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Abstract
Background Malaria epidemics are increasing in East Africa since the 1980s, coincident with rising temperature and widen-
ing climate variability. A projected 1–3.5 °C rise in average global temperatures by 2100 could exacerbate the epidemics by 
modifying disease transmission thresholds. Future malaria scenarios for the Lake Victoria Basin (LVB) are quantified for 
projected climate scenarios spanning 2006–2100.
Methods Regression relationships are established between historical (1995–2010) clinical malaria and anaemia cases and 
rainfall and temperature for four East African malaria hotspots. The vector autoregressive moving average processes model, 
VARMAX (p,q,s), is then used to forecast malaria and anaemia responses to rainfall and temperatures projected with an 
ensemble of eight General Circulation Models (GCMs) for climate change scenarios defined by three Representative Con-
centration Pathways (RCPs 2.6, 4.5 and 8.5).
Results Maximum temperatures in the long rainy (March–May) and dry (June–September) seasons will likely increase by 
over 2.0 °C by 2070, relative to 1971–2000, under RCPs 4.5 and 8.5. Minimum temperatures (June–September) will likely 
increase by over 1.5–3.0 °C under RCPs 2.6, 4.5 and 8.5. The short rains (OND) will likely increase more than the long 
rains (MAM) by the 2050s and 2070s under RCPs 4.5 and 8.5. Historical malaria cases are positively and linearly related to 
the 3–6-month running means of monthly rainfall and maximum temperature. Marked variation characterizes the patterns 
projected for each of the three scenarios across the eight General Circulation Models, reaffirming the importance of using 
an ensemble of models for projections.
Conclusions The short rains (OND), wet season (MAM) temperatures and clinical malaria cases will likely increase in the 
Lake Victoria Basin. Climate change adaptation and mitigation strategies, including malaria control interventions could 
reduce the projected epidemics and cases. Interventions should reduce emerging risks, human vulnerability and environ-
mental suitability for malaria transmission.
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Introduction

Malaria is a major health concern in large parts of the world. 
Roughly half of the world's population is at risk of malaria 
[1]. Within Africa, one in every five (20%) childhood deaths 
are due to the effects of the disease. In East Africa, the prob-
ability of malaria deaths is high, but all the East African 
Community (EAC) Partner States are still at the level of 
control, and achieving elimination will likely be impeded 

by widening climatic variability and change. Due to scale 
up of malaria prevention measures, malaria prevalence has 
declined significantly in the EAC region since the 2000s 
[1]. However, since the 1980s, malaria epidemics have been 
increasing in the East African highlands. This trend has been 
attributed to climatic variability and change, antimalarial 
drug resistance, land use change, vector migration [2, 3] and 
epidemiology of the disease.

The epidemiology of the vector borne disease is largely 
influenced by climate variability and change as evidenced 
by recent outbreaks and disease patterns [4]. Notably, both 
malaria parasites and vectors are highly sensitive to changes 
in rainfall, humidity, air and water temperatures [5]. Rising 
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temperatures shorten the sporogonic cycle of the parasites 
and accelerate the vector growth and development [6]. 
Malaria transmission threshold is 18 °C [7] but 20.8 °C is 
the optimal global temperature at which malaria mortal-
ity increases for all ages [8]. It follows that the projected 
increase in annual global temperatures by up to 3.5 °C by 
2100 will likely elevate both malaria transmission and mor-
tality [9, 10].

Temperature is an important predictor of malaria trans-
mission in different regions [6, 11]. Consequently, future 
scenarios of malaria risk under changing climatic conditions 
have been explored using multiple modelling approaches 
[12]. Results of these models suggest that due to precipita-
tion and temperature changes, the geographical distribution 
of malaria in Africa will likely change by 2100 [13]. The 
anticipated changes differ markedly geographically. Thus, by 
2050 and 2080, for example, some regions will become more 
suitable, whereas others, such as southern central Africa, 
may become unsuitable for malaria transmission [14].

Similarly, because of climate change, changes can be 
expected in the distribution, range, prevalence, incidence 
and seasonality of vector borne and waterborne diseases 
in East Africa. However, the nature and magnitude of the 
anticipated future changes in the Lake Victoria Basin have 
not yet been quantified. Lake Victoria basin has a high 
poverty index and poor health infrastructure and hence 
its residents are exposed to a high risk of being affected 
by these diseases [15]. Climatic extremes, such as the El 
Niño-Southern Oscillation and Indian Dipole events, can 

be expected to increase the frequency and intensity of dis-
ease outbreaks based on historic patterns [16, 17]. The 
projected future climate change and variability under vari-
ous scenarios and the anticipated effects of these changes 
on the pattern and intensity of disease outbreaks should 
thus form the basis for developing effective and far-sighted 
control methods and policies.

We examined future malaria scenarios for the Lake 
Victoria Basin in East Africa in response to climate vari-
ability based on projected climate scenarios for 2006–2100 
defined by the Representative Concentration Pathways 
(RCPs) RCP2.6, RCP4.5, and RCP8.5.

Materials and Methods

Study Area

Malaria transmission hotspots in the Lake Victoria Basin 
were chosen based on the following characteristics: (1) 
highland regions at altitudes exceeding 1500 m; (2) rainfall 
during the wet season months of March to May exceeding 
150 mm; (3) minimum temperature of 18 °C, the tem-
perature threshold that determines malaria vector breed-
ing sites; and (4) occurrence of infective vectors which 
can be measured by calculating entomological inoculation 
rate (EIR), and have clusters of clinical malaria episodes 
[7, 18]. Based on geospatial data on rainfall, temperature, 

Fig. 1  Map showing the loca-
tion of the study sites in the 
Lake Victoria Basin
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altitude and slopes, a hot spot map was derived (Fig. 1). 
We selected four hotspot sites with long-term clinical 
malaria data, comprising Muleba (Tanzania), Kericho and 
Mukumu (Kenya) and all hospitals, including at Kabale, 
in Uganda. Anaemia was also considered for Muleba in 
Tanzania (Table 1).

Data and Analysis

Historical Rainfall and Temperature Data

We used the historical rainfall data based on the gridded 
observation/satellite blended Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS). CHIRPS is 
a 30+ year quasi-global rainfall dataset that starts in 1981. 
The temperature data were downloaded from the Climate 
Hazards Group website (http:// chg. geog. ucsb. edu/ tools/ 
geocl im/ index. html) and covered the period 1995–2010. The 
GeoCLIM software tool was used to extract the rainfall and 
temperature data for each of the study sites. Details of the 
GeoCLIM tool can be found at http:// chg- wiki. geog. ucsb. 
edu/ wiki/ GeoCL IM.

Projected Climate Data

Climate change analysis and projections were based on the 
regional downscaled climate model. The downscaling is 
performed using multiple regional climate models (RCMs) 
as well as statistical downscaling (SD) techniques. We used 
the simulated data from the Rossby Center Regional Atmos-
pheric Model (RCA4) driven by the Earth system version of 
the Max Planck Institute for Meteorology (MPI-ESM-LR) 
coupled with the global climate model from the Coordinated 
Regional Downscaling Experiment (CORDEX) program 
[19]. This was supplemented with simulated data from seven 
additional General Circulation Models (GCMs).

The regional climate models (RCMs) work at finer spa-
tial resolutions over limited geographic regions and are 

presumed to perform better at regional scales. The eight 
RCMs from the Coordinated Regional Climate Downscal-
ing Experiment program (CORDEX) that we used in the 
analyses were sourced from the Swedish Meteorological 
and Hydrologic Institute (SMHI), Koninklijk Nederlands 
Meteorologisch Instituut (KNMI) and Max Plank Institute 
(MPI) Climate Service Centre (CSC) at ~ 50 km spatial res-
olution. The data were downscaled by the Rossby Centre 
regional climate model-RCA4 model and Climate Model 
Intercomparison Project (CMIP5). The GCM’s and RCMs 
we considered, their names and associated references are 
summarized in Table 2.

Three climate change scenarios were used to project rain-
fall and temperatures. These correspond with three Repre-
sentative Concentration Pathways (RCPs) RCP2.6, RCP4.5, 
and RCP8.5, with the numeric suffixes referencing radiative 
forcings (global energy imbalances), measured in watts/m2, 
by the year 2100. The three Representative Concentration 
Pathways give various possibilities of rainfall and temper-
ature changes based on global initiatives to limit gaseous 
emissions. RCP 2.6 represents an optimistic projection char-
acterized by a very low concentration and emission levels 
of greenhouse gases. RCP 4.5 scenario represents medium 
emission scenario in which the international communities 
are working on limiting emissions with limited implementa-
tion of climate change policies. RCP 8.5 scenario represents 
a pessimistic projection with high levels of concentrations 
of gases emitted and assumes no implementation of climate 
change policies [20].

The projected rainfall and temperature changes were 
analyzed for the three scenarios for the five countries bor-
dering Lake Victoria for the 2030s (2016–2045), 2050s 
(2036–2065) and 2070s (2055–2085) to provide informa-
tion on the expected magnitude of the climate changes over 
each time window [21]. The period 1971–2000 is consid-
ered as a reference for the present climate (Figs. 2, 3). The 

Table 1  Characteristics of the selected study sites in the Lake Victoria Basin

Country Study site Characteristics

Tanzania Muleba District Unstable seasonal malaria occurs in the highland areas, with low malaria transmission of not more than three 
months a year [52, 53]

Kenya Kericho The area has been a hot spot for malaria epidemics since 1918, with early epidemics occurring in 1928, 1931, 1932, 
1934, 1937, and 1940. The latest epidemic was recorded in 1997/1998 [2, 3, 54]

Mukumu Has flat shaped valleys that form suitable habitats for the malaria vectors, making these regions hot spots for malaria 
transmission [39, 55]

Uganda Kabale Malaria has been investigated in the area since 1930s and malaria epidemics have been noted since 1948; including 
in 1998, 2005 and 2006 [54, 56]. Most epidemics occurred in the highlands [2]

http://chg.geog.ucsb.edu/tools/geoclim/index.html
http://chg.geog.ucsb.edu/tools/geoclim/index.html
http://chg-wiki.geog.ucsb.edu/wiki/GeoCLIM
http://chg-wiki.geog.ucsb.edu/wiki/GeoCLIM
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projected climate change signals for each time window are 
calculated as the difference between the projection for the 
future time window and the reference period. Rainfall in 
the LVB is divided into three distinct seasons, the main 
long rains (March–April–May (MAM), short rains (Octo-
ber–November–December (OND) and the long dry season 
(June–July–August–September (JJAS). We also consider the 
annual rainfall, the total cumulative rainfall from January to 
December.

Statistical Analysis and Forecasting

Monthly malaria data from selected sites from three coun-
tries, Kenya, Uganda and Tanzania, and spanning the period 
1995–2010 were used to develop regression relationships 
with historic rainfall and temperature data. The established 
regression relationships were then used with projected rain-
fall and temperature data from eight Global Circulation 
Models provided by the Intergovernmental Authority on 
Development (IGAD) Climate Prediction and Applications 
Centre (ICPAC) for the period 2006–2100 for each of the 
three scenarios. The relationships between malaria inci-
dences and cases and historic rainfall or temperature were 
carefully statistically modelled. This involved relating the 
incidences or cases to various lagged values and cumula-
tive moving averages of rainfall, minimum and maximum 
temperatures using the Pearson product moment correlation 

that assumes bivariate normality of the two variables being 
correlated and linearity of the relationship between them. 
The Spearman rank correlation, which is more appropriate 
if the relationship between two variables is nonlinear and 
monotonically increasing or decreasing was also computed. 
Lastly, the Akaike information criterion (AIC) and its cor-
rected variant, the corrected Akaike information criterion 
(AICc) [22], were computed to rank contending models (lin-
ear and nonlinear regression models) in terms of the weight 
of evidence in support of each. The best AICc-supported 
models and rainfall or temperature components from the pre-
ceding step were then used to build final regression models. 
These were then used to estimate the associated intercept 
and slope coefficients and their standard errors and assess 
statistical significance of the parameter estimates.

The VARMARX (p,q,s) model used for forecasting can 
accommodate the following features. (1) Modelling of sev-
eral time series simultaneously (vector). (2) Accounting for 
relationships among the individual component series with 
current and past values of the other series (X). (3) Feedback 
from the response series and cross-correlated explanatory 
series. (4) Cointegration of component series to achieve sta-
tionarity. (5) Autoregressive errors (of order p). (6) Mov-
ing average errors (of order q). (7) Distributed lags in the 
explanatory series (of order s). (8) Seasonality. (9) Mixed 
autoregressive and moving average errors. (10) Unequal or 
heteroscedastic covariances for the residuals using various 

Table 2  The number and name of the ensemble of eight general circulation models (GCMs), the institutions that used the model to generate the 
climate projections and the reference for each model

Number Model GCM RCM Institutions References

1 AFR44_MPI_M_MPI_ESM_
LR_MPI_SMHI_REMO

MPI-ESM-LR (MPI-M) REMO (SMHI) Max Planck—Institute for Mete-
orology, Germany

[19]

2 AFR-44_ICHEC_EC_EARTH_
SMHI-RCA4

EC-EARTH (ICHEC) RCA4 (SMHI) Environmental Protection 
Agency, Ireland

[57]

3 AFR-44_MIROC_MIROC5_
SMHI-RCA4

MIROC5 (MIROC) RCA4 (SMHI) Japan Agency for Marine-
Earth Science and Technol-
ogy, Atmosphere and Ocean 
Research Institute (The Univer-
sity of Tokyo), Japan

[58]

4 AFR-44_MOHC_HadGEM2_
ES_KNMI_RACMO2

HadGEM2-ES (MOHC) RACM02 (KNMI) Koninklijk Nederlands Meteor-
ologisch Instituut (KNMI)

[59]

5 AFR-44_MOHC_HadGEM2_
ES_SMHI_RCA4

HadGEM2-ES (MOHC) RCA4 (SMHI) Met Office Hadley Centre, United 
Kingdom

[60]

6 AFR44_MPI_M_MPI_ESM_
LR_MPI_CSC_REMO2009

MPI-ESM-LR (MPI-M) REM02009 (MPI-CSC) Max Planck—Institute for Mete-
orology, Germany

[61]

7 AFR-44_MPI_M_MPI_ESM_
LR_SMHI_RCA4

MPI-ESM-LR (MPI-M) RCA4 (SMHI) Max Planck—Institute for Mete-
orology, Germany

[61]

8 AFR-44_NCC_NorESM1_M_
SMHI_RCA4

NorESMI-M (NCC) RCA4 (SMHI) Norwegian Climate Centre, 
Norway

[62]
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Fig. 2  a Projected rainfall changes over EAC by 2030s in the annual 
(1st column), MAM (2nd column), JJAS (3rd column), and OND (4th 
column) components. Each row corresponds to emission scenarios: 
RCP2.6 (1st row), RCP4.5 (2nd row) and RCP8.5 (3rd row). b Pro-

jected rainfall changes over EAC by 2050s in the annual (1st column), 
MAM (2nd column), JJAS (3rd column), and OND (4th column) 
components. Each row corresponds to emission scenarios: RCP2.6 
(1st row), RCP4.5 (2nd row) and RCP8.5 (3rd row)
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Fig. 3  a Projected maximum temperature changes over EAC by 2030s 
in the annual (1st column), MAM (2nd column), JJAS (3rd column), 
and OND (4th column) components. Each row corresponds to emission 
scenarios: RCP2.6 (1st row), RCP4.5 (2nd row) and RCP8.5 (3rd row). 
b Projected maximum temperature changes over EAC by 2050s in the 
annual (1st column), MAM (2nd column), JJAS (3rd column), and OND 
(4th column) components. Each row corresponds to emission scenarios: 
RCP2.6 (1st row), RCP4.5 (2nd row) and RCP8.5 (3rd row). c Projected 
minimum temperature changes over EAC by 2030s in the annual (1st 

column), MAM (2nd column), JJAS (3rd column), and OND (4th col-
umn) components. Each row corresponds to emission scenarios: RCP2.6 
(1st row), RCP4.5 (2nd row) and RCP8.5 (3rd row). d Projected mini-
mum temperature changes over EAC by 2050s in the annual (1st col-
umn), MAM (2nd column), JJAS (3rd column), and OND (4th column) 
components. Each row corresponds to emission scenarios: RCP2.6 (1st 
row), RCP4.5 (2nd row) and RCP8.5 (3rd row)
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generalized autoregressive conditional heteroscedasticity 
(GARCH) models [23]. (11) The modelling framework used 
also allows for testing the dependence of one response series 

on another (testing for weak exogeneity). (12) Moreover, 
under certain special regularity conditions, the model allows 
for testing for Granger causality between two specified 

Fig. 3  (continued)



1542 Acta Parasitologica (2022) 67:1535–1563

1 3

groups of variables. For example, the Granger causality 
test may be used by defining one group consisting of the 
response series and the other of climatic predictor series. 
(13) Lastly, the modelling framework allows for putting vari-
ous restrictions on the estimated parameter coefficients of 
the model or their linear combinations and testing hypoth-
eses on linear combinations of the parameter coefficients.

The second model used for forecasting the response series 
is the unobserved components model (UCMs). This model 
was only used for those response series that were nonlin-
early related to one of the explanatory series. The UCM is a 
structural time series model and a special case of the general 
state space model, appropriate for modelling and forecast-
ing time series. The UCM model can accommodate nonlin-
ear relationships between the response and the explanatory 
series. Nonlinearity was modelled using penalized cubic 
basis splines, or equivalently, random regression or vary-
ing coefficients regression models. In addition, the UCM 
used can accommodate autoregression, seasonality, multi-
ple cyclical patterns, dynamic level shifts, dynamic trend 
and other features. The UCMs can thus also be viewed as 
dynamic regression models with multiple predictors. The 
UCM can provide smoothed trend and cyclical patterns. For 

more complex univariate or multivariate models that can-
not be handled by the UCM, the general state space model, 
which is much more general and versatile than the UCM 
and can accommodate more general univariate models and 
multivariate time series, among other features, can be used 
for forecasting [23–26].

More detailed descriptions of the statistical modelling 
and forecasting methodology are provided in SI 1–9. The 
historic data and the future forecasts under the three emis-
sion scenarios for the ensemble of eight projection models 
are provided in SI 2–4 and in S1–S3 data. SI 10 provides the 
SAS program codes used to fit the forecasting models and 
produce plots of the forecast trajectories.

Results

For brevity, we summarize here only the projected rain-
fall and temperature data simulated by the Rossby Center 
Regional Atmospheric Model driven by the Earth system 
version of the Max Planck Institute for Meteorology (Model 
1 in Table 2) coupled with the global climate model from the 

Fig. 4  Projected changes in maximum temperature in LVB between 2006 and 2070s
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Fig. 5  Projected changes in minimum temperature in LVB between 2006 and 2070s

Table 3  Projected mean annual 
maximum temperature changes 
in LVB for the periods 2030s, 
2050s, and 2070s for RCP2.6, 
4.5 and 8.5

RCP2.6 RCP4.5 RCP8.5

2030s 2050s 2070s 2030s 2050s 2070s 2030s 2050s 2070s

Annual
 Burundi 1.17 1.40 1.37 1.17 1.83 2.08 1.44 2.35 3.62
 Kenya 1.03 1.29 1.19 0.96 1.61 1.87 1.37 2.11 3.25
 Rwanda 1.15 1.32 1.39 1.11 1.84 2.13 1.46 2.33 3.61
 Uganda 1.04 1.42 1.26 1.02 1.70 1.97 1.39 2.18 3.34
 Tanzania 1.08 1.32 1.25 1.04 1.66 1.93 1.35 2.17 3.33

MAM
 Burundi 1.41 1.65 1.62 1.23 1.90 2.22 1.68 2.42 3.66
 Kenya 1.14 1.42 1.34 0.98 1.76 2.03 1.54 2.28 3.44
 Rwanda 1.42 1.69 1.68 1.23 2.00 2.38 1.74 2.48 3.76
 Uganda 1.25 1.51 1.44 1.10 1.86 2.20 1.62 2.41 3.53
 Tanzania 1.28 1.50 1.44 1.01 1.71 2.06 1.50 2.29 3.41

JJAS
 Burundi 1.52 1.73 1.69 1.34 2.10 2.52 1.66 2.75 4.33
 Kenya 1.43 1.53 1.45 1.18 1.87 2.25 1.50 2.47 3.91
 Rwanda 1.49 1.71 1.67 1.33 2.05 2.50 1.64 2.66 4.24
 Uganda 1.33 1.59 1.54 1.24 1.93 2.31 1.55 2.52 3.93
 Tanzania 1.39 1.61 1.52 1.32 1.92 2.33 1.55 2.53 3.99

OND
 Burundi 0.56 0.85 0.89 0.79 1.42 1.53 0.85 1.81 2.71
 Kenya 0.55 0.92 0.76 0.62 1.19 1.30 0.93 1.54 2.22
 Rwanda 0.53 0.90 0.88 0.75 1.42 1.57 0.90 1.79 2.67
 Uganda 0.54 0.89 0.80 0.69 1.28 1.42 0.92 1.63 2.42
 Tanzania 0.60 0.91 0.88 0.74 1.34 1.48 0.93 1.72 2.51
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Coordinated Regional Downscaling Experiment (CORDEX) 
program. Additionally, we present the projected trajectories 
of malaria and anaemia cases for the ensemble of eight mod-
els and the associated historic series.

Projected Temperatures Change in LVB

The maximum temperature is projected to increase by 
at least 1.5  °C by 2050s in the rainy season months of 
March–May (MAM) under all the three scenarios across 
all the countries in the Lake Victoria Basin. Notably, the 
maximum temperature during MAM is expected to rise by 
up to 3.76 °C by 2050s under RCP 8.5. The highest extent 
of warming under all the scenarios is projected for the dry 
season months of June–September. During the dry season, 
maximum temperatures will likely rise by 1.5 °C under RCP 

2.6 in 2030s and by up to 4.33 °C in 2070s under RCP 8.5. 
Maximum temperature warming in the short rainy season 
(October–December) is projected to be up to 2.7 °C under 
RCP 8.5 but to be minimal for all the other scenarios and 
time windows (Figs. 4, 5) (Table 3).

The projected changes in the minimum temperatures 
through time for the three scenarios (Table 4) suggest a 
larger increase in the minimum than the maximum tem-
perature component in future. By 2030, almost all the 
EAC region will likely be 1.0–2.5 °C warmer than the 
base period, with the greatest warming expected during 
the dry season months (JJAS). JJAS is projected to have 
the highest increase in minimum temperatures, above 
1.5 °C under RCP 2.6, above 2.5 °C in RCP 4.5 and above 
3.0 °C in RCP 8.5. In the rainy season months of MAM 
and OND, RCP 4.5 and RCP 8.5 scenarios are projected 

Table 4  Projected mean annual 
minimum temperature changes 
in the Lake Victoria Basin for 
the periods 2030s, 2050s, and 
2070s for RCPs 2.6, 4.5 and 8.5

RCP2.6 RCP4.5 RCP8.5

2030s 2050s 2070s 2030s 2050s 2070s 2030s 2050s 2070s

Annual
 Burundi 1.39 1.66 1.59 1.65 2.28 2.61 1.81 2.96 4.39
 Kenya 1.27 1.49 1.37 1.35 1.95 2.25 1.57 2.57 3.80
 Rwanda 1.49 1.74 1.61 1.70 2.38 2.80 1.90 3.09 4.58
 Uganda 1.33 1.57 1.44 1.48 2.11 2.51 1.72 2.80 4.13
 Tanzania 1.26 1.49 1.39 1.37 1.95 2.28 1.59 2.58 3.86

MAM
 Burundi 1.27 1.54 1.51 1.48 2.05 2.40 1.73 2.67 4.10
 Kenya 1.11 1.37 1.26 1.22 1.77 2.08 1.51 2.36 3.52
 Rwanda 1.26 1.57 1.55 1.46 2.11 2.56 1.77 2.76 4.27
 Uganda 1.17 1.44 1.32 1.27 1.89 2.27 1.61 2.52 3.81
 Tanzania 1.15 1.39 1.31 1.19 1.73 2.07 1.51 2.34 3.57

JJAS
 Burundi 1.63 1.88 1.73 1.95 2.56 2.89 2.01 3.38 4.87
 Kenya 1.48 1.68 1.59 1.63 2.26 2.59 1.79 2.91 4.31
 Rwanda 1.66 1.82 1.60 1.91 2.57 2.94 1.99 3.38 4.91
 Uganda 1.52 1.73 1.58 1.78 2.45 2.84 1.92 3.21 4.70
 Tanzania 1.48 1.71 1.58 1.69 2.28 2.65 1.81 2.98 4.45

OND
 Burundi 1.24 1.60 1.60 1.44 2.20 2.52 1.58 2.74 4.11
 Kenya 1.04 1.27 1.15 1.05 1.69 2.03 1.28 2.26 3.28
 Rwanda 1.45 1.80 1.69 1.56 2.37 2.78 1.75 2.99 4.41
 Uganda 1.21 1.34 1.34 1.24 1.90 2.30 1.52 2.58 3.74
 Tanzania 1.09 1.30 1.30 1.16 1.78 2.09 1.36 2.36 3.46
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to have an increase in minimum temperatures of above 
2.0 °C. By 2070, the projected increase in the annual min-
imum temperatures will likely be 4–5 °C higher under the 
RCP 8.5 scenarios relative to the base period (Table 4).

Projected Rainfall Changes in LVB

Rainfall projections vary across the five LVB countries 
both spatially and temporarily. In general, the OND short 
rains will likely increase compared to the long rains fall-
ing in MAM for all the three RCPs (Fig. 6). The JJAS 
season will likely be much drier for RCP 2.6 compared to 
RCP 4.5 and RCP 8.5 for all the periods. The increase in 
rainfall during OND, especially under RCP 4.5 and RCP 
8.5 for the periods 2050s and 2070s, makes a large con-
tribution to the anticipated increase in the annual rainfall 
in the LVB especially on its eastern section.

Relationship Between Malaria and Historical 
Climate Fluctuations

Extreme rainfall events reported in Kenya in 1997–1998 
were related to the upsurge of malaria cases in Central 

Unilever, Litein and Mukumu hospitals (SI 11). We estab-
lished linear relationships between malaria incidences and 
rainfall and 4-month running means of the total monthly 
rainfall in Unilever and Mukumu hospitals. These relation-
ships suggest that malaria incidences increase linearly with 
increase in the 4-month running mean of the total monthly 
rainfall. In contrast, malaria incidences in Litein hospital 
increased linearly with increase in the 6-month running 
mean of the average monthly maximum temperature (Fig. 7, 
Table 5).

Data from Tanzania showed that the 1997–1998 El Niño 
episode, one of the strongest on instrumental record, was 
associated with a pronounced upsurge in reported malaria 
incidences. The analyses show that more malaria cases were 
reported in Muleba for all ages and 5-year-olds and above 
during 1997–1998 than for any other year, providing direct 
evidence that high rainfall is associated with increased 
malaria incidences (SI 12). Higher incidences of anaemia 
in the under-fives were also reported for that period than 
for the other years. Anaemia cases are related to malaria 
infections (SI 13).

Further, statistical analyses of the data from Muleba hos-
pital established positive and significant correlations and 
regression relationships between malaria incidence and the 

Fig. 6  Projected changes in maximum rainfall in LVB between 2006 and 2070s
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4–5-month running means of the total monthly rainfall and 
3–5-month running means of the average monthly maximum 
temperature (Fig. 8). This suggests that upsurges in malaria 
cases will likely not occur immediately after high rainfall or 
maximum temperature events but rather will also respond to 

the carry-over effects of prior rainfall conditions experienced 
up to 4 months earlier. This delayed or lagged effect of rain-
fall on malaria cases reflects a delayed response linked to the 
vector life cycle and disease transmission cycle (Table 6).

Country-wide data on malaria cases in Uganda spanning 
1997–2010 show that far more children aged 5 years and 
above were affected than children below 5 years of age (SI 
14). The trends for both age classes demonstrate a persistent 
decline in the number of cases following the 1997–1998 El 
Niño floods up to a low in 2003 followed by a persistent rise 
in the number of cases thereafter. It seems likely that a high 
investment in prevention measures, such as use of nets, fol-
lowing the 1997–1998 rains had a positive effect for both age 
classes but this was not maintained after about 5 years hence 
compromising the overall benefits of the measures. Figure 9 
shows a significant regression relationship between malaria 
cases and the 5-month running mean of the average monthly 
minimum temperature.

The relationship shows that malaria cases recorded in the 
various districts of Uganda increased with either increasing 
minimum temperatures or rainfall depending on age class. 
Thus, malaria cases increased with increasing rainfall for 
the under-five age group, but increased with increase in the 
5-month moving average of the minimum temperature for 
the 5 years and above age group (Fig. 9, Table 7, SI 14).

Malaria Projections for the Kenyan Section 
of the LVB over 2006–2100

The transmission of the malaria parasite in Central Unilever 
and Litein Missionary hospitals showed strong quasi-cyclic 
fluctuations in all the three scenarios, with evidently time 
varying amplitudes and phases. Moreover, there were evi-
dent variations in the timings and amplitudes of the oscil-
lations across the eight different GCM trajectories but no 
apparent temporal trend in the projected malaria or anae-
mia cases. Historical cases in Litein Missionary Hospital 
responded to changes in temperature. In Mukumu, the 

Fig. 7  Regression relationships between the 6-month moving average 
of the average monthly maximum temperature and reported malaria 
cases in Litein hospital located in Kericho and the 4-month moving 
average of the total monthly rainfall and reported malaria cases in 
Central Unilever hospital located in Kericho and Mukumu hospital in 
Kakamega in Kenya

Table 5  Results of the linear regression of malaria cases on running means of rainfall and temperature for three hospitals in Kenya

A numeric suffix in rainfall or temperature component name denotes the time window in months over which the running average was computed

Hospital Effect Estimate SE df T P >|T|

Litein Missionary Hospital, Kericho Intercept − 1628.3929 737.6111 82 − 2.208 0.030062
Mavmaxtemp6 67.9544 22.5784 82 3.010 0.003474

Mukumu Hospital, Kakamega Intercept 25.2664 106.4551 143 0.237 0.81273
Mavrain4 4.0528 0.9025 143 4.491 1.45 ×  10–5

Central Unilever Tea Hospital, Kericho Intercept − 9.0479 32.4533 129 − 0.279 0.780847
Mavrain4 1.0193 0.2781 129 3.666 0.000359
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trajectory of the projected transmission portrays an increase 
in transmission, implying more cases can be expected in 
the future, especially under the RCP 4.5 and RCP 8.5 sce-
narios (Figs. 10, 11, 12, 13, SI 15–18). Under RCP 8.5, the 
observed cases were high in 1995–2007, the period when the 
1997–1998 El Niño was experienced. During the 2008–2030 
period, malaria cases will likely be reduced due to the efforts 
of integrated malaria control that are currently underway. 
There will likely be a marked variability in both the inci-
dence and prevalence of malaria cases under the three sce-
narios in the future. In the worst-case scenario (RCP 8.5), 
malaria cases are projected to increase (Figs. 10, 11, 12, 13). 
The RCP 8.5 scenario shows that there will likely be a steady 
increase in the mean malaria cases reported at the hospitals 

over time as a result of the anticipated widening variability 
in rainfall and temperature (Figs. 10, 11, 12, 13).

Malaria Projections for the Tanzanian Section 
of the LVB over 2016–2100

The Under-five age group responded to increases in maxi-
mum temperatures and increased over time most especially 
under the RCP 8.5 scenario. The malaria cases in this age 
group will likely increase steeply in the future. The 5 years 
and above age group also shows an increase in malaria cases 
in both the RCP 4.5 and RCP 8.5 scenarios, with the steepest 
increase projected for the RCP 8.5 scenario. More rainfall in 

Fig. 8  Regression relationships between reported malaria cases and 
the 4-month moving average of the total monthly rainfall for all ages 
and 5 years and above for Muleba hospital in Tanzania

Table 6  Results of the linear 
regression of malaria cases 
on running means of rainfall 
and temperature for Muleba 
hospital, Tanzania

A numeric suffix in rainfall or temperature component name denotes the time window in months over 
which the running average was computed

Age Effect Estimate SE DF T P >|T|

All ages Intercept − 0.1227 0.0674 63.0 − 1.821 0.07339
All ages Mavrain4 0.0029 0.0007 63.0 4.316 5.71 ×  10–5

5 years and above Intercept − 1.6848 0.0598 63.0 − 28.176 2.04 ×  10–37

5 years and above Mavrain4 0.0039 0.0006 63.0 6.841 3.77 ×  10–9

Under 5 years Intercept − 3.3353 1.4992 52.0 − 2.225 0.030467
Under 5 years Mavmaxtemp4 0.0910 0.0523 62.8 1.739 0.087013

Fig. 9  Regression relationship between reported malaria cases and 
the 5-month moving average of the average monthly minimum tem-
perature for 5 years and above in Uganda
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Table 7  Results of the 
regression of malaria cases 
reported for Uganda on rainfall 
and temperature

A numeric suffix in rainfall or temperature component name denotes the time window in months over 
which the running average was computed

Age Effect Estimate SE df T P >|T|

Under 5 years Intercept − 1.7430 0.5901 12 − 2.954 0.012057
Under 5 years Mavannual2 0.0006 0.0005 12 1.178 0.261772
5 years and above Intercept − 3.3344 1.1720 12 − 2.845 0.014757
5 years and above Lagmintemp5 0.1655 0.0715 12 2.315 0.039130

Fig. 10  Summary of observed and forecast malaria cases/mean in Kenya for the period 1995–2100 under RCP2.6, RCP4.5 and RCP8.5 sce-
narios based on GCM model 1 in Table 2
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the future will likely result in increased malaria and anaemia 
cases in this and all the other age groups (Figs. 14, 15, 16, 
17, 18, SI 19–21). Similar projections of future increases in 
malaria cases for the 5 years and above age group under the 
RCP 8.5 scenario are apparent for Muleba (Figs. 14a, 16).

Malaria Projections for the Ugandan Section 
of the LVB over 2006–2100

The observed malaria cases decreased during 2009–2010, 
but the average level of transmission in the future is expected 

Fig. 11  Malaria cases projected for Central Unilever hospital in Kericho, Kenya, for the period 2008–2100 under the RCP2.6, RCP4.5 and 
RCP8.5 scenarios, using an ensemble of 8 general circulation models
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to remain stable under the RCP 2.6 scenario. However, con-
siderable inter-annual fluctuations in the level of transmis-
sion can be expected as can an increase in cases depend-
ing on rainfall and temperature patterns under the RCP 2.6 
scenario (Figs. 19, 20, 21, SI 22). The RCP 4.5 and RCP 
8.5 scenarios show an upward trend in malaria cases in the 
future. This is much more pronounced for the RCP 8.5 than 
the RCP 4.5 scenario (Figs. 19, 20, 21, 22, SI 23).

Discussion

Climate change is expected to affect malaria transmission, 
and the extent to which the transmission will likely change 
should be established so that this can be appropriately 
addressed by the public health sector and governments. To 
understand these changes, we examined future malaria sce-
narios for the Lake Victoria Basin in East Africa in response 

Fig. 12  Malaria cases projected for Litein hospital in Kericho, Kenya, for the period 2008–2100 under the RCP2.6, RCP4.5 and RCP8.5 sce-
narios, using an ensemble of 8 general circulation models
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to climate variability based on three climate scenarios for 
2006–2100 defined by the representative concentration path-
ways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 and projected 
by an ensemble of eight GCMs.

It is crucial to minimize uncertainty in future projections 
to reliably assess anticipated influences of simulated climatic 
variability and change. This is often done by considering a 

range of plausible projection scenarios and using an ensem-
ble of GCMs. However, there are typically too many poten-
tial sources of uncertainty to exhaustively consider in any 
single study in practice. Thus, even though we consider 
multiple countries, malaria transmission hotpots, rainfall, 
minimum and maximum temperature components, periods 
and seasons, we perform extensive model selection using 

Fig. 13  Malaria cases projected for Mukumu hospital in Kakamega, Kenya, for the period 2008–2100 under the RCP2.6, RCP4.5 and RCP8.5 
scenarios, using an ensemble of 8 general circulation models
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the historical data and consider an ensemble of eight dif-
ferent future projections for each of the three scenarios to 
reduce uncertainty. We account for uncertainty in the pro-
jected future scenarios by considering several sources of 
uncertainty associated with the simulated scenarios, rain-
fall and temperature component uncertainty, model selection 
uncertainty relating to the functional form of the relationship 

between malaria or anaemia cases and rainfall and tempera-
ture, parameter uncertainty in the selected models and model 
projection uncertainty. To account for uncertainty in the pro-
jected future scenarios, we consider three RCP scenarios, 
including the best case (RCP 2.6), intermediate (RCP 4.5) 
and worst case (RCP 8.5) scenarios. Using these three sce-
narios allows us to capture future uncertainties inherent in 

Fig. 14  Summary of observed 
and forecast a malaria cases/
mean and b anaemia cases/
mean in Tanzania for the period 
1995–2100 under RCP2.6, 
RCP4.5 and RCP8.5 scenarios 
based on GCM
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contemplated future outcomes contingent upon contrasting 
contemporary policies. Although one may consider many 
other scenarios, we expect the projections a priori to fall 
between the two boundary scenarios (RCPs 2.6 and 8.5). 
For each scenario, we consider an ensemble of eight GCMs 
to account for projection model uncertainty.

We extensively consider model selection uncertainty in 
the regression relationships between the historical malaria 
and anaemia cases and historical rainfall and temperature 
components and use information theoretics, residual and 
influence diagnostics and statistical tests to choose between 
specific rainfall and temperature components (lags or 

Fig. 15  Malaria cases among under 5-year old’s projected for Muleba hospital, Tanzania, for the period 2006–2100 under the RCP2.6, RCP4.5 
and RCP8.5 scenarios, using an ensemble of 8 general circulation models
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cumulative moving averages) and functional forms of con-
tending models relating malaria and anaemia cases to the 
selected rainfall and temperature components. First, we use 
the corrected Akaike Information Criterion plus residual and 
influence diagnostics and multiple other criteria to choose 
the models and rainfall and temperature components. Sec-
ond, we quantify parameter uncertainty using standard errors 

of the model parameter estimates. Third, for each scenario 
and GCM combination, we use 95% pointwise confidence 
bands to quantify projection uncertainty. Lastly, we bench-
mark the performance of the projection models against the 
historical malaria (or anaemia) outbreak time series. In all 
the cases, we find reasonable agreements between the model 
projections and the historic time series but remarkable 

Fig. 16  Malaria cases among 5-year old’s and above projected for Muleba hospital, Tanzania, for the period 2006–2100 under the RCP2.6, 
RCP4.5 and RCP8.5 scenarios, using an ensemble of 8 General Circulation Models
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variation in the projected series across the ensemble of eight 
GCMs, reaffirming the importance of using ensemble pro-
jections for each scenario.

Our results suggest a likely greater increase in the mini-
mum than the maximum temperatures during 2006–2100. 
Specifically, minimum temperatures will likely increase by 

1–2.5 °C by 2030, and 4–5 °C by 2100 compared to the base 
period. The projected future warming trend is a regional 
manifestation of global warming and reinforces IPCC’s [10] 
projection that by 2100, the average global temperatures will 
likely have risen by 1–3.5 °C. We project a likely increase in 
the maximum and minimum temperature components for the 

Fig. 17  Malaria cases among people of all ages projected for Muleba hospital, Tanzania, for the period 2006–2100 under the RCP2.6, RCP4.5 
and RCP8.5 scenarios, using an ensemble of 8 general circulation models
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three RCP scenarios compared to the base period in the Lake 
Victoria Basin. Rwanda and Burundi are projected to have 
some of the highest increases in both the minimum and max-
imum temperature components. However, the available clini-
cal malaria data for Rwanda and Burundi were insufficient 
to project malaria cases under the three RCPs scenarios.

Rainfall is projected to increase in the short rainy season 
(OND) compared to the long rainy season (MAM) for RCP 
4.5 and RCP 8.5 for the periods 2050s and 2070s and this 
will likely make a large contribution to the increase in the 
annual rainfall in the LVB, especially on its eastern section. 
The dry season will likely be much drier than in the base 
period. An increase in precipitation in the short rainy season 

Fig. 18  Anaemia cases among under 5-year old’s projected for Muleba hospital in Tanzania, for the period 2006–2100 under the RCP2.6, 
RCP4.5 and RCP8.5 scenarios, using an ensemble of 8 general circulation models
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will likely prolong the malaria transmission season in the 
Lake Victoria Basin due to the increase in the rain-fed vector 
breeding habitats [27, 28].

For the intermediate scenario, RCP 4.5, projections show 
that increased rainfall and warming of the highlands will 
likely increase the mean number of malaria cases. The most 
affected time periods will be 2008–2030. El Niño events 
were reported during 1994–1995, 1997–1998, 2002–2003, 
2004–2005, 2006–2007, 2009 and 2015–2016 [29–31] and 
the projections clearly show an increase in malaria cases in 
the Lake Victoria Basin in the years when an El Niño event 
occurred. Epidemics were also reported during these years 
[32–34]. The under-fives still remains the most vulnerable 
group to malaria infections under the RCP 4.5 scenario.

These climatic changes have multiple implications for 
malaria transmission. Increased temperatures expected in 
the Lake Victoria Basin will likely elevate malaria trans-
mission in the highlands by altering malaria vector ecology 
and biology [35, 36]. The anticipated temperature rise will 
likely reduce vector development time and also increase the 
rate of development of the malaria parasite inside the vector 
[37]. This will likely cause an increase in malaria transmis-
sion in areas where malaria already exists and also in areas 
that are already malaria transmission hotspots [38, 39]. The 
increase in minimum temperatures will likely increase the 
geographic spread of malaria parasites and malaria cases to 
new areas outside the present malaria distributional range. 

Thus, highland regions with average temperatures below 
18 °C will likely experience new cases due to the projected 
increase in both the minimum and maximum temperatures 
[40]. The frequency and intensity of epidemics may thus be 
expected to increase in these regions. However, high temper-
atures expected in the lowlands may have a negative effect 
on holoendemic malaria transmission [37].

An increase in rainfall in the short rainy season (OND) 
will likely prolong the malaria transmission season and 
shift seasonal malaria transmission. More malaria cases 
will likely be reported during this season in the Lake Victo-
ria Basin in future than in the base period. This will likely 
strain the health systems of the LVB countries as they will 
be forced to deal with more cases than are usually presented 
in hospitals during the short rainy season [41].

There will also likely be an increase in anaemia cases 
which are directly related to malaria infections and are a 
major cause of morbidity and mortality in the under-5 years 
[42, 43]. For every 130 cases of malaria reported in 1996, 
20 anaemia cases were reported in the under-five age group. 
This trend is projected to increase in the future and to peak in 
2051–2070. An increase in malaria cases in future will thus 
almost certainly lead to increased anaemia cases. Historical 
malaria cases in the region were strongly influenced by cli-
mate variability from the upsurge in the number of reported 
clinical cases after El Niño events in 1995–1996, 1997–1998 
and 2002–2003. Malaria epidemics were reported during 

Fig. 19  Summary of observed 
and forecast malaria cases/total 
cases in Uganda for the period 
1995–2100 under RCP2.6, 
RCP4.5 and RCP8.5 scenarios



1558 Acta Parasitologica (2022) 67:1535–1563

1 3

these years [44]. This shows that climate variability influ-
ences malaria transmission. Future climatic extremes will 
also likely cause similar upsurges in clinical malaria cases 
as evidenced by episodic spikes in the trajectory of the pro-
jected malaria cases suggesting epidemic outbreaks.

Despite the changes in climate and its variability, 
malaria interventions can prevent or reduce the impacts of 
climate change and reduce the incidence and prevalence of 
malaria in the Lake Victoria Basin [7, 45]. In 2006, distri-
bution of bed nets to vulnerable groups, such as pregnant 

women and mothers with children under 5 years, reduced 
malaria prevalence significantly [46]. In 2011, the roll 
back malaria campaign for universal bed net distribution 
also reduced malaria prevalence significantly [47]. Tar-
geted distribution of long-lasting insecticide treated nets 
in malaria hotspots has prevented outbreaks of epidemics 
in these regions [48]. Other interventions such as the use 
of Indoor residual spraying have a major impact in reduc-
ing malaria incidence and prevalence in the Lake Victoria 

Fig. 20  Malaria cases among under 5-year old’s projected for all the hospitals in Uganda, for the period 2011–2100 under the RCP2.6, RCP4.5 
and RCP8.5 scenarios, using an ensemble of 8 general circulation models
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Basin [49]. However, there is a risk of intervention failure 
mainly because of insecticide resistance, shift in biting 
time, less anthropophily, increased zoophilly and exoph-
ily and also a shift in species abundance [50, 51]. There is 
also a looming threat of drug resistance, but new vaccines, 
if effective, will hopefully be an added tool to the existing 
malaria control toolbox.

Conclusions

Early detection of malaria epidemics and accurate future 
projections are major strategies in malaria control as they 
increase preparedness and reduce morbidity and mortality. 
Climatic changes are expected to greatly impact the high-
land regions of the Lake Victoria Basin as temperature rise 
will likely increase the survival rates of the malaria vectors 

Fig. 21  Malaria cases among 5-year old’s and above projected for all the hospitals in Uganda, for the period 2011–2100 under the RCP2.6, 
RCP4.5 and RCP8.5 scenarios, using an ensemble of 8 general circulation models
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and parasite transmission. Some highland regions will likely 
experience new cases of malaria transmission for the first 
time. Larger populations will likely be at risk and novel 
malaria hotspots will likely emerge. This calls for universal 
coverage of control interventions to minimize transmissions. 
Interventions should be restructured to address emerging 
risks of malaria transmission caused by increasing human 
vulnerability and suitability of new regions for malaria trans-
mission. Future malaria research should prioritize under-
standing of the role of vector ecology on malaria, vector 
abundance and species change in response to climate change 
and widening variability. Widespread adoption of land uses 
that reduce vector habitats and lower temperatures should be 
promoted as adaptation and mitigation strategies for control-
ling malaria prevalence and spread in the anticipated warmer 
and wetter future climates.
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