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Abstract
Purpose  Derogenes ruber Lühe, 1900, the type-species of the genus Derogenes Lühe, 1900, is a poorly known derogenid 
digenean. The original description of this species was not illustrated and aspects of the morphology of the parasite from the 
type-host remain scarce. Available records of this species were brief and/or lacked illustrations and were based on morphol-
ogy alone. Additionally, molecular data for Derogenes spp. are warranted to untangle species complexes as they provide a 
better assessment of interspecific genetic divergence.
Methods  Derogenes ruber is redescribed based on newly collected specimens from the gall bladder of its type-host Cheli-
donichthys lastoviza (Bonnaterre, 1788) collected in the Western Mediterranean off the Algerian coast during 2017–2019 
and molecular data are provided using a partial fragment of the nuclear 28S ribosomal RNA gene (28S rRNA), the internal 
transcribed spacer 2 (ITS2) and a fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene.
Results  We herein provide a detailed illustrated redescription and morphometric data of D. ruber from its type-host C. last-
oviza. We report a new geographical record (off Algeria) for it. Derogenes ruber is also genetically characterised for the first 
time. Species/lineages of Derogenes were recovered in five strongly supported reciprocally monophyletic clades: (i) D. ruber 
from C. lastoviza off Algeria; (ii) D. lacustris from Galaxias maculatus (Jenyns) off Argentina; (iii) Lineage “D. varicus 
DV1” (D. varicus sensu stricto) from fish hosts in the White and Barents seas and the North Sea; (iv) Lineage “D. varicus 
DV2” from mollusc hosts in the White Sea; and (v) Lineage “D. varicus DV3” from Eumicrotremus fedorovi Mandrytsa. 
in the Pacific Ocean. Hence, comparison of the newly generated sequences with other available data for Derogenes species 
supports the distinction of D. ruber confirming its taxonomic status and helping assess interspecific variation. Comparison 
of D. ruber with the closely related species Derogenes latus revealed overlaps in morphometric data and the validity of the 
latter species is questioned.
Conclusion  The combination of morphological and molecular data provided for D. ruber provides a firm foundation for 
further investigations of Derogenes spp. Although we do describe herein material of D. ruber from the type-host, given that 
the occurrence of a single Derogenes species in various hosts has been challenged by molecular data, and both D. lacustris 
and D. varicus sensu stricto had been genetically proven to occur in various hosts, D. ruber and D. latus may be indeed syn-
onymous. Additional sequencing effort on Derogenes spp. will strengthen systematic comparative studies and evolutionary 
relationships within the Derogenidae in general.
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Introduction

Derogenids are hemiuroid digenean gut parasites, occurring 
in fishes. Throughout most of their taxonomic history, they 
were accommodated within a broad concept of the family 
Hemiuridae Looss, 1899 [1]. The Derogenidae Nicoll, 1910 
was first used at full family rank by Dollfus [2] but was 
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initially erected at the subfamily level by Nicoll [3] as the 
Derogeninae Nicoll, 1910 (referred to as the Derogeninae 
Dollfus, 1950 by Skrjabin and Guschanskaja [4]). The lat-
ter authors included the subfamily within the Halipegidae 
Poche, 1926, but the Derogenidae has priority [1].

Gibson and Bray [5] established the initial foundational 
classification of the Derogenidae, offering identification 
keys for its subfamilies and genera. Within this context, 
Gibson [1] acknowledged the presence of three subfamilies: 
Derogeninae Nicoll, 1910, Halipeginae Poche, 1926, and 
Gonocercinae Skrjabin & Guschanskaja, 1955. At present, 
the Derogenidae comprises only two subfamilies: Halipegi-
nae Poche, 1926, and Derogeninae [1]. This adjustment in 
classification occurred due to a molecular study conducted 
by Sokolov et al. [6], who elevated the Gonocercinae to the 
status of a full family.

Five valid genera are included in the Derogeninae: 
Derogenes Lühe, 1900, Gonocercella Manter, 1940 [7], 
Leurodera Linton, 1910, Progonus Looss, 1899, and Derog-
enoides Nicoll, 1913 [1, 8].

Records of derogenine derogenids in the Mediterranean 
are rare [9]. Thus, previous records of Derogenes spp. in this 
region include D. adriaticus Nikolaeva, 1966, D. crassus 
Manter, 1934, D. fuhrmanni Mola, 1912, D. latus Janisze-
wska, 1953, D. minor Looss, 1901, D. ruber Lühe, 1900, 
and D. varicus (Müller, 1784) [10, 11]. However, most of 
the records lack morphological information justifying cor-
rect species identification and making the assessment of 
host–parasite associations difficult if not impossible. For 
example, only in the Mediterranean, D. varicus has been 
reported in 15 hosts of 13 unrelated fish families [11] indi-
cating that this “generalist” species may represent a species 
complex. This has been suggested by Bray et al. [12] and 
Køie [13], and a recent study based on multigene sequence 
data supported this suggestion by providing evidence for 
the existence of four genetic lineages of D. varicus [14, 15].

Derogenes ruber, the type-species of the genus was less 
frequently encountered and reported. The type-material of 
D. ruber was described by Lühe [16] from the gall-bladder 
of the streaked gurnard Trigla lineata Gmelin, 1789 (a junior 
synonym of Chelidonichthys lastoviza (Bonnaterre, 1788)) 
off Rovinj, Croatia, Adriatic Sea. This trematode is known 
from the short original description that lacked illustrations, 
and a subsequent general illustration, based on a record 
and identification from a different host, the piper gurnard 
Trigla lyra L. from a close locality, off Split, Croatia [17]. 
Bouguerche et al. [15] redescribed this species based only 
on two specimens found in Arthur Looss’s collection and 
did not thus provide any molecular data. Other reports of 
this derogenid are from the North-East Atlantic (off Azores, 
Canary and Cape Verde Islands [18], and off Spain [19].

During parasitological surveys of helminths of fishes 
from off the southern coasts of the Western Mediterranean 

off Algeria, we collected representatives of D. ruber from 
the gall bladder of its type-host, C. lastoviza. The aim of 
the present study is to provide a formal redescription of D. 
ruber and to characterise the species genetically based on 
partial 28S ribosomal RNA gene (28S rRNA), internal tran-
scribed spacer ITS2, and a fragment of the mitochondrial 
cytochrome c oxidase subunit 1 (cox1) gene sequences.

Materials and Methods

Collection and Sampling of Fish

A total of 168 specimens of C. lastoviza were collected 
during 2017–2019, from local fishermen immediately after 
capture in different regions off the Algerian coast: Ghaz-
aouet (35° 06′ 0′′ N, 1° 51′ 0′′ W), Cherchell (36° 36′ 31′′ N, 
2° 11′ 50′′ E), Bouharoune (36° 37′ 24′′ N, 2° 39′ 17′′ E), 
Alger (36°  45′  8′′  N, 3°  2′  31′′  E), Bordj el Bahri 
(36° 47′ 26′′ N, 3° 14′ 59′′ E), Ain Taya (36° 47′ 30′′ N, 
3° 17′ 20′′ E), Reghaia (36° 43′ 60′′ N, 3° 21′ 0′′ E), Cap Dji-
net (36° 52′ 37′′ N, 3° 43′ 23′′ E), and Dellys (36° 54′ 48′′ N, 
3° 54′ 51′′ E). Fish specimens were kept on ice and trans-
ferred immediately to the laboratory, identified using the 
key [20, 21], and examined on the day of purchase. Viscera 
were placed in separate Petri dishes containing seawater 
and observed under a Zeiss microscope for the presence of 
digeneans.

Morphological Methods

Live digeneans were killed and fixed in near-boiling water. 
Specimens for morphological analysis were fixed under 
cover-glass pressure in Bouin’s fluid [10], then preserved 
in 70% ethanol, stained with acetic carmine, dehydrated 
through a graded alcohol series, cleared in clove oil, and 
mounted in Canada balsam as permanent mounts. Five 
specimens were preserved immediately in 96% ethanol for 
molecular characterisation and were processed as hologeno-
phores (sensu Pleijel et al. [22]).

Permanent mounts of the hologenophores, consisting 
of 2/3 of the body (posterior third excised and used for 
sequencing), stained and mounted in Canada balsam. Draw-
ings were made using a Zeiss microscope (Université des 
Sciences et de la Technologie Houari Boumediene, USTHB) 
and a Nikon Eclipse i80 microscope with DIC (differential 
interference contrast) (Swedish Museum of Natural History, 
SMNH) equipped with a drawing tube, and scanned and 
redrawn with Adobe Illustrator 2023, version 28.0.

Measurements are in given in micrometres and presented 
as the range followed by the mean in parentheses. Voucher 
material was deposited at the Swedish Museum of Natural 
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History (SMNH), Stockholm, Sweden under accession num-
bers SMNH 218781–SMNH 218 805.

Molecular Methods

Genomic DNA was extracted from a total of five holog-
enophores, and genetic sequence data were generated for 
three genetic markers: a partial region of the mitochon-
drial cytochrome c oxidase subunit 1 gene (cox1), the sec-
ond internal transcribed spacer region (ITS2 rDNA), and 
the large (28S) ribosomal RNA gene. A small fragment of 
each hologenophore (posterior third) was placed in a 1.5 ml 
microcentrifuge tube containing 20 μL buffer ATL (Qiagen, 
Hilden, Germany). For extraction of genomic DNA (gDNA), 
20 μL buffer ATL and 20 μL proteinase K were added to 
each sample, followed by vortexing and incubation in an 
incubating microplate shaker at 56 °C and 300 rpm over-
night. The lysed samples were processed to obtain gDNA 
following the manufacturer’s instructions for gDNA extrac-
tion using the Qiagen QiAmp DNA Microkit. Polymerase 
chain reaction (PCR) amplification was performed in 25 µl 
reaction mix using Illustra Hot Start Mix RTG (0.2 µl) reac-
tion kit (GE Healthcare Life Sciences, Uppsala, Sweden). 
The reaction mix consisted of 1 µl (0.4 µM) of each primer, 
2 µl template DNA, and 21 µl nuclease-free water. The 
primer set JB3 (5′-TTT TTT GGG CAT CCT GAG GTT 
TAT-3′) and COI R-Trema (5′-CAA CAA ATC ATG ATG 
CAA AAG G-3′) were used to amplify a fragment the cox1 
gene [23]. The thermocycling profile consisted of an initial 
denaturation step at 94 °C for 5 min, followed by 35 cycles 
of denaturation at 94 °C for 30 s, annealing at 45 °C for 
30 s, and extension at 72 °C for 1 min, with a final exten-
sion step at 72 °C for 10 min [14]. Primers, amplification, 
and sequencing protocols for the 28S rDNA region fol-
lowed Pérez-Ponce de León et al. [24] and García-Varela 
and Nadler (2005) [25]. The thermocycling profile consisted 
of an initial denaturation step at 94 °C for 3 min, followed 
by 35 cycles of denaturation at 94 °C for 60 s, annealing at 
54 °C for 60 s, and extension at 72 °C for 1 min, with a final 
extension step at 72 °C for 7 min. ITS2 rDNA spacer was 
amplified using the primers 3S [26] and ITS2.2 [27] and 
the following thermocycling profile: an initial denaturation 
step at 94 °C for 3 min, followed by 35 cycles of denatura-
tion at 94 °C for 1 min, annealing at 54 °C for 1 min, and 
extension at 72 °C for 1 min, with a final extension step at 
72 °C for 7 min. PCR products were purified (Ampure XP 
Kit, Beckman Coulter, Indianapolis, USA) and sequenced 
in both directions on a 3730 l DNA Analyzer 96-capillary 
sequencer (Applied Biosystems, Foster City, CA, USA). We 
used CodonCode Aligner version 3.7.1 software (Codon 
Code Corporation, Dedham, MA, USA) to edit sequences 
and compared them to the GenBank database content using 
BLAST. The newly generated sequences are deposited in the 

GenBank database under the accession numbers OQ919798-
OQ919804, OQ919806, OR245546, and OR245386.

Phylogenetic analyses were performed using the newly 
generated sequences of D. ruber and those for Derogenidae 
species available in GenBank (Table 1). Alignments for each 
gene region were constructed in AliView [28] and trimmed 
to the length of the shortest sequence. Nucleotide substitu-
tion models for phylogenetic analyses using the maximum-
likelihood method were estimated using MEGA11 [29]. 
The best-fit models selected were the Kimura 2-parameter 
model with gamma distributed amongst-site rate variation 
(K2 + G) for the 28S rDNA alignment, Kimura 2-parameter 
(K2) model for the ITS2 alignment, and Tamura-Nei model 
(TN93) with estimates of invariant sites and gamma distrib-
uted amongst-site rate variation (HKY + I + G) for cox1. All 
trees were constructed in MEGA11, with 500 replications. 
Genetic distances [uncorrected p-distance model (Kimura 
1980)] were computed with MEGA11.

Results

Family Derogenidae Nicoll, 1910
Subfamily Derogeninae Nicoll, 1910
Genus Derogenes Lühe, 1900
Derogenes ruber Lühe, 1900 (Fig. 1 A-E)
Type-host: Streaked gurnard Chelidonichthys lastoviza 

(syn. Trigla lineata) [16].
Other reported host: Piper gurnard Trigla lyra [17].
Type-locality: Off Rovinj, Croatia, Adriatic Sea [16].
Other localities: Off Split, Croatia, Adriatic Sea [17]; off 

Azores, Canary and Cape Verde islands [18] and off Spain 
[19], North-East Atlantic; Off Trieste, Italy, Western Medi-
terranean [15]; off Algeria, Western Mediterranean, present 
study.

Site in host: Gall bladder.
Other sites in host: Intestine [15].
Voucher material: A total of 25 voucher specimens are 

deposited in the collections of the Swedish Museum of Natu-
ral History, Stockholm (SMNH 218781- SMNH 218805) 
including 5 hologenophores (SMNH 218785, GenBank 
OR245386, OQ919806, OQ919799; SMNH 218786, 
GenBank OR245546, OQ919798; SMNH 218782, Gen-
Bank OQ919801, OQ919800; SMNH 218785, GenBank 
OQ919804; SMNH OQ919802, OQ919803).

Redescription

[Based on 20 specimens mounted in toto and 5 holog-
enophores, metrical data are provided in Table 2.] Body 
stout, fusiform (Fig. 1A, B), widest at ventral sucker level. 
Tegument smooth. Pre-oral lobe present. Oral and ventral 
suckers well developed; oral sucker ventro-subterminal, 
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Table 1   Hosts, locality, and GenBank accession data for the sequences of Derogenes spp. and halipegine derogenids analysed in this study

Species/lineage Host Locality GenBank ID Source

28S rDNA ITS2 rDNA cox1

D. ruber Chelidonichthys lastoviza Western Mediterranean, off 
Algeria

OQ919799 OQ919806 OR245386 Present study

Chelidonichthys lastoviza Western Mediterranean, off 
Algeria

– OQ919798 OR245546 Present study

Chelidonichthys lastoviza Western Mediterranean, off 
Algeria

OQ919804 Present study

Chelidonichthys lastoviza Western Mediterranean, off 
Algeria

OQ919800 OQ919801 OQ919800 Present study

Chelidonichthys lastoviza Western Mediterranean, off 
Algeria

OQ919803 OQ919802 Present study

D. varicus lineage DV1 Limanda limanda White Sea, Keret Archi-
pelago

- OM807173 [14]

Gadus morhua White Sea, Keret Archi-
pelago

– OM762003 – [14]

Anarhichas lupus White Sea, Keret Archi-
pelago

OM761965 OM762005 OM807176 [14]

Limanda limanda White Sea, Keret Archi-
pelago

– OM762006 [14]

Eleginus nawaga White Sea, Keret Archi-
pelago

OM761967 OM762007 OM807178 [14]

Limanda limanda White Sea, Keret Archi-
pelago

OM761968 – [14]

Clupea pallasii White Sea, Keret Archi-
pelago

OM761969 OM762009 [14]

Clupea pallasii White Sea, Keret Archi-
pelago

– – OM807181 [14]

Gadus morhua Barents Sea, Dalniye 
Zelentsy

OM761971 – OM807182 [14]

Myoxocephalus scorpius Barents Sea, Dalniye 
Zelentsy

OM761973 OM762013 OM807184 [14]

Triglops murrayi White Sea, Keret Archi-
pelago

OM761976 OM762016 [14]

Gadus morhua White Sea, Velikaya Salma 
Strait

– OM762015 [14]

Merlangius merlangus Skagerrak, North Sea – – OQ916450 [15]
Merlangius merlangus Skagerrak, North Sea – – OQ916440 [15]
Merlangius merlangus Skagerrak, North Sea – – OQ916442 [15]
Merlangius merlangus Skagerrak, North Sea – – OQ916445 [15]
Merlangius merlangus Skagerrak, North Sea – – OQ916444 [15]
Merlangius merlangus Skagerrak, North Sea – – OQ916437 [15]

D. varicus lineage DV2 Hippoglossoides plates-
soides

North Sea AY222189 [45]

Buccinum scalariforme White Sea, Keret Archi-
pelago

OM761977 a OM762017 a [14]

Amauropsis islandica White Sea, Keret Archi-
pelago

OM761989 OM762029 [14]

Euspira pallida White Sea, Keret Archi-
pelago

– OM762030 OM807194 [14]

Euspira pallida Russia – OM762031 OM807195 [14]
D. varicus lineage DV3 Eumicrotremus fedorovi North Pacific MW504598 – [46]

Eumicrotremus fedorovi North Pacific MW504599 – [45]
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subglobular-to-globular, wider than long; ventral sucker 
larger than oral sucker, spherical, located in posterior 
half of body. Forebody somewhat longer than hindbody. 
Prepharynx absent. Pharynx well developed, subglobular, 
muscular. Oesophagus short, barely visible, opening pos-
teriorly via sphincter (Fig. 1E) to join intestinal bifurca-
tion in anterior half of forebody, immediately posterior 
to pharynx. ‘Drüsenmagen’ not observed. Caeca broad, 
thick walled, extending into hindbody, reaching beyond 
gonads, terminating close to posterior extremity (Fig. 1C). 
Termination of caeca often obscured by eggs.

Testes two, entire, rounded, symmetrical, pre-ovarian, 
posterior to ventral sucker and separated by uterine coils. 
Seminal vesicle external, tubular, thin-walled, in fore-
body. Pars prostatica long, tubular, surrounded by numer-
ous gland cells, extends between distal end of seminal 
vesicle and sinus-sac. Metraterm protruding along with 
ejaculatory duct into sinus-sac forming hermaphroditic 
duct (Fig. 1E). Sinus-sac muscular. Sinus-organ muscu-
lar, conical, projecting into genital atrium. Genital pore 

ventro-median, posterior to pharynx, at level of intestinal 
bifurcation (observed only in five specimens).

Ovary transversely-oval, sinistral, post-testicular, at 1110 
from posterior extremity. Oviduct, oötype, and Laurer’s 
canal not observed. Uterus well developed, coiled through-
out much of hindbody and in forebody as far as level of 
sinus-sac. Vitellarium comprises two symmetrical, sub-
globular, multi-lobed, post-ovarian masses; right vitelline 
mass composed of 8–10 lobes; left vitelline mass composed 
of 7–9 lobes. Eggs numerous, small, tick-shelled, without 
opercular spines or filaments (Fig. 1D).

Excretory vesicle Y-shaped; bifurcation not observed; 
arms unite dorsally to oral sucker in forebody (Fig. 1B); 
excretory pore terminal.

Molecular Characterisation of the Digeneans

Four sequences (∼841 bp) for the nuclear 28S rRNA gene 
were obtained for D. ruber. The tree built using the newly 
generated sequences plus 20 sequences for species of 

Table 1   (continued)

Species/lineage Host Locality GenBank ID Source

28S rDNA ITS2 rDNA cox1

D. lacustris Oncorhynchus mykiss Argentina b LC586095 [31]

Salvelinus fontinalis Argentina b LC586094 [31]

Percichthys trucha Argentina b LC586093
LC586096

[31]

Galaxias maculatus Argentina b LC586089 LC586092 [31]

Galaxias maculatus Argentina b LC586090 LC586097 [31]

Galaxias maculatus Argentina b LC586098 [31]
Allogenarchopsis problem-

atica
Semisulcosipra reiniana East China Sea MH628313 [46]

Genarchopsis chubuensis Rhinogobius flumineus East China Sea MH628311 [46]
Genarchella sp. 1 Herichthys labridens North-West Atlantic, off 

Yucatan
MK648276 [47]

Genarchella sp. 1 Astyanax aeneus North-West Atlantic, off 
Yucatan

MK648277 [47]

Thometrema lotzi Lepomis microlophus North-West Atlantic, off 
Mississipi,

KC985236 [48]

Thometrema patagonica Percichthys trucha Argentina b LC586091 [31]
Prosogonotrema bilabia-

tum (outgroup)
Caesio cuning Pacific Ocean AY222191 [45]

Accacladocoelium macro-
cotyle (outgroup)

Mola Western Mediterranean KF687303 [49]

Didymocystis wedli (out-
group)

Thunnus orientalis East China Sea AB725624 Unpublished

a Two sequences by Krupenko et al. [14] are wrongly annotated on GenBank: OM761977.1 and OM762017.1, and these two Derogenes varicus 
complex sp. DV1 isolates are in fact DV2
b Rivers and lakes in Patagonia
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Derogenes and the subfamily Halipeginae and Prosogono-
trema bilabiatum Vigueras, 1940 as the outgroup yielded the 
topology shown in Fig. 2. There were a total of 688 posi-
tions in the final dataset. The general topology of the ML 
tree agreed with the taxonomic classification of the included 
species and distinct lineages. Species/lineages of Derogenes 
were recovered in five strongly supported reciprocally mono-
phyletic clades: (i) D. ruber from C. lastoviza off Algeria; 
(ii) D. lacustris Tsuchida, Flores, Viozzi, Rauque et Urabe, 
2021from Galaxias maculatus (Jenyns) off Argentina [31]; 
(iii) Lineage “D. varicus DV1” from fish hosts in the White 
and Barents seas [14]; (iv) Lineage “D. varicus DV2” from 
mollusc hosts in the White Sea [14]; and (v) Lineage “D. 
varicus DV3” from Eumicrotremus fedorovi Mandrytsa. in 
the Pacific Ocean [32]. All Derogenes spp. lineages (Der-
ogeninae) clustered in a strongly supported clade distinct 
from that of the representatives of the Halipeginae.

The four newly generated 28S sequences of D. ruber were 
identical. They differed from Lineage “D. varicus DV1” 
from various fish hosts in the White and Barents seas (see 
above) by 2% (16 substitutions); from Lineage “D. vari-
cus DV2” from Hippoglossoides platessoides (Fabricius) 
from North Sea and from a mollusc Buccinum scalariforme 
Møller. from the White Sea by 3% (20 substitutions); and 
from lineage “D. varicus DV3” by 2% (16 substitutions). 
Sequences of D. ruber differed from those of D. lacustris 
from G. maculatus (Jenyns) off Argentina by 9% (68 sub-
stitutions). Intraspecific/intralineage divergence for Dero-
genes spp./lineages ranged between 0 (for D. varicus line-
ages DV1, DV2, and DV3) and 1 substitution (for D. ruber 
and D. lacustris).

Five ITS2 sequences (∼566 bp) were obtained for D. 
ruber. The tree built using the newly generated sequences 
aligned with 12 sequences for Derogenes spp. and Pro-
sogonotrema bilabiatum as the outgroup is shown in 
Fig. 3A. Derogenes ruber and the lineages “D. varicus DV1” 
from various fish hosts in the White and Barents seas and 
“D. varicus DV2” from the molluscs B. scalariforme, Amau-
ropsis islandica (Gmelin) and Euspira pallida (Broderip 
& Sowerby) from the White and Barents seas clustered in 
reciprocally monophyletic groups with a maximum nodal 
support.

The five newly generated ITS2 sequences for D. ruber 
were also identical and differed from those for the lineage 
“D. varicus DV2” by 4% (16 substitutions) and from those 

for the lineage “D. varicus DV1” by 5% (21 substitutions). 
None of the taxa included in the analysis showed intraspe-
cific/intralineage variation.

The two newly generated cox1 sequences of D. ruber 
(∼898 bp) were identical. We also included in the analysis 
four sequences of D. varicus (sensu stricto) from Merlangius 
merlangus (L.) from off Sweden [15]. The tree built using 
the newly generated sequences aligned with 22 sequences 
for Derogenes spp. and Didymocystis wedli Ariola, 1902 as 
the outgroup is shown in Fig. 3B. The species/lineages of 
Derogenes formed four reciprocally monophyletic groups 
with maximum support: (i) Derogenes lacustris from sal-
monids off Argentina; (ii) D. ruber from C. lastoviza off 
Algeria; (iii) Lineage “D. varicus DV1” from M. merlan-
gus off Sweden, and fish hosts in the White and Barents 
seas [14]; and (iv) Lineage “D. varicus DV2” from mollusc 
hosts in the White Sea [32]. The intraspecific divergence 
between the newly generated cox1 sequences for D. ruber 
was 0.8% (7 substitutions). Sequences of D. ruber differed 
from the sequences for lineages “D. varicus DV1” and “D. 
varicus DV2” by 19% (158 substitutions) and 17% (135 sub-
stitutions), respectively. The largest genetic divergence was 
found between D. ruber and D. lacustris (23%; 186 sub-
stitutions). Intraspecific/intralineage divergence for Dero-
genes spp./lineages ranged between 0% (Lineage “D. varicus 
DV2”) and 2% (D. ruber: 0.8%; D. lacustris: 0.1–0.2; Line-
age “D. varicus DV1”: 1%).

Discussion

Derogenes ruber was described from the gall bladder of the 
streaked gurnard C. lastoviza off Rovinj, Croatia, Adriatic 
Sea [16]. Although the original description of D. ruber was 
detailed, it lacked illustrations. The only subsequent illustra-
tion of this species is that of Sey [17], which barely shows 
any internal organs and omits any details of the terminal 
genitalia. Sey (1968) examined three specimens of a distinct 
host, T. lyra, and redescribed briefly D. ruber based on two 
specimens. Although the geographical distribution of the 
type-host, C. lastoviza, is wide, D. ruber has been reported 
only from the Central Mediterranean (Adriatic Sea off Croa-
tia, type-locality in the original description [16] and later, 
from a different host [17] and recently from the type-host off 
Italy, based on A. Looss’s material) [15]. The latest record 
despite providing few morphometrical data and illustra-
tion did not include any genetic data. Derogenes ruber was 
reported from the type-host in the North-East Atlantic, off 
Azores, Canary and Cape Verde islands [18] and off Spain 
[19]. Consequently, this paper provides a detailed illustrated 
description of D. ruber and Algeria as a new locality for 
this digenean. Additionally, we genetically characterised for 
the first time D. ruber using the partial fragments of the 

Fig. 1   Derogenes ruber from Chelidonichthys lastoviza. A Holog-
enophore, ventral view, SMNH 218782. B Whole-body, ventral view, 
SMNH 218789. C Posterior extremity showing ends of caeca. D Egg, 
SMNH 218789. E Anterior extremity showing details of terminal 
genitalia, SMNH 218789. Abbreviations: C.: caecum; E.: egg; G.a.: 
genital atrium; G.p.: genital pore; M.d.: male duct; Ph.: pharynx; 
P.P.C.: prostatic cells; S.: sphincter; S.s.: sinus-sac; S.o.: sinus-organ; 
S.v.: seminal vesicle; U.: uterus

◂
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nuclear 28S rRNA gene and ITS2, and the mitochondrial 
cox1 gene. Most sequences for Derogenes spp. available to 
date are those provided in an extensive study by Krupenko 
et al. [14] and Tsuchida et al. [31] who provided abundant 
data, corresponding to the “candidade” D. varicus species 
complex and D. lacustris, respectively. Krupenko et al. [14] 
have shown the existence of four groups (labelled as DV1-
DV4) within the “candidade” D. varicus species complex; of 
these, they considered that two (DV1 and DV2) may belong 

to distinct species [14]. Recently, Bouguerche et al. [15] 
demonstrated that DV1 is in fact D. varicus sensu stricto.

Herein, the 28S rDNA analysis recovered D. ruber in 
a clade distinct from lineages “D. varicus DV1, DV2, and 
DV3” and the well-established species D. lacustris. The 
ITS2 analysis supported the monophyly of D. ruber, and 
lineages “D. varicus DV1” and “D. varicus DV2” and the 
cox1 tree yielded a similar topology. Although the sequences 
obtained herein were short affecting thus the alignment’s 

Table 2   Metrical data for Derogenes ruber from Chelidonichthys lastoviza and Trigla lyra 

Abbreviations: FO/BL (%) forebody length as a percentage of body length, RT/BL (%) right testis length as a percentage of body length, LT/BL 
(%) left testis length as a percentage of body length, RPT/BL (%) right post-testicular region length as a percentage of body length, LPT/BL (%) 
left post-testicular region length as a percentage of body length, OV/BL (%) post-ovarian field length as a percentage of body length.

Host C. lastoviza C. lastoviza Trigla lyra
Locality Off Rovinj, Croatia Off Split, Croatia

No. of specimens (n = 17) (n = 2) (n = 2)

Source Present study [16] [17]

Range (Mean) Range Range

Body 2679–5558 × 830–2040 (4348 × 1443) 5000–6000 × 2000 4200–
4500 × 1300–
1800

Forebody length 1240–2693 (1966) – –
Hindbody length 802–2133 (1364) – –
Pre-oral lobe length 15–71 (39) – –
Oral sucker 254–655 () × 364–741 (469 × 538) 600 505 × 505
Ventral sucker 546–1325 () × 547–1476 (952 × 1022) 750 950–1290
Pharynx 107–188 () × 86–221 (153 × 157) 200 168
Seminal vesicle 120–710 () × 38–170 (260 × 68) – –
Pars prostatica length 320–848 (565) – –
Right testis 150–395 () × 113–257 (233 × 170) – 252 × 168
Left testis 145–396 () × 96–267 (247 × 170) – 196 × 140
Ovary 143–459 () × 99–276 (293 × 183) – 252 × 252
Right vitelline mass 251–843 () × 218–634 (432 × 412) 450 440 × 420
Left vitelline mass 254–620 () × 184–687 (452 × 424) 450 470 × 440
Individual vitelline lobe 122–422 () × 69–315 (247 × 146) 150–200 –
Eggs 49–60 × 26–38 (54 × 29) (n = 17) 56–36 23 × 23
Right testis to ventral sucker 53–298 (169) – –
Left testis to ventral sucker 13–239 (126) – –
Right post-testicular region length 646–1965 (1172) – –
Left post-testicular region length 730–1651 (1137) – –
Post-ovarian region length 523–1463 (897) – –
FO/BL (%) 34–53 (45) – –
RT/BL (%) 1–6 (4) – –
LT/BL (%) 1–5 (3) – –
RPT/BL (%) 17–36 (27) – –
LPT/BL (%) 19–31 (26) – –
OV/BL (%) 13–27 (20) – –
Sucker–length ratio 1:1.17–3.06 (1:2.00) – –
Sucker–width ratio 1:1.45–2.35 (1:2.00) – –
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length, the analysis led to results similar to those of Kru-
penko et al. [14].

More importantly, the genetic distance for the cox1 gene 
between D. ruber and lineages “D. varicus DV1” and “D. 
varicus DV2” was 19% and 17%, respectively; D. ruber also 
differed from D. lacustris by 23%. These levels of genetic 
divergence agree well with previously reported interspe-
cific divergence based on cox1 within the closely related 
halipegine derogenids ranging between 10.5–15.1% for 
Genarchopsis spp. [23] and 16.9–20.4% for Genarchopsis 
Ozaki, 1925 and Allogenarchopsis Urabe & Shimazu, 2013 
[33]. Furthermore, the levels of interspecific genetic diver-
gence are more than ten times greater than those for the 
intraspecific divergence for the mitochondrial “barcode” 
marker, thus supporting the recognition of D. ruber as a 

valid distinct species. The molecular data generated herein 
advance our knowledge on interspecific genetic variations 
within Derogenes and will help further efforts to untangle 
the D. varicus species complex and delimit the potentially 
cryptic species hidden under the single name “D. varicus”. 
Additionally, the morphometrical data of D. ruber from the 
type-host (Table 2) will help accessing interspecific mor-
phological differences.

A problem arises when comparing D. ruber to a closely 
related species, D. latus Janiszewska, 1953, first described 
based on a single specimen in the intestine of Mullus bar-
batus Linnaeus from the same Adriatic locality as that of 
D. ruber, off Split, Croatia [34]. Derogenes latus was rede-
scribed from the intestine of M. barbatus and Trisopterus 
capelanus (Lacépède) in the North Adriatic Sea [35] and 

Fig. 2   Tree inferred using the maximum-likelihood method based 
on the 28S rDNA sequence data; only bootstrap values higher than 
70 are indicated. The newly generated sequences are indicated in 

red. Lineages “Derogenes varicus DV1, DV2, DV3” and Derogenes 
lacustris are highlighted in differently colored boxes



318	 Acta Parasitologica (2024) 69:309–323

1 3



319Acta Parasitologica (2024) 69:309–323	

1 3

from the gall bladder of M. surmuletus off Corsica (France), 
Western Mediterranean [10]. The redescription provided by 
Bartoli and Gibson [10] (based on accessible voucher mate-
rial and serial sections) should undoubtfully be referred to 
as the most detailed modern redescription of D. latus. Dero-
genes latus has been frequently reported from its type-host 
in the Western Mediterranean, off Spain [36] and off France 
[37], and from a closely related host, M. surmuletus, in the 
Western Mediterranean (off France and Algeria) [37–39].

This species has also been reported on hosts other than 
Mullidae, mainly from S. scrofa (Scorpaenidae) in the West-
ern Mediterranean, off Spain [40] and off France [41]; from 
L. mormyrus (Sparidae) off Montenegro, Adriatic Sea [42] 
and off Algeria, Western Mediterranean [43]. It was further-
more recorded from Sardinella aurita Valenciennes. (Dor-
osomatidae) off Algeria, Western Mediterranean [44] and 
from Phycis phycis (Linnaeus) (Phycidae) from the Western 
Mediterranean (off France) [41].

The taxonomic status of D. latus is uncertain. The dis-
tinction D. ruber and D. latus has been questioned [10], 
and the two species share a stout body, post-testicular vitel-
larium composed of two multi-lobed masses and a uterus 
occupying almost the entire body [10, 35, 42]. The type-
hosts are, however, different: C. lastoviza for D. ruber [16] 
and M. barbatus for D. latus [34]. Overall, all morphomet-
ric data for D. ruber and D. latus overlapped (Tables 2, 3) 
except for specimens of D. latus from M. surmuletus and S. 
scrofa from the Western Mediterranean having larger eggs 
(see Table 3) and the two species clearly share the deeply 
loped shape of the vitelline masses. It is worth noting that 
a comparison of the present specimens of D. ruber with 

those of D. latus provided by Bartoli and Gibson [10] in 
the most detailed modern description based on accessible 
voucher material and serial sections and providing metri-
cal data, revealed that, despite some overlaps, D. latus 
is generally larger than D. ruber (means 5581 × 2180 vs. 
4348 × 1443 µm) with a longer forebody (mean 2523 vs. 
1966 µm) and longer hindbody (mean 1926 vs. 1364 µm). 
Derogenes latus also differs from D. ruber in having a 
broadly longer pre-oral lobe (mean 126 vs. 39 µm), larger 
oral sucker (means 787 × 789 vs. 469 × 538 µm), larger 
ventral sucker (means 1136 × 1110 vs. 952 × 1022 µm), and 
larger pharynx (means 291 × 254 vs. 153 × 157 µm). Addi-
tionally, D. latus differs from D. ruber in having a longer 
pars prostatica (mean 790 vs. 565 µm), considerably larger 
testes (means 480 × 366 vs. 233 × 170 µm for right testis, 
488 × 400 vs. 247 × 170 µm for left testis), larger ovary 
(means 511 × 341 vs. 293 × 183 µm), and larger vitelline 
masses (means 823 × 500 vs. 432 × 412 µm for right vitel-
line mass, 963 × 608 vs. 452 × 424 µm for left vitelline 
mass).

Bartoli and Gibson [10] convincingly highlighted the 
striking morphological similarity between D. latus and D. 
ruber and indicated that the egg size given by Sey [17] for 
D. ruber is probably an inaccuracy. They refrained from 
synonymising the two species formally until further stud-
ies of material from the type-hosts and localities are avail-
able. Although we found morphometric differences between 
the present material of D. ruber from the type-host and the 
material of D. latus described by Bartoli and Gibson [10], 
and given that the occurrence of a single Derogenes species 
in various hosts has been challenged by molecular data [14, 
15, 31], and both D. lacustris and D. varicus sensu stricto 
(D. varicus lineage DV1 of Krupenko et al. [14]) had been 
genetically proven to occur in various hosts (see Fig. 3A), 
it is possible that D. ruber and D. latus are indeed synony-
mous, thus transforming D. ruber to a euryxenic species. 
However, since molecular data for D. latus are still lacking, 
we also refrained from synonymising the two species. The 
genetic data generated herein for D. ruber from its type-host 
will be certainly valuable for a future investigation of the 
synonymy of these two species.

Fig. 3   Trees inferred using the maximum-likelihood method based 
on the ITS2 rDNA and cox1 sequence data. A, ITS2 rDNA tree; only 
bootstrap values > 70 are indicated. The newly generated sequences 
are indicated in red. Lineages “D. varicus DV1 and “D. varicus DV2” 
are highlighted in differently colored boxes. There were no ITS2 
sequences available for D. lacustris. B, cox1 tree; only bootstrap val-
ues > 70 are indicated. The newly generated sequences are indicated 
in red. Derogenes lacustris and lineages “D. varicus DV1”, “D. vari-
cus DV2” are in different colors. There were no cox1 sequences avail-
able for the lineage “D. varicus DV3"

◂
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(511 × 341)

246–310 (278)a 450 × 500

Right vitelline mass 540 × 350 540 × 350 600–1170 × 320–700 
(823 × 500)

Left vitelline mass 550–1550 × 530–850 
(963 × 608)

Eggs 50 × 26 50 × 25 59–74 × 33–43 
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80–373 (180)
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