based on the five essential phases 
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of a data science life cycle, namely, (1) Data Understanding/
Data Pre processing; (2) Data Wrangling; (3) Model Plan-
ning; (4) Model Building/Modeling; and (5) Results.

Materials and Methods

Datasets of Drug Combinations

Three biologically validated datasets of antimalarial strains 
of Plasmodium falciparum (3D7, Dd2, and HB3) [26] 
were used to test the implementation and application of 
the MLSyPred© tool. An antibiotic dataset was tested to 
validate the functionality and applicability of this tool [25]. 
All datasets were derived from the NIH National Center for 
Advancing Translational Sciences public domain resources 
and downloaded for this study. Each dataset was divided into 
training and validation datasets.

The antimalarial dataset included drugs and compounds 
that were biologically evaluated by Mott et al. [27] and 
tested by Mason et al. [26] for three different strains of P. 
falciparum (3D7, HB3, and Dd2). The dataset contained 79 
antimalarials divided into 56 for training and 23 for valida-
tion, resulting in 1540 combinations of compounds paired as 
a training set and 231 for the validation set. The antimalarial 
dataset contained drugs currently used for malaria treatment, 
including dihydroartemisinin, artemether, artesunate, chlo-
roquine, mefloquine, amodiaquine, and piperaquine.

The antibiotic dataset was previously biologically tested 
against Escherichia coli [25]. The dataset contained 24 
antibiotics divided into 18 for training and 6 for validation, 
resulting in a training set of 153 combinations and a vali-
dation set of 15 combinations. The antibiotic dataset con-
tained drugs currently available to treat bacterial infections, 
including chloramphenicol, clarithromycin, erythromycin, 
fusidic acid, gentamicin, rifampicin, spectinomycin, and 
tetracycline.

Computational Applications to Implement 
MLSyPred©

The MLSyPred© tool encompasses several phases to incor-
porate as many modules as needed to manipulate data types 
and computational methods. Different platforms, program-
ming languages, and existing applications were used, such as 
Anaconda Navigator v1.9.12 [28], Integrated Development 
Environment (IDE) Spyder v4.1.5 [29], Jupyter Notebook 
v6.2.0 [28], and RDKit v.2021.03.1 [30]. Anaconda Naviga-
tor was used to launch Jupyter Notebook and IDE Spyder, 
both used in the MLSyPred© tool.

The Jupyter Notebook was used as the baseline interface 
for the MLSyPred© tool to implement the five phases of 
the data science project, as shown in Fig. 1. This platform 

also allows the addition of modules according to the needs 
by using programming languages such as Python v3.9.1, R, 
Java, and C +  + , among others, and provides the ability to 
work online or offline (Fig. 2). In addition, Spyder was used 
to implement different Python modules of the ML model 
included in the different phases of the MLSyPred© tool. 
MLSyPred© is flexible and accepts any module coded in 
any programming language.

Implemented Modules in MLSyPred©

To test the MLSyPred© tool, we implemented several 
modules of the ML-based method (based on Mason et al. 
[25]) following five different phases of MLSyPred©. Fig-
ure 2 shows the modules implemented in each phase of 
the MLSyPred© tool. As input data, we used compound 
chemical structures, i.e., the Simplified Molecular input line 
entry system (SMILES), to extract characteristics, such as 
molecular fingerprints [31]. The RDKit software package 
v.2021.03.1 was used to calculate molecular fingerprints, 
MACCS keys [32], and Morgan fingerprints [33]. The 
MACCS keys and Morgan fingerprint methods generated 
molecular fingerprints for atom membership. MACCS keys 
were calculated with a default key size parameter of 166 
and Morgan fingerprints with 1024-bit and 2048-bit vectors.

An ML-based method (as described by Mason et al. [25]) 
was implemented to include the MLSyPred© tool to cre-
ate the predictive models. We used the Scikit-learn library 
v0.24 [34] to implement ML algorithms. We executed the 
following ML algorithms: Random Forest (RF) [35]; Logis-
tics Regression (LR) [36]; Support vector machine (SVM) 
[37]; Gradient boost (GB) [38]; and AdaBoost (AB) [38].

After training the ML algorithms, different metric evalu-
ations were performed to determine the most precise model. 
First, the confusion matrix [39] was calculated and then the 
metrics: accuracy, precision, recall, F1, and, most impor-
tantly, the AUC ROC (area under receiver operating char-
acteristics) scores [40]. The AUC ROC metric was used to 

Fig. 1   The life cycle of a Data Science Project. Image created with 
BioRender.com
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identify the best model; the highest AUC ROC score was 
the best predictive model for distinguishing between paired 
compounds.

Evaluation Metrics

Each model was evaluated using the following machine 
learning metrics: AUC ROC, precision, accuracy, recall 
scores, and F1 scores. These metrics were calculated from 
balanced weights for the antibiotic and Dd2 antimalarial 
datasets and unbalanced weights for the 3D7 and HB3 
antimalarial datasets. Then, the optimal number of features 
was computed for each dataset, and with these calcula-
tions, the ML model algorithms were run to select the 
best-performing model for each dataset based on the AUC 
ROC scores. Subsequently, the best-performing model 

parameters for each dataset were identified and annotated. 
Precision scores indicate that positive class predictions 
are genuinely positive, whereas recall quantifies positive 
class predictions from the total positive classes from the 
dataset. In summary, F1 scores balance both precision and 
recall scores. High precision and recall scores signify that 
the best-performing model yields all the correctly pre-
dicted positive results. Accuracy scores indicate the ratio 
of correctly predicted classes to total observations in sym-
metrical datasets; therefore, high accuracy is expected to 
assess the positive predictions of the model. Evaluation 
metrics for the three antimalarial strain ML-based models 
are listed in Table 1. In addition, the sampling method 
was considered, and the sampling process was repeated 
1000 times to prevent data bias, and an average was taken 
as the result.

Fig. 2   Overview of the MLSyPred© tool for each phase of the MLSyPred© tool. Image created with BioRender.com

Table 1   The evaluation metrics for the best predictive ML model of the antimalarial dataset per strain, including the dataset, the ML algorithm, 
the number of most relevant features, and the assigned name for the best model

Evaluation metrics include AUC ROC, precision, recall, and F1 scores. All of these models correspond to the 2048-Morgan fingerprint features

Dataset ML algorithm Most 
relevant 
features

AUC 
ROC 
score

Accuracy score Precision score Recall score F1 score Model name

Antimalarial-strain 
3D7

Random Forest 40 0.69 0.82 0.58 0.33 0.42 MLSyPred©-
Mal3D7

Antimalarial-strain 
Dd2

Logistic Regression 44 0.81 0.79 0.45 0.76 0.59 MLSyPred©-
MalDd2

Antimalarial-strain 
HB3

Logistic Regression 30 0.70 0.68 0.32 0.64 0.43 MLSyPred©-
MalHB3
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Validation of Predicted Drug Combinations 
from Existing Drug Combinations

To evaluate and validate the MLSyPred© tool, 23 com-
pounds were selected for pairwise validation, and 253 
combinations were evaluated using the strain MLSyPred©-
MalDd2 and the model with the best AUC ROC score, Dd2. 
The validated drug combinations (9) predicted to generate 
synergistic combinations are listed in Table 2. The synergis-
tic combinations obtained using the MLSyPred© tool were 
validated using a dataset from Kalantar-Motamendi et al. 
[41].

Results

MLSyPred© Phase 1—Data Understanding/
Preprocessing

Phase 1 consisted of three modules to identify information 
and implement Data Preprocessing to create the training and 
validation datasets.

Module 1: Generating Fingerprints

This module was created to generate bit vectors for each 
drug individually by computing the MACCS key and/or 
Morgan fingerprints (Fig. 3A). The input data were drug 
names and their SMILES representations (Fig. 3A—input). 
Scripts were implemented to compute: (1) 166-MACCS 
key fingerprints, (2) 1024 Morgan fingerprints, and (3) 
2048-Morgan fingerprints. To create bit vectors, the MACCS 

key or Morgan fingerprints are assigned ‘1’ when a given 
substructure is present in the drug or ‘0’ if the substructure 
is absent (Fig. 3A—output).

Module 2: Generating Features

The output data were the drug name and a bit vector for each 
drug corresponding to the fingerprints (Fig. 3B—output). 
This module was designed for two general tasks:

(1)	 generate pairwise drug combinations using all drugs, 
and

(2)	 for each pairwise drug combination (e.g., Drug1 with 
Drug2), compute the average of the fingerprints (I fin-
gerprints) that correspond to each compound as:

∑

i(Drug1[i],Drug2[i])∕2 where
i = 1..166 for MACCS keys fingerprints or
i = 1..1024 for 1024 Morgan fingerprints or
i = 1..2048 for 2048-Morgan fingerprints.
The input file included drug identification and the bit vec-

tor that represented the absence (0) or presence (1) of the 
substructure in the compound (Fig. 3B—input). The output 
file (Fig. 3B—output) included the drug combination ID 
(e.g., Drug1_Drug2) along with the computed feature values 
as follows:

0.5 if one of the two drugs included fingerprints equal to 
1, i.e., {Drug1 = 1,Drug2 = 0orDrug1 = 0,Drug2 = 1.

0 if the two drugs included fingerprints equal to 0, i.e., 
{Drug1 = 0,Drug2 = 0.
1 if the two drugs included fingerprints equal to 1, i.e., 
{Drug1 = 1,Drug2 = 1.

Module 3: Creating Raw Training and Validation Dataset

Once all the features were generated, the training and valida-
tion datasets were created using Module 3. The script input 
files were as follows: a) the output of module 2 and b) an 
external file with the labels (Fig. 3C—input). The second 
file was included per line: (a) the ID of pairwise drug com-
binations and (b) their pharmacodynamic activity, that is, 
‘YES’ if there was synergism between these two drugs and 
‘NO’ otherwise. The output of this module (Fig. 3C—out-
put) resulted from merging the features (fingerprints) previ-
ously created for the training validation sets with the existing 
labels from the external file.

MLSyPred© Phase 2—Data Wrangling

Phase 2 consisted of two modules to convert the data into an 
acceptable format for further analysis.

Table 2   Synergistic drug combinations obtained in the validation 
dataset of the antimalarial Dd2 strain using Logistic Regression as the 
best predictive model

These predictions were determined by a binary classification of Syn-
ergy (Yes/No) using 2048-Morgan fingerprint features. The shaded 
grey row represents the synergistic drug combination confirmed by 
Kalantar-Motamendi et al.   [41]

Drug 1 Drug 2 Synergy 
Predic-
tion

apicidin dihydroergotamine Yes
apicidin hydroxyzine Yes
apicidin virginiamycin S1 Yes
dihydroergotamine trifluoperazine Yes
guanethidine trifluoperazine Yes
hydroxyzine dihydroergotamine Yes
sorafenib hydroxyzine Yes
sorafenib trifluoperazine Yes
virginiamycin S1 dihydroergotamine Yes
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Module 4: Data Cleaning

This module was created to clean the raw training and vali-
dation datasets. First, the features (file columns) with the 
same values for all drug combinations were removed from 
the training set. For example, this column was deleted if 
an X feature had values equal to “0” or “1” for all drug 
combinations. After the features (file columns) from the 
training dataset, the same characteristics (columns) were 
removed from the validation set. Figure 3D—input repre-
sents an example of the input format data for this script. 
The output file contained data without meaningful features 
(columns), as shown in Fig. 3D—output.

Module 5: Eliminate Correlated Features

This module was designed to extract highly correlated 
features that may cause overfitting (an overview of this 
module is shown in Fig. 3E). A clean training dataset was 
used as the input (an example is shown in Fig. 3D—out-
put). A Pearson correlation method (implemented as a 
Python function was used to compute the feature correla-
tion matrix. This function was defined with the default 
parameter ‘Pearson’ to calculate a correlation index (Ci) 
for all pairwise characteristics (or columns). The correla-
tion matrix indices had values between 0 and 1. A thresh-
old of 0.8 was used, which means:

Fig. 3   Representations of the input and output datasets for each module in the Data Understanding and Data Wrangling phases. Image created 
with BioRender.com
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(a)	 if Ci ≥ 0.8, these two characteristics are directly cor-
related.

(b)	 if −0.8 < Ci < 0.8, these two characteristics are not cor-
related.

(c)	 if Ci ≤ −0.8, these two characteristics are inversely cor-
related.

Subsequently, all the direct or inversely correlated pairs 
were removed from the training and validation datasets.

MLSyPred© Phase 3—Model Planning

Oversampling/Undersampling

Two different sampling methods, oversampling and under-
sampling, were implemented to manage unbalanced data. 
Imbalanced data usually refer to a classification problem in 
which the number of observations per label or class is not 
evenly distributed [42]. In this case, there were many data/
observations for one label or class (referred to as the major-
ity label or class) and fewer observations for one or more 
other labels or classes (referred to as the minority labels 
or classes). In this module, we implemented the synthetic 
minority over-sampling technique (SMOTE) [43] for over-
sampling and random undersampling (RUS) [44] for under-
sampling. In addition, a class weight technique was applied 
in this module to balance the data using the Scikit Learn 
library [34].

Recursive Feature Evaluation (RFE)

Recursive feature selection involves selecting features (col-
umns) that allow ML algorithms to obtain the highest accu-
racy [45]. The Scikit Learn library [34] determined the most 
relevant features. Five ML algorithms (RF, LR, SVM, GB, 
and AB) were used to select the most critical features that 
allowed us to obtain the best predictive models.

MLSyPred© Phase 4—Model Building

Training the ML Algorithms Using CV to Develop 
the Models

Five ML algorithms were implemented to train the input 
dataset and establish the parameters using the validation 
dataset. Here, cross-validation (CV) was used to compare 
and select the best model for the predictive modeling prob-
lem. A size of k of five was used as the default.

Validate the Developed Models Using the Metrics

Here, the models learned from the step and validation data-
sets were used to compute a confusion matrix to determine 

the accuracy, precision, and AUC ROC scores. The best pre-
dictive model was the model with the highest ROC value. 
Therefore, the best model can be used to predict other syner-
gistic drug combinations for the domain and dataset in which 
it was trained, such as antibiotics, antimalarials, or any other 
drug combination.

MLSyPred© Tool Phase 5—Results

An antimalarial drug combination validated dataset [26] 
of three P. falciparum strains [27] was used to test the 
MLSyPred© framework. The following fingerprints/bit 
vectors were calculated as characteristics for the antima-
larial drug combination dataset: 1024 Morgan fingerprints 
and 2048-Morgan fingerprints. The selected models were 
obtained using 2048-Morgan fingerprints from the anti-
malarial dataset, as listed in Table 1. The best model was 
obtained to predict the synergistic drug combinations for 
the three strains of P. falciparum. The AUC ROC curves 
for the 3D7, HB3, and Dd2 strains are shown in Fig. 4A–C, 
respectively.

Validation of Predicted Synergistic Drug 
Combinations Using MLSyPred©

Of the 23 compounds, 20 combinations from 12 individual 
compounds were predicted to have synergistic effects. These 
compounds were subjected to pairwise experimental valida-
tion, and 9 of 20 combinations exhibited synergy, represent-
ing 45% of the expected prediction (precision). Synergistic 
combinations are listed in Table 2.

Application of a Predictive Drug Combination 
from Other Antimicrobial Dataset

A dataset of antibiotics tested against E. coli [25] was used 
to evaluate the application of the MLSyPred© framework to 
other datasets of combination antimicrobial drugs. The 166-
MACCS key fingerprints were computed as the features of 
this dataset. The best predictive model was obtained using 
166-MACCS key fingerprints from the antibiotic dataset, as 
shown in Table 3.

Best ML Predictive Model for Antibiotic Dataset

The best predictive model was obtained with the highest 
AUC ROC score (AUC ROC = 0.88), which was the Random 
Forest (Table 3). This model was named as MLSyPred©-
Antb. The AUC ROC curves for the antibiotic dataset are 
shown in Fig. 5.
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Discussion

Best Predictive ML Model for Antimalarial Dataset

The dataset included data from three Plasmodium parasite 
strains: 3D7, HB3, and Dd2. The best predictive models 
were obtained with the Logistic Regression for strains 

Dd2 and HB3 with AUC ROC scores of 0.81 and 0.73, 
respectively (Table 1). For the 3D7 strain, the best predic-
tive model was obtained with the Random Forest, with 
AUC ROC scores of 0.69 (Table 1). These models were 
named MLSyPred©-Mal3D7, MLSyPred©-MalDd2, and 
MLSyPred©-MalHB3. The most relevant features for each 
model (40, 44, and 30, respectively) revealed the most 
related substructures associated with the prediction of syn-
ergism in combinatorial antimalarial therapies for each 
strain. Furthermore, the intersection of the most relevant 
characteristics for each strain could reveal the most impor-
tant chemical substructures related to the available combi-
natorial antimalarial therapies. These results were consist-
ent with a previous study that reported similar results for 
the three antimalarial datasets [26].

To evaluate the performance of the best predictive model 
for each antimalarial strain, we chose to highlight the preci-
sion, precision, recall, and F1 scores (Table 1). Among the 
three antimalarial strain datasets, the Dd2 strain showed the 

Fig. 4   AUC ROC curves for the ML algorithms (5) trained with the 
antimalarial datasets. A. 3D7 strain (Random Forest 0.69), B. Dd2 
strain (Logistic Regression 0.81), and C. HB3 strain (Logistic Regres-
sion 0.73). The AUC ROC curves are determined by the True Posi-

tive Rate and the False Positive Rate of each model; the higher the 
score, the better the model to distinguish the predictions of ‘synergy’ 
versus ‘no synergy’

Table 3   The best predictive model for the antibiotic dataset, includ-
ing the ML algorithm, the number of most relevant characteristics, 
the AUC ROC score, and the assigned name for the best predictive 
model corresponding to the 166-MACCS key feature fingerprints

Dataset ML algo-
rithm

Most 
Relevant 
Features

AUC ROC 
score

Model name

Antibiotics Random 
Forest

48 0.88 MLSyPred©-
Antb
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best parameters, since most scores generated values higher 
than 0.5. An accuracy score of 0.45 indicates that 45% of 
the predicted synergistic combinations are correct, as con-
firmed by the high F1 score. These results were consistent 
with those of a previous study that reported similar results 
for the three antimalarial datasets; however, some scores 
showed relative improvements, such as recall, accuracy, and 
F1 scores for the Dd2 strain [26].

Validation of Predicted Synergistic Drug 
Combinations Using MLSyPred©

The existing drug combinations were corroborated by a 
previous study using differential gene expression data [41] 
(Table 2). Similarly, we identified one combination that was 
precisely predicted to yield synergism: apicidin and hydrox-
yzine. The predicted drug combinations generated from the 
existing drug combinations validated the MLSyPred© tool 
and model prediction [26]. These results were in agreement 
with those reported by Mason et al. [26]. MLSyPred© rep-
resents a promising tool for discovering potential synergistic 
drug combinations.

Application of Predictive Drug Combination 
from Other Antimicrobial Datasets

The 48 most relevant features of MLSyPred©-Antb revealed 
the essential substructures that should be considered to 
determine the synergy in antibiotic combinatorial thera-
pies. These results were consistent with a previous study 

that reported similar results for the antibiotics dataset, with 
an AUC ROC score of 0.88 using the Random Forest [25] 
(Table 3). The additional validation of the MLSyPred© tool 
provided by the antibiotic dataset demonstrates the flexibility 
and applicability of the tool, not limiting itself to the type 
of disease.

Conclusion

Herein, we report the implementation, application, and avail-
ability of a freely available computational tool, MLSyPred©, 
built upon a data science life cycle to predict synergistic 
antimalarial drug combinations based on shared fingerprint 
features of the chemical structure of the compound. We 
describe the MLSyPred© tool, which incorporates methods 
to create predictive models for compound-drug synergistic 
combinations, eventually converts them into drug combi-
natorial therapies. The tool consists of several modules, 
including generating fingerprints, creating features, cleaning 
raw data, solving imbalanced data issues, selecting the most 
critical features, training and evaluating ML algorithms, and 
obtaining the final predictive models. To our knowledge, this 
tool is the first freely available tool based on a data science 
life cycle project that allows the incorporation of methods to 
create models for predict synergism in combinatorial drug 
therapies. The tool allows for easy reproducibility of the pro-
cess to obtain the predictive models. The evaluation metrics 
showed promising functionality and applicability for pre-
dicting other drug combinations, with good precision (0.45) 
and F1 (0.59) scores. Moreover, the validation of predictive 
drug combinations by pairwise and expression experiments 
corroborated synergistic drug predictions. Drug interaction 
assays, such as isobologram analysis, can validate the pre-
dicted combinations to verify precision and accuracy, thus 
increasing and improving the tool for user requests. The 
MLSyPred© tool, as presented here, can expand the predic-
tion of synergistic drug combinations to new antimalarial 
compounds and drugs as a mechanism to combat the drug 
resistance worldwide. Furthermore, this tool can be applied 
to other diseases and conditions by priming annotated and 
consistent data in a fully open-source program. The MLSy-
Pred© tool is a valuable contribution to predicting effective 
drug combinations for multiple diseases, freely available to 
researchers and scientists worldwide.
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