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Abstract

Purpose Many marine animals are infected and susceptible to toxoplasmosis, which is considered as a potential transmission
source of Toxoplasma gondii to other hosts, especially humans. The current systematic review and meta-analysis aimed to
determine the prevalence of 7. gondii infection among sea animal species worldwide and highlight the existing gaps.
Methods Data collection was systematically done through searching databases, including PubMed, Science Direct, Google
Scholar, Scopus, and Web of Science from 1997 to July 2020.

Results Our search strategy resulted in the retrieval of 55 eligible studies reporting the prevalence of marine 7. gondii
infection. The highest prevalence belonged to mustelids (sea otter) with 54.8% (95% CI 34.21-74.57) and cetaceans (whale,
dolphin, and porpoise) with 30.92% (95% CI 17.85-45.76). The microscopic agglutination test (MAT) with 41 records and
indirect immunofluorescence assay (IFA) with 30 records were the most applied diagnostic techniques for 7. gondii detec-
tion in marine species.

Conclusions Our results indicated the geographic distribution and spectrum of infected marine species with 7. gondii in dif-
ferent parts of the world. The spread of T. gondii among marine animals can affect the health of humans and other animals;
in addition, it is possible that marine mammals act as sentinels of environmental contamination, especially the parasites by
consuming water or prey species.
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Introduction

Marine species constitute a very diverse group of animals
with global distribution, mostly along coastal regions
or habitat [1]. The human population density in coastal
areas greatly increased during the recent decades and
zoonotic pathogens can be transmitted to humans directly
or indirectly from marine animals [2]. Thus, the health
of marine mammals can substantially influence human’s
well-being. Toxoplasmosis, caused by the intracellular
protozoan Toxoplasma gondii, is a zoonotic infection with
felids as definitive hosts, and a wide range of homoeo-
thermic vertebrates as intermediate hosts [3, 4]. Pregnant
women and immunocompromised patients are at a higher

risk for developing the clinical disease with harsh out-
comes, including congenital toxoplasmosis (hydrocepha-
lus, chorioretinitis, and cerebral calcifications) and life-
threatening encephalitis [5—7]. Understanding 7. gondii
transmission routes in wild, free-ranging marine mammals
is problematic. There are three possible routes by which
marine animals could become infected with 7. gondii,
including: ingestion of oocysts, ingestion of bradyzoites
in tissue cysts of other intermediate hosts or vertically.
Oocysts are shed via cat feces into the environment, which
can readily infect several animal species [8, 9]. Small T.
gondii oocysts show remarkable resistance to common dis-
infectants and remain alive in moist surroundings, even
when exposed to a vast range of salinity and temperature
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conditions. This environmental tolerance leads to in fast
and extensive dispersal of infection, particularly follow-
ing heavy rain falls. The runoff originated from rainfalls
alongside wastewater outfalls being likely contaminated
with stray/feral cat fecal material make a huge depot of
infective oocysts, which are usually discharged into a
water body, i.e., sea and ocean, posing potential risk of
T. gondii infection in those species dwelling in marine
habitats [10]. In another way, marine animals acquired
infection through ingestion of 7. gondii protozoal cyst con-
taining numerous bradyzoites. In areas where definitive
hosts are rare and the viability of oocysts are likely limited
due to freezing conditions, such as the Canadian Arctic,
this could explain how animals are exposed to 7. gondii.
A number of investigators have pointed out that oocysts
and bradyzoites of T. gondii are concentrated by oysters,
clams and mussels during filter-feeding activity. It is note-
worthy that the role of vertical transmission of toxoplas-
mosis in marine animals is unknown [9]. These are highly
promising findings, but the precise mode of transmission
is still open to question. Experimentally, oocyst sporula-
tion occurs in seawater, remaining infective for animals
for 6-24 months, depending on the temperature [11, 12].

During the last decades, a number of studies have reported
T. gondii infection in marine animals, such as cetaceans, pin-
nipeds, sirenians, and sea otters (Enhydra lutris) [13-16].
Disseminated clinical disease has also been documented in
adult or sometimes neonate marine mammals from Europe,
USA, and Australia [17-19], with some degree of morbid-
ity observed, for example, in the sea otters [13, 20, 21] and
in the Pacific harbor seal (Phoca vitulina richardsi) [22, 23].
Furthermore, it seems that some species have been threatened
and endangered in part due to toxoplasmosis [3, 24].

The increasing amount of anthropogenic toxicants dis-
charged into the marine environment, as well as morbillivirus
infection, can suppress the immunity of marine mammals and
give rise to clinical toxoplasmosis susceptibility, yet in others
cases, no links to concurrent disease have been identified [25,
26]. Since T. gondii is a pronounced hallmark of aquatic pollu-
tion and marine species are superb sentinel animals in marine
life [27-29], it would be beneficial to assess the status of 7.
gondii infection in these animals. Thus, the current systematic
review and meta-analysis aimed to investigate the prevalence
of T. gondii infection among marine animal species worldwide
and highlight the existing gaps.

Materials and Methods
Search Strategy

This study was prepared and performed in accordance with
the PRISMA (Preferred Reporting Items for Systematic
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reviews and Meta-Analyses) statement [30]. Data were sys-
tematically searched and collected from English language
databases including PubMed, Science Direct, Google
Scholar, Scopus, ISI Web of Science, published from incep-
tion to 1 January, 2020 by two investigators (FR and ASP).

The search process was performed using the following
keywords and medical subject headings (MeSH) terms:
“Toxoplasma gondii”, “Toxoplasmosis”, “T. gondii” in com-
bination with “fishes”, “marine mammals”; “oyster”, “Shell-
fish”, “mussels”, “dolphin”, “shark”, “crab”, “seal”, “sea
lion”, “whale”, “sea otter”, “porpoise”, “shrimp”, “Mana-
tees”, “Walruses”, “Eel”, “crayfish”, and “turtle”. To avoid
missing of any paper, the reference list of relevant papers

was screened manually.
Study Selection

For the first screening, the two independent authors (ASP
and FR) surveyed the title and the abstract of all papers
returned from the search process. To ensure the eligibility
for inclusion to the systematic review, full texts of papers
were also reviewed by investigators (ASP and FR), and any
disagreement on articles selected was resolved.

Quality Evaluation

Selected articles were assessed according to a checklist
used in previous studies [31]. This checklist was based on
contents of the strengthening the reporting of observational
studies in epidemiology (STROBE) checklist containing
questions about various methodological aspects such as
type of study, sample size, study population, data collection
approaches and tools, sampling methods, variables estima-
tion status, methodology, research objectives and demon-
stration of results according to the objectives [32]. For each
question, a score was attributed and articles with a score of
at least seven were selected articles. In addition, any disa-
greements with selected papers were reviewed by another
author.

Selection Criteria and Data Extraction

Papers were included in the meta-analysis with the following
criteria: (1) original articles; (2) studies in English language;
(2) articles available in full-text; (3) studies that evaluated
the prevalence of 7. gondii infection in marine animals. On
the other hand, the exclusion criteria entailed: case reports,
review articles, letter to the editor, unclear or not techni-
cally acceptable diagnostic criteria, insufficient information,
congress articles, as well as those with unavailable full-text.
After reviewing all articles, papers without sufficient infor-
mation and that did not obtain the minimum quality score
were excluded.
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Meta-Analysis

In this study, a forest plot was used to visualize the sum-
marized results and heterogeneity among the included
studies. The size of every square indicated the weight of
every study as well as crossed lines presented confidence
intervals, CI. To assess heterogeneity index, Cochran’s Q
test and I? statistics were applied. Additionally, a funnel
plot was designed to determine the small study effects and
their publication bias, based on Egger's regression test.
The meta-analysis was conducted using Stats Direct statis-
tical software (http://www.statsdirect.com). A P value less
than 0.05 was considered statistically significant. Addi-
tional meta-analysis was performed based on the type of
host, location and diagnostic method.

Results

A total of 5175 papers were analyzed by exploration of
PubMed, Science Direct, Scopus, Google Scholar, and ISI
Web of Science databases, and finally 55 records were found
to be eligible for the current systematic review and meta-
analysis. The searching and study selection procedures are
illustrated in Fig. 1. Based on Continent, the highest number
of investigations was from Europe (30 studies) with a total
prevalence of 12.99%, and marine mustelids were the most
infected group with 53.12%. It is also worth noting that 24
studies from North America were included in this system-
atic review, indicating a total prevalence of 21.15%, and
an exceptionally high infection rate among cetaceans was
observed in this continent (80.85%). In Asian countries, a
low prevalence rate of 1.78% was reported and the pinnipeds
were the most infected group with 29.2%. In South America,

Records identified through database searching: PubMed (n =
764), Google scholar (n = 2940), Science direct (n = 608), Web
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Fig. 1 Flowchart describing the study design process

@ Springer


http://www.statsdirect.com

596

Acta Parasitologica (2022) 67:592-605

a pooled prevalence of 8.03% was reported with the high-
est infection in cetaceans (30.35%). In Oceania, the pooled
prevalence was 17.73% and cetaceans were the most infected
species (26.12%). In addition, the pooled prevalence rate
in Antarctica was 39.21% in pinnipeds. On the other hand,
no reports were found for the North Pole and the African
continent (Fig. 2).

According to Table 1, T. gondii infection was detected in
dolphins (45 entries), whales (29 entries), seals (31 entries),
sea lions (5 entries), sea otters (10 entries), porpoise (3
entries), oysters/mussels/shellfish (11 entries), fishes (4
entries), shrimp (2 entries), manatees (2 entries), walruses,
eel and crayfish (single record for each) using serological
and/or molecular techniques. Most reports were from the
USA and Brazil with 24 records for each country, followed
by Scotland (15 records), Italy (13 records), China (10
records), Spain (9 records), Canada and United Kingdom (8
records for each), Mexico (5 records), Norway and Russia (4
records for each), New Zealand (3 records), Japan (2 records)
as well as single records from Iran, Turkey, Portugal, Neth-
erlands, Peru, Australia and Solomon Islands. Altogether,
eight serological methods were employed to determine
T. gondii infection among marine animals. These include
the modified agglutination test (MAT) as the most used
technique (41 records), followed by immunofluorescence

North America

Number of studies: 24
Total prevalence: 21.15%
Cetaceans: 80.85%
Mollusca: 26.94%
Pinniped: 7.06%
Sirenians: 37.66%
Marine fissipeds: 50.12%

Africa

NoDATA

antibody test (IFA) (30 records) and immunohistochemistry
(IHC) (21 records). Moreover, 17 entries used conventional
polymerase chain reaction (PCR), being this the most used
molecular technique, followed by nested-PCR (7 records)
and quantitative PCR (qQPCR) (4 records). Subgroup analysis
(Table 2) showed that most studies were focused on ceta-
ceans (whale, dolphin and porpoise) (36 studies), whereas
the highest prevalence rate of 7. gondii infection belonged
to marine mustelids (sea otter, 10 studies) with 54.8% (95%
CI 34.21-74.57%). Pooled proportion of T. gondii infection
in dolphin species was of 51.07%. According to Egger’s test,
the prevalence rates in cetaceans (P value =0.0489) and pin-
nipeds (P value =0.0004) were statistically significant.

Discussion

The present systematic review and meta-analysis aimed to
determine the prevalence rate of 7. gondii infection world-
wide. The obtained data were categorized based on the
species of marine animals, continents, and diagnostic tech-
niques. Among marine animals, the prevalence of T. gondii
infection was higher in the population of sea otters (54.8%).
In a study, Miller et al. [33] suggested that coastal freshwater
runoff is a risk factor for toxoplasmosis in southern sea otters

Europe

Number of studies: 30

Total prevalence: 12.99%
Cetaceans: 14.81%
Mollusca: 26.41%
Pinniped: 2.78%
Marine fissipeds: 53.12%
Fishes: 21.76%

Number of studies: 13
Total prevalence: 1.78%
Cetaceans: 12.5%
Mollusca: 2.24%
Pinniped: 29.2%
Fishes: 0.08%
Decapoda: 0.26%

South America

Antarctica
Number of studies: 1
Total prevalence: 39.21%

Pinniped: 39.1%

Number of studies: 7
Total prevalence: 8.03%
Cetaceans: 30.35%
Mollusca: 2.2%

Oceania
Number of studies: 5
Total prevalence: 17.73%

Cetaceans: 26.12%

Pinniped: 11.76%

Mollusca: 12.5%
Pinniped: 10%

Fig.2 Pooled prevalence of T. gondii in marine animal species in different continents
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Table 1 Detection of Toxoplasma gondii in marine animals (sorted by scientific name and publication date)

Species Location Continent Test Sample size Positive (%) References
Dolphin
Tursiops truncatus USA North America MAT 141 138 (97.9) Dubey et al. [17]
Sousa chinensis Australia Australia IHC 4 4 (100) Bowater et al. [47]
Stenella coeruleoalba  Spain Europe MAT 36 4 (11.1) Cabezon et al [48]
Delphinus delphis Spain Europe MAT 4 2 (50) Cabezon et al. [48]
Tursiops truncatus Spain Europe MAT 7 4(57.1) Cabezén et al. [48]
Phocoena phocoena Spain Europe MAT 1 1 (100) Cabezén et al. [48]
Grampus griseus Spain Europe MAT 9 0 Cabezén et al. [48]
Tursiops aduncus Solomon Islands Oceania Immunoblotting 58 8 (13.8) Omata et al. [49]
Tursiops truncatus Russia Europe ELISA 59 27 (45.7) Alekseev et al. [50]
ponticus
Tursiops truncatus USA North America MAT 52 27 (51.9) Dubey et al. [44]
Tursiops truncatus Russia Europe ELISA 74 39 (52.7) Alekseev et al. [51]
ponticus
Tursiops truncatus USA North America MAT 7 7 (100) Dubey et al. [18]
Delphinus delphis United Kingdom Europe Sabin Feldman 21 6 (28.5) Forman et al. [52]
Grampus griseus United Kingdom Europe Sabin Feldman 1 0 Forman et al. [52]
Lagenorhynchus acutus  United Kingdom Europe Sabin Feldman 1 0 Forman et al. [52]
Tursiops truncatus United Kingdom Europe Sabin Feldman 1 0 Forman et al. [52]
Stenella coeruleoalba  United Kingdom Europe Sabin Feldman 5 0 Forman et al. [52]
Stenella coeruleoalba  Italy Europe IFA 8 4 (50) Di Guardo et al. [53]
Tursiops truncates Italy Europe Nested-PCR and MAT 8 7 (87.5) Pretti et al. [54]
Stenella coeruleoalba  Italy Europe Nested-PCR and MAT 6 6 (100) Pretti et al. [54]
Inia geoffrensis Brazil South America MAT 95 82 (86.3) Santos et al. [55]
Tursiops truncatus Mexico North America MAT 63 55 (87.3) Alvarado-Esquivel et al.
truncatus [56]
Tursiops truncatus Mexico North America MAT 3 3 (100) Alvarado-Esquivel et al.
gillii [56]
Cephalorhynchys New Zealand Oceania PCR 49 17 (34.7) Roe et al. [57]
hectori
Tursiops truncatus Spain Europe IFA 24 2(8.3) Bernal-Guadarrama et
al. [58]
Stenella coeruleoalba  Italy Europe IFA 18 8 (44.4) Profeta ef al. [59]
Tursiops truncatus Italy Europe IFA 3 2 (66.6) Profeta ef al. [59]
Grampus griseus Scotland Europe IFA 7 2 (28.5) et al. [26]
Delphinus delphis Scotland Europe IFA 13 2(15.4) van de Velde et al. [26]
Stenella coeruleoalba  Scotland Europe IFA 9 0 van de Velde et al. [26]
Lagenorhynchus albi-  Scotland Europe IFA 6 1(16.6) van de Velde et al. [26]
roStris
Stenella coeruleoalba  Ttaly Europe PCR 10 6 (60) Pintore et al. [60]
Tursiops truncatus Italy Europe PCR 1 1 (100) Pintore et al. [60]
Steno bredanensis Brazil South America [HC 0 Costa-Silva et al. [61]
Lagenodelphis hosei Brazil South America IHC 0 Costa-Silva et al. [61]
Sotalia guianensis Brazil South America IHC 27 1@3.7) Costa-Silva et al. [61]
Tursiops truncatus Brazil South America IHC 4 1(25) Costa-Silva et al. [61]
Pontoporia blainvillei  Brazil South America IHC 102 0 Costa-Silva et al. [61]
Stenella frontalis Brazil South America IHC 6 0 Costa-Silva et al. [61]
Stenella longirostris Brazil South America ITHC 5 0 Costa-Silva et al. [61]
Stenella clymene Brazil South America ITHC 6 0 Costa-Silva et al. [61]
Stenella coeruleoalba  Brazil South America ITHC 2 0 Costa-Silva et al. [61]
Delphinus delphis Brazil South America IHC 1 0 Costa-Silva et al. [61]
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Table 1 (continued)

Species Location Continent Test Sample size Positive (%) References
Delphinus delphis Brazil South America [HC 1 0 Costa-Silva et al. [61]
Inia geoffrensis Brazil South America IHC 1 0 Costa-Silva et al. [61]
Whale
Balaenoptera acuto- Norway Europe MAT 202 0 Oksanen et al. [62]
rostrata
Delphinapterus leucas  USA North America MAT 3 0 Dubey et al. [17]
Globicephala melas Spain Europe MAT 1 0 Cabezén et al. [48]
Orcinus orca Japan Asia PCR 8 1(12.5) Omata et al. [49]
Delphinapterus leucas  Russia Europe ELISA 147 7@4.7) Alekseev et al. [51]
Megaptera novaean- United Kingdom Europe Sabin Feldman 1 1(100) Forman et al. [52]
gliae
Ziphius cavirostris United Kingdom Europe Sabin Feldman 1 0 Forman et al. [52]
Physeter macrocepha-  Portugal Europe gPCR 5 0 Hermosilla et al. [63]
lus
Balaenoptera physalus  Italy Europe IFA 1 0 van de Velde et al. [26]
Globicephala melas Italy Europe IFA 1 0 van de Velde et al. [26]
Balaenoptera physalus ~ Scotland Europe IFA 1 0 van de Velde et al. [26]
Orcinus orca Scotland Europe IFA 3 0 van de Velde et al. [26]
Globicephala melas Scotland Europe IFA 10 4 (40) van de Velde et al. [26]
Balaenoptera acuto- Scotland Europe IFA 5 0 van de Velde et al. [26]
rostrata
Mesoplodon bidens Scotland Europe IFA 4 0 van de Velde et al. [26]
Physeter macrocepha-  Scotland Europe IFA 2 0 Alekseev ef al. 2017 [64]
lus
Balaenoptera borealis ~ Scotland Europe IFA 1 0 Igbal et al. [65]
Delphinapterus leucas  Russia Europe ELISA 87 10 (11.5) Profeta et al. [59]
Delphinapterus leucas  Canada North America PCR 34 15 (44.1) Profeta et al. [59]
Globicephala melas Italy Europe PCR 1 0 Pintore et al. [60]
Kogia sima Brazil South America THC 7 0 Costa-Silva et al. [61]
Peponocephala electra  Brazil South America THC 5 0 Costa-Silva et al. [61]
Globicephala macro- Brazil South America THC 3 0 Costa-Silva et al. [61]
rhynchus
Physeter macrocepha-  Brazil South America THC 3 0 Costa-Silva et al. [61]
lus
Kogia breviceps Brazil South America IHC 2 0 Costa-Silva et al. [61]
Megaptera novaean- Brazil South America THC 2 0 Costa-Silva et al. [61]
gliae
Orcinus orca Brazil South America THC 2 1 (50) Costa-Silva et al. [61]
Mesoplodon europaeus Brazil South America [HC 1 0 Costa-Silva et al. [61]
Balaenoptera physalus  Italy Europe PCR 7 1(14.2) Marecer et al. [66]
Seals
Phoca groenlandica Norway Europe MAT 316 0 Oksanen ef al. [62]
Phoca hispida Norway Europe MAT 48 0 Oksanen ef al. [62]
Cystophora cristata Norway Europe MAT 78 0 Oksanen ef al. [62]
Phoca vitulina USA North America MAT 380 29 (7.6) Lambourn et al. [67]
Phoca vitulina USA North America MAT 311 51(16.4) Dubey et al. [17]
Phoca hispida USA North America MAT 32 5(15.6) Dubey et al. [17]
Erignathus barbatus USA North America MAT 8 4 (50) Dubey et al. [17]
Phoca largha USA North America MAT 9 1(11.1) Dubey et al. [17]
Phoca fasciata USA North America MAT 14 0 Dubey et al. [17]
Phoca groenlandica Canada North America MAT 112 0 Measures et al. [68]
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Table 1 (continued)

Species Location Continent Test Sample size Positive (%) References
Cystophora cristata Canada North America MAT 60 1(1.6) Measures et al. [68]
Halichoerus grypus Canada North America MAT 122 11 9) Measures et al. [68]
Phoca vitulina Canada North America MAT 34 3(8.8) Measures et al. [68]
Phoca vitulina stej- Japan Asia ELISA 71 33.9) Fujii et al. [9]
negeri
Phoca vitulina vitulina ~ Spain Europe MAT 56 3(5.3) Cabezon et al. [48]
Halichoerus grypus Spain Europe MAT 47 11 (23.4) Cabezon et al. [48]
Pusa hispida Canada North America DAT 788 80 (10.1) Simon et al. [69]
Erignathus barbatus Canada North America DAT 20 2 (10) Simon et al. [69]
Phoca vitulina Canada North America DAT 9 2(22.2) Simon et al. [69]
Leptonychotes wed- Antarctic Peninsula South America DAT 31 13 (41.9) Rengifo-Herrera et al. [70]
dellii
Mirounga leonina Antarctic Peninsula South America DAT 13 10 (76.9) Rengifo-Herrera et al. [70]
Lobodon carcinophaga Antarctic Peninsula South America DAT 2 1 (50) Rengifo-Herrera et al. [70]
Arctocephalus gazella  Antarctic Peninsula South America DAT 165 4(24) Rengifo-Herrera et al. [70]
Arctocephalus gazella  Antarctica Antarctica DAT 21 12 (57.1) Jensen et al. [71]
Leptonychotes wed- Antarctica Antarctica DAT 33 17 (51.5) Jensen et al. [71]
dellii
Mirounga leonina Antarctica Antarctica DAT 48 11 (22.9) Jensen et al. [71]
Arctocephalus australis Peru South America IFA 27 0 Jankowski et al. [72]
Halichoerus grypus Scotland Europe IFA 13 0 van de Velde et al. [26]
Phoca vitulina Scotland Europe IFA 17 2(11.7) van de Velde et al. [26]
Phoca vitulina rich- Alaska North America IFA 34 0 Bauer et al. [73]
ardsi
Pusa caspica Iran Asia MAT 36 30 (83.3) Namroodi et al. [74]
Sea lions
Zalophus californianus USA North America MAT 45 19 (42.2) Dubey et al. [17]
Otaria flavescens Mexico North America MAT 2 0 Alvarado-Esquivel et
al.[56]
Zalophus californianus Mexico North America MAT 4 2 (50) Alvarado-Esquivel ef al.
[56]
Zalophus californianus USA North America IFA 1630 46 (2.8) Carlson-Bremer et al. [75]
Phocarctos hookeri New Zealand Oceania ELISA 50 5(10) Michael et al. [76]
Sea otters
Lontra canadensis USA North America LAT 103 46 (44.6) Tocidlowski et al. [77]
Enhydra lutris nereis USA North America IFA 223 115 (51.5) Miller et al. [78]
Enhydra lutris nereis USA North America IFA 80 29 (36.2) Miller et al. [78]
Enhydra lutris kenyoni  USA North America IFA 21 8 (38.1) Miller et al. [78]
Enhydra lutris kenyoni  USA North America IFA 65 0 Miller et al. [78]
Enhydra lutris nereis USA North America Microscopic test 35 15 (42.8) Miller et al. [79]
Enhydra lutris USA North America MAT 145 107 (73.7)  Dubey et al. [17]
Lontra canadensis USA North America IFA 40 7(17.5) Gaydos et al. [80]
Lutra lutra Scotland Europe IFA 32 17 (83.1) van de Velde et al. [26]
Enhydra lutris kenyoni USA North America MAT 70 65 (92.8) Verma et al. [81]
Porpoise
Phocoena phocoena United Kingdom Europe Sabin Feldman 70 1(1.4) Forman et al. [52]
Phocoena phocoena Netherlands Europe MAT 31 4(12.9) van de Velde et al. [26]
Phocoena phocoena Scotland Europe IFA 98 2(2) van de Velde et al. [26]
Oysters/mussels/shellfish
Mpytella guyanensis Brazil South America Nested PCR 300 0 Esmerini et al. [82]

@ Springer



600

Acta Parasitologica (2022) 67:592-605

Table 1 (continued)

Species Location Continent Test Sample size Positive (%) References
Crassostrea rhizopho-  Brazil South America Nested PCR 300 10 (3.3) Esmerini et al. [82]
rae
Mytilus galloprovin- Turkey Europe HRM 53 21(39.6) Aksoy et al. [37]
cialis
Ostreae concha China Asia PCR 398 0 Zhang et al. [83]
Mytilus galloprovin- Italy Europe qPCR 53 7(13.2) Marangi et al. [84]
cialis
Crassostrea virginica ~ USA North America PCR 230 4 (1.7) Marquis et al. [85]
Crassostrea rhizopho-  Brazil South America PCR 624 17 (2.7) Ribeiro et al. [86]
rae
Oysters China Asia Nested PCR 998 26 (2.6) Cong et al. [87]
Perna canaliculus New Zealand Oceania Nested PCR 104 13 (12.5) Coupe et al. [88]
Mpytilus edulis China Asia Nested PCR 2215 552.4) Cong et al. [89]
Crassostrea virginica ~ USA North America qPCR 1440 446 (30.9) Marquis et al. [90]
Fishes
Carassius auratus China Asia PCR 309 0 Zhang et al. [83]
Cyprinus carpio China Asia PCR 309 0 Zhang et al. [83]
Hypophthalmichthys China Asia PCR 456 1(0.2) Zhang et al. [83]
molitrix
Fishes Italy Europe gPCR 147 32 (21.7) Marino et al. [91]
Shrimp
Penaeus monodon China Asia PCR 426 0 Zhang et al. [83]
Fabricius
Macrobrachium nip- China Asia PCR 813 1(0.1) Zhang et al. [83]
ponense
Manatees
Trichechus manatus Mexico North America MAT 3 0 Alvarado-Esquivel et al.
[56]
Trichechus inunguis MAT 74 29 (39.1) Mathews et al. [15]
Walruses
Odobenus rosmarus USA North America MAT 53 3(5.6) Dubey et al. [17]
Eel
Monopterus albus China Asia PCR 98 0 Zhang et al. [83]
Crayfish
Procambarus clarkii China Asia PCR 618 4 (0.64) Zhang et al. [83]

IHC immunohistochemistry, /FA immunofluorescence antibody test, DAT direct agglutination test, LAT latex agglutination test, HRM real time

PCR/high-resolution melting analysis, /HAT indirect hemagglutination test

(Enhydra lutris nereis) in southern California. Furthermore,
it has been shown that exposure to 7. gondii among sea otters
was highly influenced by individual animal prey choice and
habitat use [34]. Toxoplasmosis had considerable morbidity
and mortality rates in the sea otter [35]. T gondii encephali-
tis in sea otters causes high mortality rate and is responsible
for slow population recovery, particularly for the endangered
Southern sea otter [27]. In addition, cetaceans were the most
infected animals in North America, South America, and
Oceania.

@ Springer

Modified agglutination test (MAT) was the most applied
diagnostic assay for T. gondii detection in marine animals.
This technique is widely employed in research of toxoplas-
mosis in humans and in all species of animals because it
is considered as a rapid and simple approach without the
requirement for special facilities [36]. Molecular meth-
ods, particularly polymerase chain reaction (PCR) and
nested PCR, were used in marine animals usually as a food
source for humans like fishes, shrimp, oysters, and crayfish,
amongst others. Some studies indicate that consumption of
contaminated raw shellfish and mussels can be considered a
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Table 2 Pooled prevalence of Toxoplasma infection in marine animals and subgroup analyses

Egger’s test

No. of studies Prevalence (95% CI)  Heterogeneity

Types of animals

(species)

P value

P value

I

0.0489

4.87

<0.0001

1377.98

97.5

30.92 (17.85-45.76)

36

Cetaceans (whale,

dolphin, porpoise)

0.0004

4.59

460.63 <0.0001

96.3

12.16 (7.28-18.09)

18

Pinniped (seals, sea

lions, walruses)

0.1049
<0.0001

2.62

147.12

26.51 (2.46-63.69)

2
6

Sirenians (manatees)

0.9593

—0.42

96.6

54.8 (34.21-74.57)

Marine fissipeds (sea

otter)
Fishes (fish, eel)

0.1065

434

<0.0001

105.71

1.64 (0.02-7.22) 96.2

0.26 (0.03-0.73)

5
3

0.1132

435

57.1

Decapoda (crayfish,

shrimp)

0.067

7.56

962.83 <0.0001

99.1

7.45 (2.06-15.81)

10

Mollusca (oysters,

mussels, shellfish)

significant health danger due to their ability to infect a wide
variety of hosts such as other marine animals and humans.
However, they are particularly at risk for 7. gondii infec-
tion, and therefore, they can be considered a bioindicator
for monitoring waterborne pathogens [37, 38]. The high
prevalence rate of 7. gondii in the examined marine spe-
cies may indicate that the nearby terrestrial environment in
the studied area was heavily contaminated by 7. gondii, and
consequently, contamination was transferred to the aquatic
environment. Furthermore, marine hosts may associate with
T. gondii infection as paratenic hosts in some area [39].
Hence, contamination of marine animal species is an impor-
tant bioindicator for contamination of aquatic environments.

Each cat, as final host for T. gondii, shed over 3—810 mil-
lion oocysts. The sporulation of the oocysts takes 1-5 days,
and they can remain infective in the soil for up to 18 months
[40]. Furthermore, experiments showed that oocysts of 7.
gondii can sporulate in sea water and survive at 4 °C for
24 months and then infect mice [12]. One important factor
in infected hosts is the strain of the parasite, which plays a
major role in the toxoplasmosis prognosis. So far, the geno-
types T. gondii were classified as classical types I, II, III,
mix/recombinant atypical, and African lineages [41]. Com-
parison between 7. gondii genotypes from the marine and
terrestrial environments would help clarify routs and mecha-
nisms of land-sea transmission. Type I strains, which are
highly virulent and pathogenic, can lead to acquired ocular
toxoplasmosis in individuals with disseminated congenital
form of T. gondii [42, 43]. Aksoy et al. [37] reported T. gon-
dii type 1 infection in Mytilus galloprovincialis (Mediter-
ranean mussel), one of the most consumed shellfish in Tur-
key. The authors suggested that these types of contaminated
seafood may be involved in the transmission of the parasite
to humans and other hosts. Type II T. gondii strains are the
vast majority of human infections and have a worldwide
distribution. Type II strains are causative agents for numer-
ous asymptomatic toxoplasmosis cases in Europe, it can be
pathogenic for two important categories of subjects, namely
immature fetuses and immunocompromised individuals [43].
On the basis of a previous study, Dubey et al. [44] showed
Type II T. gondii from a striped dolphin (Stenella coeruleo-
alba) in Costa Rica. It is noteworthy that Type Il 7. gondii
in mice are classified as avirulent strain. Study carried out by
Hancock et al. [45] showed the first report of type III 7. gon-
dii in a Hawaiian monk seal. This genotype was determined
to be restriction fragment length polymorphisms (RFLP) of
the SAG2 gene. On the other hand, it has previously been
shown that Type X strains of 7. gondii are virulent for south-
ern sea otters from coastal California [27]. Additionally, one
interesting study has demonstrated Type X strains of 7. gon-
dii in canids, coastal-dwelling felids, nearshore-dwelling sea
otters, and marine bivalve. It is assumed that contaminated
runoff to feline faecal rapidly reaches sea from lands, and
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otters could be infected with T. gondii via the consumption
of filter-feeding marine invertebrates [46].

The prevalence rate of marine 7. gondii infection in var-
ious regions of the world was very different, and ranged
from 0 to 100%. These differences may originate from dif-
ferent types of marine animals, sample sizes, and diagnostic
approaches in the reviewed studies. Regarding continents,
North America showed the highest 7. gondii infection in
marine animals that may suggest the level of fecal contami-
nation of the soil and water reservoirs. Our analysis also
showed that there is either no available data (Africa) or very
limited literature (Antarctica, Oceania, and South America)
on the prevalence of T. gondii infection in significant parts of
the globe. Therefore, it is essential to conduct more studies
to determine the putative role of 7. gondii on marine spe-
cies. The main limitation expressed in the included studies
regarding prevalence of T. gondii infection in marine animal
species was related to the use of different diagnostic methods
with varying sensitivity and specificity due to their great
impact on the results. The use of an accurate and reliable
technique can help to correctly interpret the results of 7.
gondii prevalence in marine species in different parts of the
world.

Conclusion

The results of current study indicated that the global preva-
lence rate of 7. gondii infection was high in marine animals.
It is well demonstrated that 7. gondii parasite has a very
successful adaptation in aquatic environments. Despite the
worldwide range and broad marine animals host record of T.
gondii infection, there was no evidence regarding toxoplas-
mosis in these animals in most parts of the world. Therefore,
it is necessary to develop surveillance for detection of 7.
gondii in aquatic animals in different regions with appropri-
ate molecular and serological techniques. It is also important
to know the ecology of this parasite in aquatic environment
to design appropriate strategies for monitoring, control-
ling, and prevention of the transmission of toxoplasmosis to
humans or other hosts.
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